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Covering Point Patterns
Amos Lapidoth, Fellow, IEEE, Andreas Malär, and Ligong Wang, Member, IEEE

Abstract— A source generates a point pattern consisting of
a finite number of points in an interval. Based on a binary
description of the point pattern, a reconstructor must produce a
covering set that is guaranteed to contain the pattern. We study
the optimal tradeoff (as the length of the interval tends to infinity)
between the description length and the least average Lebesgue
measure of the covering set. The tradeoff is established for point
patterns that are generated by homogeneous and inhomogeneous
Poisson processes. The homogeneous Poisson process is shown to
be the most difficult to describe among all point patterns. We also
study a Wyner-Ziv version of this problem, where some of the
points in the pattern are revealed to the reconstructor but not to
the encoder. We show that this scenario is as good as when they
are revealed to both encoder and reconstructor. A connection
between this problem and the queueing distortion is established
via feedforward. Finally, we establish the aforementioned tradeoff
when the covering set is allowed to miss some of the points in
the pattern at a certain cost.

Index Terms— Poisson process, rate-distortion problem, side
information, Wyner-Ziv problem, feedforward.

I. INTRODUCTION

IMAGINE a controller that receives a request that a
computer be on at certain epochs. If the controller could

describe these epochs to the computer with infinite precision,
then the computer would turn itself on only at these epochs
and be in sleep mode at all other times. If the controller cannot
describe the epochs at all, then the computer must be on all the
time. In this paper we study the trade-off between the bit rate
with which the epochs can be described and the percentage of
time the computer must be on.

More specifically, we consider a source that generates a
“point pattern” consisting of a finite number of points in
the interval [0, T ]. Based on a binary description of the
pattern, a reconstructor must produce a “covering set”: a subset
of [0, T ] containing all the points. There is a trade-off
between the description length and the minimal Lebesgue
measure of the covering set. This trade-off is formulated as
a continuous-time rate-distortion problem in Section II. In this
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paper we investigate this trade-off in the limit where T tends
to infinity.

For point patterns that are generated by a homogeneous
Poisson process of intensity λ, we show that, for the recon-
structor to produce covering sets of average measure not
exceeding DT, the required description rate in bits per second
is −λ log D [1]. This result is closely related to results
on the capacity of the ideal peak-limited Poisson channel
[2]–[5]. In fact, in the spirit of [6], the two problems may be
considered dual, although this duality is not exactly the same
as the one formulated in [6]. Also, [6] considers discrete-time
channels and sources, whereas our problem is in continuous
time.

Rate-distortion problems for Poisson processes under
different distortion measures were studied in [7]–[11]. It is
interesting that our rate-distortion function, −λ log D, is equal
to the one in [11], where a queueing distortion measure was
considered. This is no coincidence: the connection between
our and the queueing distortion measure is established when
we introduce feedforward to the problem in Section VI. This
connection is similar to the connection between the Poisson
channel and the queueing channel [12].

One nice feature of our distortion measure is that it can
be naturally extended to any measure space on which a
Poisson process can be defined, whereas the previously-studied
distortion measures [7]–[11] only apply to Poisson processes
on the real line.

We also derive a formula for the required description rate
when the point pattern is generated by an inhomogeneous
Poisson process. More generally, we show that the homo-
geneous Poisson process is the most difficult to cover, in
the sense that any point process that, with high probability,
has no more than λT points in [0, T ] can be described with
−λ log D bits per second. This is true even if an adversary
selects an arbitrary point pattern, provided that the encoder
and the reconstructor are allowed to use random codes. Here
we note that, after the appearance of [1], a stronger result was
shown in [13] that deterministic codes of the same rate are
sufficient to cover arbitrary point patterns.

We then consider a Wyner-Ziv setting [14] of the
problem, where some points in the pattern are revealed to
the reconstructor but the encoder does not know which ones.
This can be viewed as a dual problem to the Poisson channel
with noncausal side information [15]. We show that in this
setting one can achieve the same minimum rate as when the
transmitter does know the reconstructor’s side information.

Finally we consider the case where the covering set is
allowed to miss some of the points in the pattern, and
where every missed point adds a certain cost to the overall
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distortion. The exact expression for the rate-distortion function
is established for the homogeneous Poisson process. This
problem was also considered in [13] in a perhaps more natural
setting.

A. Notation

We use lower-case letters like x to denote numbers,
and upper-case letters like X to denote random variables.
Exceptions to this rule include T for time, R for rate,
and D for expected distortion, which are all deterministic.
Boldface lower-case letters like x denote vectors, functions
from the reals, or point patterns, depending on the context.
If x is a vector, xi denotes its i th element. If x is a function,
x(t) denotes its value at t ∈ R. And if x is a point pattern,
nx(·) denotes its counting function, with nx(t2)− nx(t1) being
the number of points in x that fall in the interval (t1, t2].
Boldface upper-case letters like X denote random vectors,
random functions, or random point processes. The random
counting function corresponding to a point process X is
denoted NX(·).

We denote by Ber(p) the Bernoulli distribution of
parameter p, which assigns probability p to the outcome 1
and probability (1 − p) to the outcome 0.

Unless stated otherwise, we use binary logarithm and
measure information in bits throughout this paper.

The rest of this paper is arranged as follows:
in Sections II and III we present our results for homogeneous
and inhomogeneous Poisson processes, respectively;
in Section IV we present our results for general point
processes and arbitrary point patterns; in Section V we
discuss the Wyner-Ziv setting; in Section VI we introduce
feedforward and demonstrate a coding scheme based on
existing work on the queueing distortion; in Section VII
we present our result for the case where missing a point is
allowed but at some cost; and in Section VIII we conclude
the paper with some remarks.

