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The State-Dependent Semideterministic
Broadcast Channel

Amos Lapidoth, Fellow, IEEE, and Ligong Wang, Member, IEEE

Abstract—We derive the capacity region of the state-dependent
semideterministic broadcast channel with noncausal state infor-
mation at the transmitter. One of the two outputs of this channel is
a deterministic function of the channel input and the channel state,
and the state is assumed to be known noncausally to the transmitter
but not to the receivers. We show that appending the state to the
deterministic output does not increase capacity. We also derive an
outer bound on the capacity of general (not necessarily semideter-
ministic) state-dependent broadcast channels.

Index Terms—Broadcast channel, capacity region, channel state
information, Gel’fand–Pinsker problem, semideterministic.

I. INTRODUCTION

W E characterize the capacity region of the discrete, mem-
oryless, state-dependent, semideterministic broadcast

channel. This channel has a single transmitting node, two
receiving nodes, and an internal state, all of which are assumed
to take value in finite sets. One of the receiving nodes—the
“deterministic receiver”—observes a symbol that is a deter-
ministic function of the transmitted symbol and the (random)
state

(1a)

and the other receiving node—the “nondeterministic re-
ceiver”—observes a symbol , which is random: conditional
on the input being and the state being , the probability that
it equals is

(1b)

The state sequence is assumed to be independent and identi-
cally distributed (i.i.d.) according to some law

(1c)

and to be revealed to the encoder in a noncausal way: all future
values of the state are revealed to the transmitter before trans-
mission begins.
We consider a scenario where the encoder wishes to convey

two private messages: to the determin-
istic receiver, and to the nondetermin-
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istic receiver, where and denote the rates (in bits per
channel use) of data transmission to the deterministic and non-
deterministic receivers.1 Themessages and are assumed
to be independent and uniformly distributed. As for the broad-
cast channel without a state [1], [2], we define the capacity
region of this channel as the closure of all rate pairs that are
achievable in the sense that the probability that at least one of
the receivers decodes its message incorrectly can be made arbi-
trarily close to zero.
The main result of this paper is a single-letter characterization

of the capacity region:

Theorem 1: The capacity region of the channel (1) when the
states are known noncausally to the transmitter is the convex
closure of the union of rate pairs satisfying

(2a)

(2b)

(2c)

over all joint distribution on whose marginal on
is the given state distribution and under which, conditional

on and , the channel outputs and are drawn according
to the channel law (1) independently of

(3)

Here, denotes the indicator function.2 Moreover, this is
also the capacity region when the state sequence is also revealed
to the deterministic receiver, i.e., when the mapping is
replaced by the mapping .

Proof: See Sections II and III.

As to the cardinality of the auxiliary random variable , we
have the following.

Proposition 1: To exhaust the capacity region of the channel
(1), we may restrict the auxiliary random variable in (2) to
take value in a set whose cardinality is bounded by

(4)

where and denote the input and state alphabets, respec-
tively.

Proof: See Appendix A.

Broadcast channels without states have been studied exten-
sively [3]. Our study can be considered as an extension to broad-
cast channels with states of prior work by Gel’fand, Marton, and

1To be precise, we should replace and with their integer parts,
but, for typographical reasons, we shall not.
2The value of is 1 if the statement is true and is 0 otherwise.
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Pinsker on deterministic and semideterministic broadcast chan-
nels without states [2], [4]–[8]. State-dependent broadcast chan-
nels were also considered before [9]–[11], but capacity regions
of most such channels are still unknown.
Steinberg [9] studied the degraded state-dependent broad-

cast channel with causal and with noncausal state information
at the transmitter. He derived the capacity region for the causal
case, but for the noncausal case, his outer and inner bounds do
not coincide. Steinberg and Shamai [10] then derived an inner
bound for general (not necessarily degraded) state-dependent
broadcast channels with noncausal state information. This inner
bound is based on Marton’s inner bound for broadcast chan-
nels without states [7] and on Gel’fand–Pinsker coding [12].
In fact, the direct part of our Theorem 1 can be deduced from
[10] with a proper choice of the auxiliary random variables (see
Section II-A).
Our proof of the converse part of Theorem 1 borrows from the

