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Abstract—The asymptotic capacity at low input powers of an av-
erage-power limited or an average- and peak-power limited dis-
crete-time Poisson channel is considered. For a Poisson channel
whose dark current is zero or decays to zero linearly with its av-
erage input power , capacity scales like ��� � for small . For
a Poisson channel whose dark current is a nonzero constant, ca-
pacity scales, to within a constant, like ��� ��� � for small .

Index Terms—Asymptotic capacity, channel capacity, low
signal-to-noise ratio (SNR), optical communication, Poisson
channel.

I. INTRODUCTION

W E consider the discrete-time memoryless Poisson
channel whose input is in the set of nonnegative

reals and whose output is in the set of nonnegative
integers. Conditional on the input , the output has a
Poisson distribution of mean , where is called
the dark current. We denote the Poisson distribution of mean

by so

(1)

With this notation the channel law is

(2)

This channel is often used to model pulse-amplitude mod-
ulated optical communication with a direct-detection receiver
[1]. Here the input is proportional to the product of the trans-
mitted light intensity by the pulse duration; the output models
the number of photons arriving at the receiver during the pulse
duration; and models the average number of extraneous counts
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that appear in in addition to those associated with the illumi-
nation .

The average-power constraint1 is

(3)

where is the maximum allowed average power.
The peak-power constraint is that with probability one

(4)

We assume throughout that . In the absence of a peak-
power constraint we write .

No analytic expression for the capacity of this channel is
known. In [1] Shamai showed that the capacity-achieving
input distribution is discrete with the number of mass points
depending on and . In [2], [3] Lapidoth and Moser derived
the asymptotic capacity of the Poisson channel in the regime
where both the allowed average power and allowed peak power
tend to infinity with their ratio held fixed.

In the present paper we seek the asymptotic capacity of the
Poisson channel when the allowed average input power tends
to zero with the allowed peak-power—if finite—held fixed. We
consider two different cases for the dark current . The first is
when the dark current tends to zero proportionally to the av-
erage power. This corresponds to the wide-band regime where
the pulse duration tends to zero.2 The second case is when the
dark current is constant. This corresponds to the regime where
the transmitter is weak.

Our lower bounds on channel capacity in the various cases
are all based on binary inputs. Our upper bounds are derived
using duality (see [4] and references therein). In some cases our
lower and upper bounds asymptotically coincide (Proposition
1). An efficient way to compute asymptotic capacities at low
average input powers is to compute the capacity per unit cost
[5]. However, we shall see that, apart from one case ((11)), the
capacity per unit cost is infinite, i.e., the capacity tends to zero
more slowly than linearly with the average power.

1The word “power” here has the meaning “average number of photons trans-
mitted per channel use.” If we denote by � the standard “power” in physics,
namely, energy per unit time (in watts), then the notion of “power” in this paper
is really �������, where � is the detector’s quantum efficiency,� is the pulse
duration (in sec), and ��� is the photon energy (in joules) at the operating fre-
quency � (in rad/sec).

2Note that by “wide-band” we mean that the communication bandwidth, i.e.,
the reciprocal of the pulse duration �, is large enough so that ������� �
�, but this bandwidth is still much smaller than the optical center frequency
�. Once the bandwidth becomes comparable to the optical center frequency,
photon-flux is no longer proportional to input power, and therefore our channel
model becomes inadequate.
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Among the results in this paper, the special case of zero dark
current was derived independently in [6], [7].

The rest of the paper is arranged as follows: in Section II
we provide the results with some discussions; in Section III we
prove the lower bounds; and in Section IV we prove the upper
bounds.

II. RESULTS

Let denote the capacity of the Poisson channel
with dark current under constraints (3) and (4):

(5)

where the supremum is over all input distributions satisfying (3)
and (4).

When is proportional to , the low-average-power asymp-
totic capacity of the Poisson channel is given in the following
proposition. Note that this also includes the case where the dark
current is zero.