II. HOMOGENEOUS POISSON PROCESSES

Consider a homogeneous Poisson process X of intensity λ
on the interval [0, T ]. Its counting function NX(·) satisfies

Pr [NX(t + τ ) − NX(t) = k] = e−λτ (λτ)k

k! (1)

for all τ ∈ [0, T ], t ∈ [0, T − τ ] and k ∈ {0, 1, . . .}.
The encoder maps the realization of the Poisson process to

a message in {1, . . . , 2T R}, where R is the description rate in
bits per second. The reconstructor then maps this message to
a {0, 1}-valued, Lebesgue-measurable, signal x̂(t), t ∈ [0, T ].
We wish to minimize the length of the region where x̂(t)=1
while guaranteeing that all points in the original Poisson
process lie in this region. See Figure 1 for an illustration.

More formally, we formulate this problem as a continuous-
time rate-distortion problem, where the distortion between the
point pattern x and the reproduction signal x̂ is defined as

d(x, x̂) �

⎧
⎨

⎩

μL
(
x̂−1(1)

)

T
, if all points in x are in x̂−1(1)

∞, otherwise,
(2)

Fig. 1. Illustration of the problem. Here x̂ is not allowed because it does
not cover all the points.

where x̂−1(1) is the set of all t ∈ [0, T ] such that x̂(t) = 1,
and where μL(·) denotes the Lebesgue measure.

We say that (R, D) is an achievable rate-distortion pair
for X if, for every ε > 0, there exists some T0 > 0 such
that, for every T > T0, there exist an encoder fT (·) and a
reconstructor φT (·) of rate R + ε bits per second that, when
applied to X on [0, T ], result in

E
[
d
(
X, φT ( fT (X))

)] ≤ D + ε. (3)

Denote by R(D, λ) the minimal rate R such that (R, D) is
achievable for the Poisson process of intensity λ. Define

RPois(D, λ) �
{

−λ log D bits per second, D ∈ (0, 1)

0, D ≥ 1.
(4)

Theorem 1 (Homogeneous Poisson): For all D, λ > 0,

R(D, λ) = RPois(D, λ). (5)

Note: Theorem 1 can be alternatively expressed as

D(R, λ) = 2−R/λ, R, λ > 0, (6)

where D(R, λ) denotes the minimal expected distortion D
such that (R, D) is achievable for the Poisson process of
intensity λ.

A. Proof of Theorem 1 via Discretization

To prove Theorem 1, we propose a scheme to reduce the
original problem to one for a discrete memoryless source.
This is reminiscent of Wyner’s scheme for reducing the peak-
limited Poisson channel to a discrete memoryless channel [4].
We shall show the optimality of this scheme in Lemma 1, and
we shall then prove Theorem 1 by computing the best rate
that is achievable using this scheme.

Scheme 1: We divide the time interval [0, T ] into T/�
slots1 of duration �. The encoder first maps the original point
pattern x to a {0, 1}-valued vector x� of (T/�) components
in the following way: if x has at least one point in the slot
((i − 1)�, i�], then we set the i th component of x� to 1.
Otherwise, we set it to zero. The encoder then maps x� to
a message in {1, . . . , 2T R}.

Based on the encoder’s message, the reconstructor produces
a {0, 1}-valued length-(T/�) vector x̂� that meets the distor-
tion criterion

E
[
d�(X�, X̂�)

]
≤ D + ε, (7)

1If T is not divisible by �, we replace it with T ′ = �T/���. When � tends
to zero, the difference between RT and RT ′ tends to zero. Consequently, we
shall ignore this edge effect and assume that T is divisible by �.
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where the distortion measure d�(·, ·) between vectors is
defined in terms of the single-letter distortion function

d�(0, 0) = 0 (8a)

d�(0, 1) = 1 (8b)

d�(1, 0) = ∞ (8c)

d�(1, 1) = 1. (8d)

It then maps x̂� to the piecewise-constant continuous-time
signal x̂

x̂(t) = x̂�
� t

� �, t ∈ [0, T ]. (9)

Scheme 1 reduces the task of designing a code for X subject
to the distortion d(·, ·) to the task of designing a code for the
vector X� subject to the distortion d�(·, ·) because

d(x, x̂) = d�(x�, x̂�). (10)

When X is a Poisson process of intensity λ, the components
of X� are independent and identically distributed (IID), and
each is Ber(1−e−λ�). Let R�(D, λ) denote the rate-distortion
function for X� and d�(·, ·). If we combine Scheme 1 with
an optimal code for X� subject to E

[
d�(X�, X̂�)

]
≤ D + ε,

we can achieve any rate that is larger than

R�(D, λ) bits

� seconds
. (11)

The next lemma, which is reminiscent of [5, Th. 2.1], shows
that when we let � tend to zero, there is no loss in optimality
in using Scheme 1.

Lemma 1: For all D, λ > 0,

R(D, λ) = lim
�↓0

R�(D, λ)

�
. (12)

Proof: Clearly, for all � > 0, (11) cannot exceed R(D, λ).
To prove (12) we only need to show

R(D, λ) ≤ lim
�↓0

R�(D, λ)

�
. (13)

We prove this in the following way: Given any rate-distortion
code with 2T R codewords x̂m , m ∈ {1, . . . , 2T R} that achieves
expected distortion D, we shall construct a new code that can
be constructed through Scheme 1, that contains (2T R + 1)
codewords, and that achieves an expected distortion that is
arbitrarily close to D.