Gel’fand–Pinsker converse for single-user channels with states
[12] as well as from the Körner–Marton [7] and the Nair–El
Gamal [13] approaches to outer bounding the capacity region
of broadcast channels without states. But it also has a new el-
ement: the choice/definition of the auxiliary random variable
depends on the codebook. As we demonstrate in Section V, our
outer bound can be extended to general (not necessarily semide-
terministic) state-dependent broadcast channels.
Some special cases of Theorem 1 were solved by Khosravi-

Farsani and Marvasti [11]: the fully deterministic case, the case
where the states are known to the nondeterministic receiver, and
the case where the channel is degraded so forms
a Markov chain.
The rest of this paper is organized as follows. We prove the

direct and converse parts of Theorem 1 in Sections II and III.
In Section IV, we apply Theorem 1 to a specific channel whose
nondeterministic output is unaffected by the state. Even so, non-
causal state information is strictly better than causal. We finally
derive a new outer bound on general state-dependent broadcast
channels in Section V.

II. DIRECT PART

In this section we prove the direct part of Theorem 1. One
way to do this is to use [10, Th. 1] with the choice of the auxil-
iary random variables that we propose in Section II-A. For com-
pleteness and simplicity, we also provide a self-contained proof
in Section II-B.

A. Proof Based on [10]

It was shown in [10, Th. 1] that the capacity region of a gen-
eral (not necessarily semideterministic) state-dependent broad-
cast channel with noncausal state information at the transmitter
contains the convex closure of the union of rate pairs
satisfying

(5a)

(5b)

(5c)

where the union is over all joint distributions on
whose marginal is , which satisfy

the Markov condition

(6)

and under which the conditional law of given is
that of the given channel.
For the semideterministic channel, we choose the auxiliary

random variables in (5) as follows:

(7a)

(7b)

(7c)

Note that the Markov condition (6) is satisfied because is a
deterministic function of and because in Theorem 1 we
restrict to be such that . With this choice
of , , and , (5) reduces to (2).

B. Self-Contained Proof

We next provide a self-contained proof of the direct part of
Theorem 1. As in [10, Th. 1], our proof is based on Marton’s
inner bound for general broadcast channels [7], [14] and on
Gel’fand–Pinsker coding [12].
First note that the joint distribution (3) can also be written as

(8)

with the additional requirement that

(9)

Further note that, when is fixed, all the terms on the right-
hand side (RHS) of (2) are fixed except for , which is
convex in . Since only appears with a positive
sign on the RHS of (2), it follows that the union over all joint
distributions of the form (2) can be replaced by a union only
over those where is a deterministic function of , i.e.,
of the form

(10)

for some (and subject to (9)). We shall thus
only establish the achievability of rate pairs that satisfy (2) for
some distribution of the form (10).
Choose a stochastic kernel and a mapping

which, combined with and the channel law,
determines the joint distribution (10) for which (9) is satisfied.
For a given blocklength , we construct a random code as
follows.
Codebook: Generate -bins, each containing

-tuples where the th -tuple in the th bin

is generated i.i.d. according to (the -marginal of (10))
independently of the other -tuples. Additionally, generate
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-bins, each containing -tuples, where the th
-tuple in the th -bin

is drawn i.i.d. according to (the -marginal of (10)) inde-
pendently of the other -tuples and of the -tuples.
Encoder: To send message to the

deterministic receiver and message to
the nondeterministic receiver, look for a -tuple
in -bin and a -tuple in -bin such
that is jointly typical with the state
sequence

(11)

where denotes the -strongly typical set with respect to
a certain distribution. If such a pair can be found, send

(12)

where in the above denotes the application of the
function componentwise. (Note that in this case,
the sequence received by the deterministic receiver will be

.) Otherwise, send an arbitrary codeword.
Deterministic decoder: Try to find the unique -bin, say ,

that contains the received sequence and output its number .
If there is more than one such bin, declare an error.
Nondeterministic decoder: Try to find the unique -bin

that contains a that is jointly typical with the received
sequence

(13)

and output . If more than one or no such bin can be found,
declare an error.
We next analyze the error probability of the aforementioned

coding scheme. There are three types of errors.
Encoder errs: This happens only if there is no pair

that satisfies (11). To bound
this probability, we use the Multivariate Covering Lemma [2,
Lemma 8.2], which we restate as follows.