Proposition 1 (Dark Current Proportional to ): For any
and ,

(6)

Recall that, for any , , the sum of two independent
random variables with the Poisson distributions and
has the Poisson distribution . Thus, we can produce
any Poisson channel with nonzero dark current from a Poisson
channel with zero dark current by having the receiver add an in-
dependent Poisson random variable to the channel output. Since
this cannot increase capacity,

(7)

Consequently, to prove Proposition 1, we only need to show

(8)

(9)

We shall prove (8) in Section III-A and (9) in Section IV-A.
Remarks about Proposition 1:
• If we set , then the model considered in Proposi-

tion 1 can be used to describe pulse amplitude modulation
on a continuous-time Poisson channel with constant dark
current under an average input-power constraint and in the
absence of a peak-power constraint. Proposition 1 shows
that, as we let the pulse duration tend to zero, capacity
grows like , where is the continuous-time av-
erage power3 which remains constant as tends to zero
proportionally with .

• Note that (6) does not depend on the peak input power
. In fact, as the proof shows, (6) can be achieved using

3To be precise, is ������ where � is the “power” in physics. See
Footnote 1.

on-off signaling, where the “on” signal is chosen small but
constant.4 In the continuous-time picture, this choice corre-
sponds to the peak power growing like the constant divided
by . As tends to zero, the maximum continuous-time
input power thus tends to infinity. (Note that, to achieve
unbounded capacity—in our case —on the contin-
uous-time Poisson channel, it is necessary to use inputs that
tend to infinity since peak-limited continuous-time Poisson
channels have bounded capacities [8].)

• It is somewhat surprising that the RHS of (6) does not de-
pend on the dark current. In particular, it does not depend
on whether the dark current is zero or not. Intuitively this is
because, when is small, our “on” signal, which we hold
constant, dominates the dark-current floor.

• The bound (9) can also be derived by noting that the ca-
pacity of the Poisson channel with zero dark current under
only an average-power constraint is upper-bounded by the
capacity of the pure-loss bosonic channel, and by using the
explicit formula [9]

(10)

of the latter.
• Because the pure-loss bosonic channel with coherent input

states and direct detection reduces to a Poisson channel, the
formula (6) and the achievability of its left-hand side using
binary signaling combine with (10) to show that the asymp-
totic (quantum-receiver) capacity of the pure-loss bosonic
channel is achievable with binary modulation (on-off sig-
naling) and direct detection.

• To see how well capacity is approximated by its asymptotic
expression, we compare this expression with nonasymp-
totic upper and lower bounds in Fig. 1. The upper bound is
computed using (53) and (86); the lower bounds are com-
puted using (17), (21) and (28). It can be seen that this
approximation is useful for , and for and

. For and our choice of
the input distribution becomes highly suboptimal, which
is why the lower bound deviates significantly from the ca-
pacity asymptote.

For our second case where the dark current is constant and
does not scale with , the asymptotics depend critically on
whether a peak-power constraint is present or not

:

Proposition 2 (Constant Nonzero Dark Current): For any
,

(11)

and

(12)

4One can also approach asymptotic capacity with nonbinary inputs.
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Fig. 1. Comparison of capacity asymptote � ��� with nonasymptotic upper and lower bounds for dark current proportional to � .

Fig. 2. Comparison of asymptotic lower bound � ��� ��� with nonasymptotic lower bound for constant nonzero dark current.

The proof of (11) is a simple application of the formula for
the capacity per unit cost [5, Theorem 2]. We shall prove the
lower bound in (12) in Section III-B and the upper bound in
Section IV-B.

Remarks about Proposition 2:
• In contrast to Proposition 1, here the capacity asymptote

depends heavily on the peak input power . In partic-
ular, it is linear in if is finite, and it is proportional
to if is infinite.

• As the proof shows, both (11) and (12) can be achieved
with on-off signaling. In the case of (11), the “on” signal is
equal to ; while in the case of (12), the “on” signal tends
to infinity as tends to zero. These signaling schemes are
in the same spirit as the one that achieves (6) in the sense
that the “on” signal should be large compared to the dark-
current floor.

• We compare the asymptotic and nonasymptotic lower
bounds in Fig. 2. The nonasymptotic lower bounds are
computed using (44). Interestingly, for most realistic
values of , this nonasymptotic lower bound for
is better than that for . This is because, when

, our choice of the input distribution is good only

for extremely small input powers. To get a sense of how
good the asymptotic approximation is, we can always
lower-bound the capacity when by the lower
bound for , which is rather close to the asymptotic
lower bound whenever . Our nonasymptotic
upper bounds are difficult to compute and are therefore
not included in this figure.