Denote the codewords of our new code by ŵm , where
m ∈ {1, . . . , 2T R + 1}. We choose the last codeword to be
the constant 1. We next describe our choices of the other
codewords. For every ε > 0 and every x̂m , we can approximate
the set {t : x̂m(t) = 1} by a set Am that is equal to a finite,
say Nm , union of open intervals. More specifically,

μL

(
x̂−1

m (1) 
 Am

)
≤ 2−T Rε, (14)

where 
 denotes the symmetric difference between two sets
(see [16, Ch. 3, Proposition 15]). Define

B �
2T R
⋃

m=1

(
x̂−1

m (1) \ Am

)
, (15)

Fig. 2. Constructing ŵm from Am .

and note that by (14)

μL(B) ≤ ε. (16)

For each Am , m ∈ {1, . . . , 2T R}, define

Tm �
{
t ∈ [0, T ] : ((�t/�� − 1)�, �t/�� �

] ∩ Am �= ∅}.
(17)

We now construct ŵm , m ∈ {1, . . . , 2T R} as

ŵm = 1Tm , (18)

where 1S denotes the indicator function of the set S. Note
that Am ⊆ Tm = ŵ−1

m (1). See Figure 2 for an illustration of
this construction. Let

N � max
m∈{1,...,2T R}

Nm .

It can be seen that

μL

(
ŵ−1

m (1)
)

− μL(Am) ≤ 2N�, m ∈ {1, . . . , 2T R}.
(19)

Our encoder works as follows: if x contains no point in B, it
maps x to the same message as the given encoder; otherwise
it maps x to the index (2T R + 1) of the all-one codeword.

To analyze the distortion, first consider the case where x
contains no point in B. In this case, all points in x must
be covered by the selected codeword ŵm . By (14) and (19),
the difference d(x, ŵm) − d(x, x̂m), if positive, can be made
arbitrarily small by choosing small ε and � (independently
of x). Next consider the case where x does contain points
in B. By (16), the probability that this happens can be made
arbitrarily small by choosing ε small, therefore its contribution
to the expected distortion can also be made arbitrarily small.
We conclude that our code {ŵm} can achieve a distortion that
is arbitrarily close to the distortion achieved by the original
code {x̂m}.

We next proceed to prove Theorem 1. We derive R(D, λ)
by computing the right-hand side of (12) using [17, Th. 9.3.2],
which is a generalization of Shannon’s formula for the rate-
distortion function of a discrete memoryless source [18] to
unbounded distortion measures. This gives us

R�(D, λ) = min
PX̂� |X� :

E
[
d�(X�,X̂�)

]
≤D

I (X�; X̂�). (20)

First consider the case where D ∈ (0, 1). It is clear that, to
satisfy E

[
d�(X�, X̂�)

]
≤ D, one must choose X̂� = 1 with
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probability one whenever X� = 1. Assume that � is small
enough so that

1 − e−λ� < D. (21)

Then the conditional probability for X̂� = 1 when X� = 0
should be chosen such that the probability X̂� = 1 is equal
to D. Hence the optimal conditional distribution is

P∗
X̂�|X�(1|0) = 1 − eλ� + Deλ�, (22a)

P∗
X̂�|X�(1|1) = 1. (22b)

We compute the mutual information I (X�; X̂�) correspond-
ing to this conditional law as follows

R�(D, λ) = I (X�; X̂�) (23)
= H (X̂�) − H (X̂�|X�) (24)
= H (X̂�) − e−λ�H (X̂�|X� = 0)

− (1 − e−λ�)H (X̂�|X� = 1) (25)
= Hb(D) − e−λ�Hb(1 − eλ� + Deλ�), (26)

where Hb(·) denotes the binary entropy function:

Hb(p) = p log
1

p
+ (1 − p) log

1

1 − p
, p ∈ [0, 1]. (27)

Using (12) and (26) we have

R(D, λ)

= ∂
(
Hb(D) − e−λ�Hb(1 − eλ� + Deλ�)

)

∂�

∣
∣
∣
∣
∣
�=0

(28)

= λe−λ�Hb(1 − eλ� + Deλ�)

+ λe−λ� (1 − D) log
eλ� − Deλ�

1 − eλ� + Deλ�

∣
∣
∣
∣
�=0

(29)

= λHb(D) + λ(1 − D) log
1 − D

D
(30)

= −λ log D, D ∈ (0, 1). (31)

The case where D ≥ 1 is simple: one can use the constant
signal X̂(t) = 1, t ∈ [0, T ] as the reconstruction irrespective
of the realization of X, hence

R(D, λ) = 0, D ≥ 1. (32)

Combining (31) and (32) yields (5).

B. Alternative Proof of Converse

In the above proof of Theorem 1, the converse is based on
Lemma 1, i.e., on the optimality of the discretization approach.
We next provide an alternative proof of the converse, which
does not rely on this optimality. One advantage of this proof
over the previous one is that it can be applied to general
measure spaces; see Section II-C.

We shall show that, for any positive ε and δ, for large
enough T , any code that achieves expected distortion D < 1
must have rate at least

R ≥ (1 − δ)(λ − ε) log
1 − δ

D
. (33)

To this end, let K � NX(T ) be the total number of points
in X in the interval [0, T ], and let M ∈ {1, . . . , 2T R} be

the label of the chosen codeword. Note that, assuming the
expected distortion is finite (i.e., no arrival is missed), the
distortion d(x, x̂) is uniquely determined by the realization
of M = m: it is the Lebesgue measure of the mth reconstruc-
tion signal divided by T , which we denote dm .