Lemma 1: Fix some joint distribution on
, and fix positive and with . Let

be a random sequence satisfying

(14)

For each , let , ,
be pairwise independent conditional on , each distributed
according to . Assume that

are mutually independent conditional on . Then there exists
which tends to zero as tends to zero such that

(15)

provided that for all with

(16)
where the conditional entropies are computed with respect to

.
We apply Lemma 1 by choosing , (determin-

istic) so , and
(17a)

(17b)

(17c)

The joint distribution is chosen to be . We then obtain that
the probability that the encoder errs tends to zero as tends to
infinity provided that

(18a)

(18b)

(18c)

Deterministic decoder errs: This happens only if there is
more than one bin that contains the received . We may now
assume that the encoding was successful, so (11) is satisfied.
Then is in , and

(19)

where tends to zero when tends to zero. Hence, the prob-
ability that a specific -tuple in a bin that was not chosen by the
encoder, which, by our code construction, was independently
chosen from the received , happens to be the same as , is
upper bounded by the RHS of (19). Further note that the total
number of -tuples outside the bin chosen by the encoder is

. Using the union bound, we obtain the proba-
bility that the deterministic decoder errs is at most

(20)

which tends to zero as tends to infinity provided that

(21)

Nondeterministic decoder errs: This happens if either the
-tuple is not jointly typical with the received -tuple,
or if a -tuple in a different bin happens to be jointly typical
with the received -tuple. Assuming that the encoding was suc-
cessful, the probability of the former case tends to zero as
tends to infinity by (11) and by the Markov Lemma [2, Lemma
12.1]. To upper-bound the probability of the latter case, note
that any , where , is chosen independently
of and , and is hence also independent of
the received . By the Joint Typicality Lemma [2, p. 29], we
have

(22)
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where the probability is computed with respect to the randomly
chosen codebook. Next, note that the total number of such -tu-
ples is . Applying the union bound, we obtain
that the probability that there exists at least one -tuple that is
not in the chosen bin but that is jointly typical with is at most

(23)

which tends to zero as tends to infinity provided that

(24)

Summarizing (18), (21), and (24), and letting tend to zero,
we conclude that the aforementioned coding scheme has van-
ishing error probability as tends to infinity for all
satisfying (2). By time-sharing, we further achieve the convex
hull of all rate pairs satisfying (2) for joint distributions of the
form (10). This concludes the proof of the direct part of The-
orem 1.

III. CONVERSE PART

In this section we show that, even if the state sequence is
revealed to the deterministic receiver (which observes ), any
achievable rate pair must be in the convex closure of the union
of rate pairs satisfying (2).
Given any code of blocklength , we first derive a bound

on (25)

(26)

(27)

(28)

(29)

(30)

where tends to zero as tends to infinity. Here, (26) follows
from Fano’s inequality; (27) because and are indepen-
dent; (28) from the chain rule; (29) by dropping negative terms;
and (30) because conditioning cannot increase entropy.
We next bound as in [12]

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

Here, (32) follows from Fano’s inequality; (33) and (34) from
the chain rule; and (35) from Csiszár’s identity [15]

(39)

(36) because and are independent; (37) from the
chain rule and by dropping negative terms; and (38) by defining
the auxiliary random variables

(40)

We next bound the sum rate

(41)

(42)

(43)

where the last step follows from Fano’s inequality. Of the
two mutual informations on the RHS of (43), we first bound

(44)

(45)

(46)

(47)

(48)
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Here, (44)–(46) follow from the chain rule; (47) by applying
Csiszár’s identity (39) between and ; and (48)
again from the chain rule.
We next study the sum of the last term on the RHS of (48)

and the second mutual information on the RHS of (43)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

Here, (49) and (50) follow from the chain rule; (51) by ap-
plying Csiszár’s identity between and ; (52) from
the chain rule; (53) because and are inde-
pendent; (54) again from the chain rule; and (55) because, given

, the channel inputs are determined by the en-
coder, and hence are also determined, so

(56)

Combining (43), (48), and (55), using the definitions (40), and
further defining

(57)

we obtain

(58)

Summarizing (30), (38), and (58) and letting tend to in-
finity, we obtain that any achievable rate pair must be
contained in the convex closure of the union of rate pairs satis-
fying

(59a)

(59b)

(59c)

where, given , the outputs are drawn according
to the channel law (1) independently of the auxiliary random
variables .
To prove the converse part of Theorem 1, it remains to replace
and with a single auxiliary random variable, i.e., it remains

to find an auxiliary random variable such that

(60a)

and

(60b)