III. LOWER BOUNDS

The lower bounds in this section are obtained by choosing
binary input distributions and then studying the corresponding
mutual informations. We denote by the binary distribution

w.p.
w.p.

(13)

where and . If we choose the parameters and
so that constraints (3) and (4) are satisfied, then

(14)
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A. Dark Current Proportional to

We next derive Inequality (8). To this end, we write out the
mutual information for the input distribution of
(13) as

(15)

(16)

(17)

where in the last equality we defined

(18)

(19)

Note that in the above decomposition we took out the terms cor-
responding to in all three summations to form
and collected the remaining terms in .

We lower-bound as

(20)

(21)

We lower-bound as

(22)

(23)

(24)

(25)

(26)

(27)

(28)

Choose any and, for small enough , let .
Then the distribution (13) satisfies both constraints (3) and (4).
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Let . Using (21) we can bound the asymptotic behavior
of as

(29)
Similarly, using (28) we can bound the asymptotic behavior of

as

(30)

(31)

(32)

Combining (14), (17), (29), and (32) we obtain

(33)

We can make the right-hand side (RHS) of (33) arbitrarily close
to 1 by choosing arbitrarily small . Thus we obtain (8).

B. Constant Nonzero Dark Current

We next prove the lower bound in (12). To this end, we lower-
bound the mutual information for the input distribu-
tion (13) as follows:

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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For small enough , we choose

(45)

and

(46)

From (14) and (44) we then obtain

(47)

(48)

(49)

This establishes the lower bound in (12).

IV. UPPER BOUNDS

In this section we prove the upper bounds on the asymptotic
capacities of the Poisson channel. We shall use the duality bound
[4] which states that, for any distribution on the output, the
channel capacity satisfies

(50)

where the supremum is taken over all allowed input distribu-
tions.

A. Zero Dark Current

We next prove (9). To this end, as in [3], we shall introduce in
Section IV-A1 the Poisson channel with continuous output. This
channel is equivalent to our channel but its output alphabet is
not the nonnegative integers but the nonnegative reals. We shall
then prove a lemma in Section IV-A2 before finally proving (9)
in Section IV-A3.

1) Poisson Channel With Continuous Output: We introduce
the Poisson channel with continuous output whose dark current
is equal to zero. Its input is the same as that of the original
Poisson channel, and its output is

(51)

where is the output of the original Poisson channel with
zero dark current, and the random variable is independent of

and uniformly distributed on the interval . Then

is a continuous random variable whose conditional density
given is

(52)

where denotes the largest integer not exceeding , and the
second equality follows because . Note that is a
probability mass function on whereas is a density on

.
Denoting the capacity of the channel under constraints

(3) and (4) by ,

(53)

because can be computed from [3, Lemma 17].
2) A Lemma: The following lemma lower-bounds the differ-

ential entropy of conditional on .
Lemma 1: Let be defined as in (51) and be given by (52),

then

(54)

Proof: By (51) we have as in [3, Lemma 17]

(55)

The RHS of (55) can be bounded as

(56)

(57)

(58)

(59)

(60)

(61)
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(62)

(63)

(64)

(65)

Here, (60) follows by Stirling’s Bound [10]

(66)

and (63) follows by bounding by its Taylor expansion at
. Combining (55) and (65) proves the lemma.

3) Proof of (9): According to (53), to prove (9), we need to
prove

(67)

To prove (67) using the duality bound (50), we choose the dis-
tribution on to be of density

(68)

where is arbitrary (e.g., ), whereas
and will be specified later, and denotes the
Incomplete Gamma Function

(69)

We next apply the duality bound to upper-bound the capacity of
the channel using the above output distribution:

(70)

We bound as follows:

(71)

(72)

(73)

(74)

(75)

(76)
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(77)

(78)

where the last inequality follows from Lemma 1.
Substituting in (78) yields

(79)

(80)

(81)

(82)

(83)

(84)

From (84) and (70), we get

(85)

(86)

Note that (86) holds for all and . Choosing
in (86) and letting tend to zero yields (67) and hence

concludes the proof of (9).

B. Constant Nonzero Dark Current

In this section we shall prove the upper bound in (12), namely

(87)

To this end, we shall prove two lemmas in Section IV-B1, then
derive a general upper bound on in Section IV-B2,
and finally prove (87) in Section IV-B3.