Conditional on K = k, the k arrivals in x, when randomly
labeled, are IID uniformly on [0, T ]; see [19, Th. 2.4.6]. It then
follows that the probability that the mth reconstruction signal
covers all these k points is dk

m , which implies

PM |K (m|k) ≤ dk
m, (34)

i.e.,

k log
1

dm
≤ log

1

PM |K (m|k)
. (35)

The inequality is because the mth codeword may cover x and
still not be picked if another codeword of smaller distortion
also covers x. Averaging over the message m we have

k
2T R
∑

m=1

PM |K (m|k) log
1

dm
≤ H (M|K = k) ≤ T R. (36)

Because the function a �→ log(1/a) is convex, we further have
by (36) and Jensen’s inequality

T R ≥ k log
1

E
[

d(X, X̂)
∣
∣
∣ K = k

] , (37)

for all k = 0, 1, . . .. Averaging over k yields

T R ≥
∞∑

k=0

PK (k)k log
1

E
[

d(X, X̂)
∣
∣
∣ K = k

] . (38)

Let L be the event {K ≥ (λ−ε)T }. Since K has the Poisson
distribution of mean λT, we know that, for large enough T ,
the probability of L is at least 1 − δ. This combined with the
fact that d(x, x̂) is nonnegative implies

E
[

d(X, X̂)
∣
∣
∣L
]

≤
E
[
d(X, X̂)

]

1 − δ
= D

1 − δ
. (39)

Continuing from (38) we have

T R ≥
∑

k≥(λ−ε)T

PK (k)k log
1

E
[

d(X, X̂)
∣
∣
∣ K = k

] (40)

≥ (λ − ε)T
∑

k≥(λ−ε)T

PK (k) log
1

E
[

d(X, X̂)
∣
∣
∣ K = k

]

(41)

≥ (1 − δ)(λ − ε)T E

⎡

⎣ log
1

E
[

d(X, X̂)
∣
∣
∣ K
]

∣
∣
∣
∣
∣
∣
L

⎤

⎦ (42)

≥ (1 − δ)(λ − ε)T log
1

E
[

d(X, X̂)
∣
∣
∣L
] (43)

≥ (1 − δ)(λ − ε)T log
1 − δ

D
, (44)

where (42) follows because the probability of L is at least 1−δ;
(43) follows from the convexity of a �→ log(1/a) and Jensen’s
inequality; and (44) follows from (39). This establishes (33).
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C. Fixed-Interval Formulation and General Measure Spaces

We now introduce an alternative formulation for Theorem 1.
In this formulation, instead of letting the length of the interval
tend to infinity, we keep this interval fixed and let the intensity
go to infinity: the source X is a Poisson process of intensity
T · λ on the interval [0, 1], where we let T tend to infinity.
The distortion is now defined as

d(x, x̂) �
{

μL

(
x̂−1(1)

)
, if all points in x are in x̂−1(1)

∞, otherwise.

(45)

A rate-distortion pair (R, D) is said to be achievable if,
for large enough T , there exists a codebook of size 2T R

with expected distortion arbitrarily close to D, and R(D, λ)
is the smallest R such that (R, D) is achievable. It is
easy to verify that R(D, λ) still satisfies (5), and that the
proofs in Sections II-A and II-B are both valid (after minor
adjustments).

The above formulation allows us to extend Theorem 1 to
general measure spaces (instead of an interval on the real line
with the Lebesgue measure), as well as to inhomogeneous
Poisson processes. We next discuss general measure spaces;
inhomogeneous Poisson processes will be discussed in the
Section III.

Consider any measurable space on a set S equipped with a
measure μ(·) that satisfies the following:

• It is non-atomic: any measurable A ⊆ S such that
μ(A) > 0 contains a measurable subset B ⊂ A such
that 0 < μ(B) < μ(A).

• The measure of S itself is finite: μ(S) < ∞. Without
loss of generality, let μ(S) = 1.

Then there exist Poisson processes on S with μ(·) as their
“mean measure”; see [20]. Specifically, for any λT > 0,
there exists a Poisson process X on S such that the number
of arrivals in X in any measurable A ⊆ S has the Poisson
distribution of mean λT μ(A). We can hence formulate a rate-
distortion problem by replacing the interval [0, 1] by S, and
by replacing the Lebesgue measure μL(·) by μ(·).

It is easy to see that Theorem 1 holds on such measure
spaces. First, note that Scheme 1 is applicable because μ(·)
is non-atomic, hence the achievability part of Theorem 1 on
S can be proven exactly as in Section II-A. The optimality
of this discretization approach in Lemma 1, however, relies
on certain properties of the Lebesgue measure on an interval,
and is difficult to extend to S. But the converse proof in
Section II-B is applicable to a homogeneous Poisson process
on S.

The simplest examples for S are multi-dimensional
Euclidean spaces.

III. INHOMOGENEOUS POISSON PROCESSES

In this section we consider the case where X is an
inhomogeneous Poisson process. As in Section II-C, we fix the
time interval and let the intensity of the Poisson process tend
to infinity. Let X be a Poisson process on the interval [0, 1]
of intensity T · λ(t), t ∈ [0, 1], where λ(·) is Lebesgue

measurable, nonnegative, and bounded on [0, 1], and where
T > 0 is a scaling factor. Hence the counting function NX(·)
satisfies

Pr [NX(t + τ ) − NX(t) = k] = e−ααk

k! (46)

for all τ ∈ [0, 1], t ∈ [0, 1 − τ ] and k ∈ {0, 1, . . .}, where

α = T
∫ t+τ

t
λ(s) ds. (47)

We define the rate-distortion function R(D,λ) in the same
way as in Section II-C.

Theorem 2 (Inhomogeneous Poisson): The rate-distortion
function R(D,λ) is given by

R(D,λ) = min
D̃ : [0,1]→[0,1]
∫ 1

0 D̃(t) dt≤D

∫ 1

0
λ(t) log

1

D̃(t)
dt . (48)

Moreover, if

sup
t

λ(t) ≤ λ̄

D
, (49)

where λ̄ �
∫ 1

0 λ(t) dt , then (48) simplifies to

R(D,λ) = λ̄ log
1

D
+ λ̄ log λ̄ −

∫ 1

0
λ(t) log λ(t) dt . (50)

Note that, unlike most previous works on rate-distortion
problems with memory [21], Theorem 2 does not require that
the source be stationary or ergodic.

The proof of Theorem 2 is divided into three parts: the
achievability part of (48), the converse part of (48), and the
proof of (50).