In fact, as we shall see, either choosing to be will sat-
isfy (60) or else choosing it to be will satisfy (60). If
we choose , then (60a) is satisfied with equality, and the
requirement (60b) becomes

(61)

On the other hand, if we choose , then (60b) is
satisfied with equality, and the requirement (60a) becomes

(62)

It remains to show that at least one of the two requirements (61)
and (62) must be satisfied: if it is (61), then we shall choose
as , and if it is (62), then we shall choose as . To this
end, we note that for all random variables

(63)

because the RHS minus the left-hand side is ,
which is nonnegative. This implies that at least one of (61) and
(62) must hold. We have thus shown that there must exist a
which satisfies both inequalities in (60), hence the bounds (59)
can be relaxed to (2). This concludes the proof of the converse
part of Theorem 1.

IV. EXAMPLE

Consider a broadcast channel whose input, output, and state
alphabets are all binary and whose law is

(64a)

(64b)

(64c)

for some constants . The deterministic output of
this channel is the modulo-two sum of the input and the state
, and the channel from to the nondeterministic output is
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Fig. 1. Capacity regions of the channel (64) when and
with noncausal (solid line) and with causal (dashed line) state information at
the transmitter.

unaffected by the state and is a binary symmetric channel with
crossover probability .
To cancel the state’s effect, the encoder could flip the input
whenever 1, but this would hurt the nondeterministic

receiver. In fact, if the state is unbiased , and if only
causal state information is available at the encoder,3 then one
cannot do better than time-sharing.

Proposition 2: The capacity region of the channel (64) with
when the states are known causally to the transmitter

but not to the receivers is the union over of rate pairs
satisfying

(65a)

(65b)

i.e., it is the collection of rate pairs satisfying

(66)

Proof: See Appendix B.

However, with noncausal state information, the transmitter
can cancel the effect of the state without hurting the nondeter-
ministic receiver:

Proposition 3: The capacity region of the channel (64) when
the states are known noncausally to the transmitter but not to
the receivers is the union over of rate pairs
satisfying

(67a)

(67b)

3By “causal” we mean that the transmitter, when transmitting , knows the
past and present states but not the future states .

where

(67c)

The capacity regions of the channel (64) when and
with noncausal and with causal state information are

depicted in Fig. 1.
We present two different proofs for Proposition 3: the first

is based on the achievability part of Theorem 1; the second is
based on the fact that revealing the states to the deterministic
receiver does not increase the capacity region.

First Proof of Proposition 3: We let be a uniform binary
random variable that is independent of , and let be the out-
come of feeding into a binary symmetric channel of crossover
probability (independently of ). Note that now the channel
from to is a binary symmetric channel with crossover prob-
ability as defined in (67c). Using Theorem 1, we obtain that
the capacity region contains all rate pairs satisfying

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

where (73) follows because can be computed from and ,
and because, given , is independent of . Taking the
convex closure of (68), (71), and (75) over , we obtain
the region characterized by (67).
To see that one cannot do better than (67), we observe that

the capacity region of the channel (64) with states known non-
causally to the transmitter must be contained in the capacity re-
gion when the states are also known to both receivers. The latter
case, however, is equivalent to the following broadcast channel
without states:

(76a)

(76b)

The capacity region of (76) can be found in [1, Example 15.6.5]
and is the same as the region characterized by (67).

Second Proof of Proposition 3: By Theorem 1, the capacity
region of the channel (64) with states known noncausally to the
transmitter is unchanged if the states are also revealed to the
deterministic receiver. When is revealed to the deterministic
receiver, it can form and thus recover . This reduces the
channel to the one without states (76). Hence, the capacity re-
gion of interest is the same as the capacity region of (76), which
is given by the union over of rate pairs satisfying (67)
[1, Example 15.6.5].
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V. GENERAL OUTER BOUND

We next generalize our converse of Section III to a broad-
cast channel that is not necessarily semideterministic. Such a
channel is described by the transition law and the state law

(77a)

(77b)

We let the state sequence be known noncausally to the trans-
mitter and also known to the receiver which observes . The
capacity region is defined in the same way as for the semideter-
ministic broadcast channel. In particular, we consider only two
private messages.
Applying the techniques of Section III, we obtain the fol-

lowing outer bound on the capacity region of the channel (77).
(The bound is tight for semideterministic channels.)