1) Lemmas: We next present two lemmas. The first lemma
shows that the tail of a Poisson distribution of mean behaves

like for large .
Lemma 2: If is a mean- Poisson random variable, then,

for any ,

(88)
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where

(89)

(90)

Proof: To prove the lower bound, we observe that for every

(91)

Using Stirling’s Bound

(92)

we obtain from (91) that

(93)

This establishes the lower bound in (88).
To prove the upper bound, we recall that the moment gener-

ating function of the Poisson distribution of mean is

(94)

Consequently, by the Chernoff Bound,

(95)

When , letting in (95) yields the upper
bound in (88)

(96)

When , the upper bound in (88) is trivial.
The second lemma is a simple property of convex functions.
Lemma 3: For any convex function

(97)

Proof: Since , we can write
for some . The convexity of implies

(98)

Thus,

(99)

(100)

(101)

2) An Upper Bound on : We shall next apply (50)
to upper-bound . To this end, we choose to be

(102)

where and are constants that will be specified
in Section IV-B-III, and is the normalizing factor

(103)

In the following calculations we shall assume that is large
compared to .

To upper-bound the capacity using (50), we write
as

(104)

and study and separately. Substituting (102) and
the channel law (2) in yields

(105)

The second term can be upper-bounded as

(106)
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(107)

(108)

where the inequality follows from Stirling’s Bound

(109)

Substituting (105) and (108) in (104) we obtain

(110)

(111)

(112)

It follows from (50) and (112) that is upper-bounded
by

(113)

(114)

To find an upper bound on the capacity, we shall next upper-
bound the three terms on the RHS of (114) separately.

We first consider . By Lemma 2,

(115)

Further, when , we can bound as

(116)

(117)

(118)

where in the first step we adopt the convention . To upper-
bound the supremum in (118), we first observe that is
convex in for . Then, by Lemma 3, for

we have

(119)

(120)
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On the other hand, when we have

(121)

Thus we obtain

(122)

Combining (118) and (122) yields that for larger than some
,

(123)

(124)

(125)

We next use Lemma 2 to bound as

(126)

Therefore,

(127)

where the second inequality is obtained by omitting nonpositive
terms. Using (115), (125) and (127) we obtain that for larger
than some ,

(128)

We next derive an upper bound on . To
this end, we observe

(129)

(130)

(131)

(132)

(133)

where the inequality follows by Lemma 2. Using the above in-
equality we obtain

(134)

Similarly to (118), when we can bound the expecta-
tion on the RHS of (134) as

(135)

To bound the supremum on the RHS of (135), we observe that
is convex in on . Thus,

by Lemma 3 we have, for ,

(136)

(137)

When , we have

(138)

(139)

Thus the supremum on the RHS of (135) can be bounded as

(140)

Combining (134), (135), (140) and the definition of we
have that for larger than some ,

(141)
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We now consider . For , we
simply bound by

(142)

When , we use the inequality

(143)
to obtain

(144)

(145)

(146)

(147)

where the second inequality is obtained by adding nonpositive
terms. Thus we may bound , when , by

(148)

By combining (142) and (148) and by adding nonnegative terms,
we can upper-bound , for all input distributions satis-
fying , by

(149)

(150)

where in the second step we applied Markov’s inequality to
, and where

(151)

To upper-bound when , we
use the Chernoff Bound and (94) to write

(152)

Letting in the above inequality yields

(153)

Substituting (153) into the definition of we obtain

(154)

where

(155)

Thus, when ,

(156)

(157)

(158)

where we adopt the convention . It can be checked by
computing the derivative of with respect to that, for
larger than some , is monotonically decreasing in
for . Using this observation, Lemma 3, and the fact
that is convex in on , we have that the
supremum on the RHS of (158) is achieved when .
Therefore, when ,

(159)

Combining (150) and (159) we obtain

(160)

Thus, for any , , , and larger than
some , we can combine (114), (128), (141) and (160) to
obtain an upper bound on .
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3) Proof of (87): For small enough , we choose

(161)

and let have any fixed value that does not depend on
. In this case, it follows by (114) that

(162)

Substituting (161) into (128) yields

(163)

Substituting (161) into (141) yields

(164)

Finally, substituting (161) into (160) yields

(165)

Combining (162), (163), (164) and (165) proves (87).
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