A. Achievability of (48)

As in Section II-A, the coding scheme we propose is based
on discretization, but now the length of each interval depends
on T and is chosen to be (�/T ). The resulting discrete-time
source X� is a sequence of independent but not identically
distributed binary random variables: X�

i is Ber(1 − e−λi�)
where

λi � T

�

∫ i�/T

(i−1)�/T
λ(t) dt . (51)

The discrete-time distortion function is again given by (8).
Fix a measurable function D̃(t), t ∈ [0, 1]. Our discrete-

time codebook is generated as follows. We first generate
2T R codewords (covering sets) independently, where in each
codeword, the i th symbol is chosen to be 1 with probability

Di � T

�

∫ i�/T

(i−1)�/T
D̃(t) dt (52)

independently of other symbols in the codeword. We then
append the all-one sequence to the codebook, so the total size
of the codebook is 2T R + 1.

The encoder maps x� to the codeword with the smallest
number of ones that covers x�.
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We next analyze the performance of this random codebook.
We consider three different cases. The first is the case where
x� does not satisfy

T/�∑

i=1

x�
i log

1

Di
≤ �

T/�∑

i=1

λi log
1

Di
+ εT (53)

where ε is a fixed positive number. We show that the proba-
bility that X� does not satisfy (53) tends to zero as T tends
to infinity. Indeed, we have

E

⎡

⎣
T/�∑

i=1

X�
i log

1

Di

⎤

⎦ =
T/�∑

i=1

(1 − e−λi�/T ) log
1

Di
(54)

≤ �

T/�∑

i=1

λi log
1

Di
(55)

whereas

var

⎛

⎝
T/�∑

i=1

Xi log
1

Di

⎞

⎠ =
T/�∑

i=1

var (Xi )

(

log
1

Di

)2

(56)

≤
T/�∑

i=1

E
[

X2
i

](

log
1

Di

)2

(57)

=
T/�∑

i=1

(1 − e−λi�/T )

(

log
1

Di

)2

(58)

≤ �

T/�∑

i=1

λi

(

log
1

Di

)2

. (59)

The expressions on the right-hand side of (55) and (59) both
tend to infinity linearly with T as T tends to infinity. It then
follows by Chebyshev’s inequality that the probability that X�

does not satisfy (53) tends to zero as T tends to infinity. Since
the distortion for any x� is at most one, we conclude that the
total contribution to the expected distortion from this first case
can be neglected.

The second case we consider is where x� does satisfy (53)
but no covering set except the all-one set covers x�. According
to our construction, the probability π that a randomly chosen
covering set covers x� is

π �
∏

j : x�
j =1

D j (60)

=
T/�∏

i=1

(Di )
x�

i (61)

= 2
−∑T/�

i=1 x�
i log 1

Di (62)

≥ 2
−�
∑T/�

i=1 λi log 1
Di

+εT
(63)

where the last inequality follows because we are now consider-
ing the case where (53) does hold. Since the first 2T R covering
sets are chosen IID, the probability that none of them covers
x� is (1 − π)2T R

, which tends to zero as T tends to infinity

provided that

R > lim
T →∞

�

T

T/�∑

i=1

λi log
1

Di
+ ε (64)

=
∫ 1

0
λ(t) log

1

D̃(t)
dt + ε (65)

where the last step follows from, see [22, Th. 8.8]. Hence,
provided that R satisfies (65), the contribution to the expected
distortion from this second case can also be neglected.

The last case is where x� satisfies (53) and where one
of the first 2T R randomly-generated codewords covers x�.
As we have shown, when R satisfies (65), the overall expected
distortion is dominated by the expected distortion in this last
case. Fix any x� satisfying (53). Recalling that the encoder
selects the smallest covering set that covers x�, and since
the minimum is upper-bounded by the average, the expected
distortion associated with x� and the randomly chosen
codebook, conditional on the chosen covering set not being
the all-one set, is upper-bounded by the expected size of a
randomly generated covering set conditional on it covering x�.
This upper bound is easy to compute: conditional on a cover-

ing set X̂� that was randomly chosen as above covering x�,
its symbols X̂�

i are independently distributed according to

PX̂�
i
(1) =

{
1, x�

i = 1

Di , x�
i = 0.

(66)

The conditional expectation of the distortion associated with
a random covering set conditional on it covering x� is

�

T

T/�∑

i=1

E
[

X̂�
i

]
= �

T

⎛

⎝
T/�∑

i=1

Di (1 − x�
i ) +

T/�∑

i=1

x�
i

⎞

⎠ (67)

≤ �

T

⎛

⎝
T/�∑

i=1

Di +
T/�∑

i=1

x�
i

⎞

⎠ (68)

=
∫ 1

0
D̃(t) dt + �

T

T/�∑

i=1

x�
i . (69)

Hence the expected distortion in the last case is upper bounded
by

∫ 1

0
D̃(t) dt + �

T

T/�∑

i=1

E
[

X�
i

∣
∣X� satisfies (53)

]
. (70)

The second term in (70) vanishes as � tends to zero because

T/�∑

i=1

E
[
X�

i

] ≤ T
∫ 1

0
λ(t) dt (71)

for all � > 0, and because the probability that X�

satisfies (53) is bounded away from zero for all fixed ε.
We have hence proved that, if R satisfies (65), then the
expected distortion for our randomly generated codebook can
be made arbitrarily close to

∫ 1
0 D̃(t) dt . It then follows that

there must exist a deterministic codebook that achieves this
distortion, and the achievability part of (48) is established.
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B. Converse of (48)

We next prove the converse part of (48). To this end,
first note that the discretization proposed
in Section III-A—when combined with an optimal discrete-
time code—is optimal as � tends to zero. Indeed, one can
easily verify that the proof of Lemma 1 is still valid in the
inhomogeneous case.