Proposition 4: The capacity region of the channel (77), with
the state sequence being revealed noncausally to the transmitter
and also revealed to the receiver which observes , is contained
in the convex closure of rate pairs satisfying

(78a)

(78b)

(78c)

for joint distributions of the form

(79)
Proof: To bound , we note that (28) holds also for the

general broadcast channel (77), and we continue (28) as follows:

(80)

(81)

(82)

(83)

Here, (82) follows because, given , the channel output
is independent of .
We bound exactly as (38) with , , defined

as in (40).
To bound the sum rate , note that (43), (48), and (54)

still hold, but (55) should be replaced by

(84)

which is true because determines , and be-
cause, without feedback, given , the output is inde-
pendent of . These together yield

(85)

where , , are defined in (57).
Summarizing (83), (38), and (85) we conclude that the de-

sired capacity region is contained in the convex closure of rate
pairs satisfying

(86a)

(86b)

(86c)

where, given , the outputs are drawn according
to the channel law (77) independently of the auxiliary random
variables . Now, to prove Proposition 4, it remains to find
a single auxiliary random variable satisfying

(87a)

and

(87b)

to replace both and . Note that (87) is equivalent to (60).
Hence, according to our arguments in Section III, such a can
always be found.

APPENDIX A
PROOF OF PROPOSITION 1

It suffices to show that, given any joint distribution
of the form (3), there exists another distribution of the
same form

(88)

satisfying
(89)

where denotes the marginal of on , and

(90a)

(90b)

(90c)
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To this end, consider the following functions of
, all of which are determined by the conditional distribution

and are independent of the marginal :

(91a)

(91b)

(91c)

We now look for a (which will replace ) such that

(92a)

(92b)

(92c)

By the Support Lemma [2, p.631], such a can be found
whose support size is at most the total number of constraints,
which equals . Choosing

(93)

for all yields a joint distribution that satisfies (89).
We next show that this choice also satisfies (88) and (90). First
note that (92c) implies that has the same marginal on

as . In particular

(94)

This combined with the fact that we used the conditional distri-
bution to generate shows that is
indeed of the form (88). Furthermore, these imply that

(95)

for all . Hence, we have

(96a)

(96b)

(96c)

On the other hand, (92a) and (92b) imply

(97a)

(97b)

Combining (96) and (97) yields (90) and concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

To prove Proposition 2, we need the following simple outer
bound on the capacity region of any broadcast channel with
causal state information.

Lemma 2: The capacity region of any state-dependent two-
receiver broadcast channel as in (77) with causal state informa-
tion at the transmitter is contained in the convex closure of union
of rate pairs satisfying

(98a)

(98b)

where the union is over all joint distributions of the form

(99)

Proof: We bound as for single-user channels with
causal state information [2], [16] as follows:

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

Here, (105) and (107) follow because is a func-
tion of ; and (106) because, given

, the output is independent of .
In the same way, we can obtain

(108)

We define

(109)

which clearly satisfy the conditions

(110)

We now have

(111a)

(111b)
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which imply that the capacity region of interest is contained in
the convex closure of (98) for distributions on
satisfying

(112)

It now only remains to show that, to exhaust this region, it suf-
fices to consider joint distributions in which is a function of

. This is indeed the case because, given and
the channel law, both terms on the RHS of (98) are convex in

.

We next proceed to prove Proposition 2. We begin with the
achievability part, which is straightforward. If the transmitter
only communicates to the receiver which observes , then it
can cancel the interference of by flipping the input symbol
whenever 1. In this way, the rate pair

(113)

can be achieved. On the other hand, if the transmitter only com-
municates to the receiver which observes , then it can ignore
and achieve the rate pair

(114)

Time-sharing between (113) and (114) achieves the claimed ca-
pacity region.
To prove the converse part, we use Lemma 2. Note that the

auxiliary random variable in Lemma 2 can be restricted to
take value in all “input strategies” [16]. Namely, its alphabet
is the set of all mappings from to . There are four such
mappings

(115a)

(115b)

(115c)

(115d)

Here, 0 or 1 means sending a fixed independently of
, and 2 or 3 means flipping whenever 1. Using
the “fixed” strategies 0 or 1, one can transmit information
to the receiver which observes but not to the receiver which
observes

(116)

(117)

On the other hand, using the “flipped” strategies 2 or 3,
one can transmit information to the receiver which observes
but not to the receiver which observes

(118)

(119)

We now have

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

Denoting

(130)

we see that indeed must satisfy (98). This ends our
proof of Proposition 2.
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