Let X� be the discretized source sequence and X̂� be
the reconstruction sequence. Suppose there exists a code of
size 2T R that achieves expected distortion D. Because X�,
the label of the chosen codeword, and X̂� form a Markov
chain,

I (X�; X̂�) ≤ T R. (72)

Since the components of X� are independent, this further
implies

T/�∑

i=1

I (X�
i ; X̂�

i ) ≤ T R, (73)

i.e.,

1

T

T/�∑

i=1

I (X�
i ; X̂�

i ) ≤ R. (74)

To establish the converse of (48) we shall show that, for all
� > 0, the left-hand side of (74) is lower-bounded by the
right-hand side of (48) whenever

�

T

T/�∑

i=1

d�(X�
i , X̂�

i ) ≤ D. (75)

Consider any i ∈ {1, . . . , T/�}. Recall that X�
i ∼

Ber(1 − e−λi�), where λi is given in (51). Since X̂�
i is

{0, 1}-valued, it is Ber(Di ) for some Di ∈ [0, 1]. Then we
must have the following conditional probabilities

PX̂�
i |X�

i
(1|1) = 1 (76a)

PX̂�
i |X�

i
(1|0) = 1 − eλi� + Di e

λi�. (76b)

These imply

I (X�
i ; X̂�

i ) = Hb(Di ) − e−λi�Hb
(
1 − eλi� + Di e

λi�
)
.

(77)

The right-hand side of (77) equals zero when � = 0. Its first
derivative with respect to � is

λi e
−λi� log

1

1 − eλi� + Di eλi�

which, at � = 0, equals

λi log
1

Di
.

Its second derivative with respect to � equals

λ2
i e−λi� log e

·
(

eλi� − Di eλi�

1 − eλi� + Di eλi�
− ln

1

1 − eλi� + Di eλi�

)

,

which is positive for all � > 0. Using Taylor’s theorem with
Cauchy remainder, from (77) we obtain

I (X�
i ; X̂�

i ) ≥ λi� log
1

Di
. (78)

Summing over i and dividing by T we obtain

1

T

T/�∑

i=1

I (X�
i ; X̂�

i ) ≥ 1

T

T/�∑

i=1

λi� log
1

Di
. (79)

Recalling (51), and noting that, to achieve expected distortion
D one must have

�

T

T/�∑

i=1

Di ≤ D, (80)

we conclude that the right-hand side of (79) is lower-bounded
by the right-hand side of (48). Since this is true for all � > 0,
and since the discretization approach is optimal as � tends to
zero, the converse part of (48) is established.

C. Proof of (50)

For every D̃ : [0, 1] → R
+
0 ,

∫ 1

0
λ(t) log

1

D̃(t)
dt

= λ̄ ·
∫ 1

0

λ(t)

λ̄
· log

λ(t)/λ̄

D̃(t)/D̄
dt + λ̄ log

1

D̄

+ λ̄ log λ̄ −
∫ 1

0
λ(t) log λ(t) dt (81)

where

D̄ �
∫ 1

0
D̃(t) dt . (82)

Such a D̃ is feasible in (48) if D̃(t) ≤ 1, t ∈ [0, 1], and
D̄ ≤ D. Both λ(t)/λ̄ and D̃(t)/D̄ are probability density
functions on [0, 1], so the first term on the right-hand side
of (81) is a relative entropy, which is nonnegative and equals
zero if and only if

λ(t)

λ̄
= D̃(t)

D̄
almost everywhere. (83)

The first two terms on the right-hand side of (81) will thus be
minimized if (83) holds and D̄ = D, i.e., if D̃(t) = D ·λ(t)/λ̄
for all t ∈ [0, 1]. This choice satisfies D̄ ≤ 1 if (49) holds,
and leads to the right-hand side of (50).

IV. GENERAL PROCESSES AND ARBITRARY PATTERNS

By (48), when D ∈ (0, 1),

R(D,λ) ≤
∫ 1

0
λ(t) log

1

D
dt (84)

= λ̄ log
1

D
(85)

= R(D, λ̄). (86)

where (86) follows from (4). Thus, among all Poisson
processes of the same average intensity, the homogeneous



4528 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 9, SEPTEMBER 2015

Poisson process is the most difficult to describe: it requires
the largest rate to achieve the same distortion. As we next
show, the homogeneous Poisson process is the most difficult
to describe among all point processes, not only among Poisson
processes.

In this section we switch back to the original formulation
where the source is a point pattern on [0, T ] where T tends
to infinity.

Consider a point process Y for which there exists some λ
such that

lim
t→∞ Pr

[
NY(t)

t
> λ + δ

]

= 0 for all δ > 0. (87)

For example, Y could be an ergodic process whose expected
number of points per second is less than or equal to λ.

Theorem 3 (General Processes): The pair (RPois(D, λ), D)
is achievable on any point process satisfying (87).

Before proving Theorem 3, we state a stronger result.
Suppose that a point pattern z is generated by an adversary
with the only constraint that it be in the interval [0, T ] and
that it contain no more than λT points. The corresponding
counting function nz(·) must hence satisfy

nz(T ) ≤ λT . (88)

Suppose further that the encoder and the reconstructor are
allowed to use random codes. That is, they fix a distribution on
all (deterministic) codes of a given rate on [0, T ], and they use
this distribution to generate a code, which is not revealed to the
adversary. They then apply it to the point pattern z chosen by
the adversary. We say that (R, D) is achievable with random
coding against an adversary subject to (88) if, for every ε > 0,
there exists some T0 such that, for every T > T0, there exists
a random code on [0, T ] of rate R + ε such that the expected
distortion between any z respecting (88) and its reconstruction
is smaller than D + ε.

Theorem 4 (Arbitrary Patterns): The pair (RPois(D, λ), D)
is achievable with random coding against any adversary
respecting (88).

Proof: When D ≥ 1 the result is obvious because the
encoder does not need to describe the pattern: the reconstructor
simply produces the all-one function, yielding distortion 1 for
any z.

Next consider D ∈ (0, 1). We use Scheme 1 of Section II-A
to reduce the problem to one of random coding for an arbitrary
discrete-time sequence z�. Here the vector z� is {0, 1}-valued,
has (T/�) components, and satisfies

T/�∑

i=1

z�
i ≤ λT . (89)

We shall construct a random code of rate (R/�) which, when
applied to any z� satisfying (89), yields

E
[
d�(z�, Ẑ�)

]
< D + ε, (90)

where the random vector Ẑ� is the result of applying
the random encoder and decoder to z�. Combined with
Scheme 1 this random code will yield a random code for the

continuous-time point pattern z that achieves the rate-distortion
pair (R, D).

Our discrete-time random code consists of 2T R

{0, 1}-valued, length-(T/�) random sequences Ẑ�
m ,

m ∈ {1, . . . , 2T R}. The first sequence Ẑ�
1 is chosen

deterministically to be the all-one sequence. The other
2T R − 1 sequences are drawn independently, with the
components of each sequence drawn IID Ber(D).

To describe a source sequence z�, the encoder looks for a
codeword ẑ�

m , m ∈ {2, . . . , 2T R} such that

ẑ�
m,i = 1 whenever z�

i = 1. (91)

If it finds one or more such codewords, it sends the index of
the first one; otherwise it sends the index 1. The reconstructor
produces the sequence ẑ�

m , where m is the index it received
from the encoder.

We next analyze the expected distortion of this random code
for a fixed z� satisfying (89). Define

κ � 1

T

T/�∑

i=1

z�
i , (92)

and note that by (89) κ ≤ λ. Let E be the event that the encoder
cannot find ẑ�

m , m ∈ {2, . . . , 2T R} satisfying (91). If E occurs,
the encoder produces the index 1, and the resulting distortion
is 1. The probability that a randomly drawn codeword Ẑ�

m
satisfies (91) is

DκT ≥ DλT = 2(λ log D)T . (93)

Because the codewords Ẑ�
m , m ∈ {2, . . . , 2T R} are chosen

independently, if R > −λ log D, then Pr[E] → 0 as T → ∞.
Hence, for large enough T , the contribution to the expected
distortion from the event E can be ignored.

We next analyze the expected distortion conditional on Ec.
The reproduction Ẑ� has the following distribution: at posi-
tions where z� is 1, Ẑ� must also be 1; at other positions the
components of Ẑ� are IID Ber(D). (These components were
not “looked at” in the process of generating the index.) Thus,
the expected value of

∑T/�
i=1 Ẑ�

i is κT + D( T
� − κT ), and

E
[

d�(z�, Ẑ�)
∣
∣
∣Ec
]

= D + (1 − D)κ�, (94)

which tends to D as � tend to zero. We have thus shown that,
for small enough �, we can achieve the pair (R/�, D) on z�

using random coding whenever R > −λ log D. Consequently,
if R > −λ log D then we can also use random coding to
achieve (R, D) on the continuous-time point pattern z.

We next use Theorem 4 to prove Theorem 3.
Proof of Theorem 3: It follows from Theorem 4 that, on

any point process satisfying (87), the pair (RPois(D, λ+δ), D)
is achievable with random coding. Further, since there is no
adversary, the existence of a good random code guarantees
the existence of a good deterministic code. Hence
(RPois(D, λ + δ), D) is also achievable on this process
with deterministic coding. Theorem 3 now follows when
we let δ tend to zero, because RPois(D, ·) is a continuous
function. �
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V. SOME POINTS ARE REVEALED

TO THE RECONSTRUCTOR

In this section we consider a Wyner-Ziv setting for our
problem. We first consider the case where X is a homogeneous
Poisson process of intensity λ. (Later we consider an arbitrary
point pattern.) Assume that the points in X are revealed
to the reconstructor independently, each with probability p.
Also assume that the encoder does not know which points
are revealed to the reconstructor. The encoder maps X to a
message in {1, . . . , 2T R}, and the reconstructor produces a
Lebesgue-measurable, {0, 1}-valued signal X̂ on [0, T ] based
on this message and the positions of the points that it knows.
The achievability of a rate-distortion pair is defined in the
same way as in Section II. Denote the smallest rate R for
which (R, D) is achievable by RWZ(D, λ, p).

Obviously, RWZ(D, λ, p) is lower-bounded by the smallest
achievable rate when the transmitter does know which points
are revealed to the reconstructor. The latter rate is given by
RPois(D, (1 − p)λ), where RPois(·, ·) is given by (4). Indeed,
when the encoder knows which points are revealed to the
reconstructor, it is optimal for it to describe only the remaining
points, which themselves form a Poisson process of intensity
(1 − p)λ. The reconstructor then selects a set based on this
description to cover the points unknown to it and adds to this
set the points it knows. Thus,

RWZ(D, λ, p) ≥ RPois(D, (1 − p)λ). (95)

The next theorem shows that (95) holds with equality.
Theorem 5 (Wyner-Ziv for Poisson): Knowing the points at

the reconstructor only is as good as knowing them also at the
encoder:

RWZ(D, λ, p) = RPois(D, (1 − p)λ). (96)

To prove Theorem 5, it remains to show that the pair
(RPois(D, (1 − p)λ), D) is achievable. We shall prove a
stronger result concerning arbitrarily varying sources.

Consider an arbitrary point pattern z on [0, T ] chosen by an
adversary. The adversary is allowed to put at most λT points
in z. Also, it must reveal all but at most νT points to the
reconstructor, without telling the encoder which points it has
revealed. The encoder and the reconstructor are allowed to
use random codes, where the encoder is a random mapping
from z to a message in {1, . . . , 2T R}, and where the recon-
structor is a random mapping from this message, together with
the point pattern that it knows, to a {0, 1}-valued, Lebesgue-
measurable signal ẑ. The distortion d(z, ẑ) is defined as in (2).

Theorem 6 (Wyner-Ziv for Arbitrary Patterns): Against an
adversary who puts at most λT points on [0, T ] and reveals all
but at most νT points to the reconstructor, the rate-distortion
pair (RPois(D, ν), D) is achievable with random coding.

Proof: The case D ≥ 1 is trivial, so we shall only consider
the case where D ∈ (0, 1). The encoder and the reconstructor
first use Scheme 1 as in Section II to reduce the point pattern z
to a {0, 1}-valued vector z� of length (T/�). Define

κ � 1

T

T/�∑

i=1

z�
i , (97)

and note that, by assumption, κ ≤ λ. If κ ≤ ν, then we can
ignore the reconstructor’s side information and use the random
code of Theorem 4, so we henceforth assume κ > ν.

Denote by s the point pattern revealed to the reconstructor
and by s� the vector obtained from s through the discretization
in time of Scheme 1. Since there are at most νT points that
are unknown to the reconstructor,

T/�∑

i=1

s�
i ≥ (κ − ν)T . (98)

The encoder first conveys the value of κT to the receiver.
Since κT is an integer between 0 and λT , the number of bits
per second needed to describe it tends to zero as T tends to
infinity, and the overhead in describing κT is negligible.

Next, the encoder and the reconstructor randomly generate

2T (R+R̃) independent codewords

ẑ�
m,�, m ∈ {1, . . . , 2T R}, � ∈ {1, . . . , 2T R̃},

where each codeword is generated IID Ber(D).
To describe z�, the encoder looks for a codeword ẑ�

m,� such
that

ẑ�
m,�,i = 1 whenever z�

i = 1. (99)

If it finds one or more such codewords, it sends the index m
of the first one; otherwise it tells the reconstructor to produce
the all-one sequence.

When the reconstructor receives the index m, it looks for
an index �̃ ∈ {1, . . . , 2T R̃} such that

ẑ�
m,�̃,i

= 1 whenever s�
i = 1. (100)

If there is only one such codeword, it produces it as the
reconstruction; if there are more than one such codewords,
it produces the all-one sequence.

To analyze the expected distortion for z� over this random
code, first consider the event that the encoder cannot find
a codeword satisfying (99). The probability that a randomly
generated codeword satisfies (99) is DκT, so the probability
of this event tends to zero as T tends to infinity provided that

R + R̃ > −κ log D. (101)

Next consider the event that the reconstructor finds more
than one �̃ satisfying (100). The probability that a randomly

generated codeword satisfies (100) is D
∑T/�

i=1 s�
i . Consequently,

by (98) the probability of this event tends to zero as T tends
to infinity provided that

R̃ < −(κ − ν) log D. (102)

Finally, if the encoder finds a codeword satisfying (99) and
the reconstructor finds only one codeword satisfying (100),
then the two codewords must be the same.2 Following the
same calculations as in the proof of Theorem 4, the expected
distortion in this case tends to D as � tends to zero.

2In the general Wyner-Ziv problem there may be an error event in which
there is a codeword that is jointly typical with the state sequence but not with
the source sequence. This error cannot occur under our coding scheme.
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Combining (101) and (102), we can make the expected
distortion arbitrarily close to D as T → ∞ if

R > −ν log D. (103)

Proof of Theorem 5: The claim follows from (95),
Theorem 6, and the Law of Large Numbers. �

Theorems 5 and 6 are Wyner-Ziv versions of
Theorems 1 (on homogeneous Poisson sources) and 4
(on arbitrary sources), respectively. In both cases, knowing
some points only at the reconstructor is as good as knowing
them also at the encoder. This is also true when the source
is an inhomogeneous Poisson process, as in Theorem 2. The
proof is a combination of the proofs of Theorems 2 and 5
and is omitted.

VI. FEEDFORWARD

In this section we consider the problem of covering a
homogeneous Poisson process of intensity λ in the presence of
instantaneous feedforward from the source to the reconstructor.
In this setting, the encoder again maps the realization of the
Poisson process to a message, but the reconstructor is different
from the one in Section II: the value x̂(t) of the reconstructed
signal at time t ∈ [0, T ] is allowed to depend not only on the
message but also on the past of the source realization x(τ ),
τ ∈ [0, t). More formally, given the message from the encoder,
X̂ is predictable with respect to the natural filtration associated
with X conditional on the message. The distortion is again
given by (2).

It is shown in [23] that feedforward does not improve
the rate-distortion function for a discrete memoryless source.
This is also true in our setting. Indeed, one can show that
in the presence of feedforward the discretization approach
in Section II is still optimal in the limit where � tends to
zero, therefore, by [23], the rate-distortion function remains
the same. Our attention in this section is on how feedforward
can simplify the reconstruction process. As we shall show,
with high probability the covering set needs to be the union
of at most (λ+ε)T intervals, with ε being an arbitrarily small
positive number. In contrast, in the coding scheme without
feedforward, which we proposed in Section II-A, the total
number of disjoint intervals that constitute the covering set
tends to infinity as � tends to zero.

Our feedforward coding scheme is based on a rate-distortion
code for the Poisson process with the queueing distortion [11],
which we describe below. Consider the high-probability event
that X contains no more than (λ + ε)T points. Conditional
on this event, [11] guaranteed the existence of a codebook of
size 2T (RPois(D,λ)+δ) for some small δ, which consists of point
patterns x̃ each containing (λ + ε)T points, such that there
exists a mapping from x to x̃ satisfying the following two
conditions:

1) For every i ∈ {1, . . . , (λ + ε)T }, with probability one

the i th arrival in X occurs after the i th arrival in X̃.
2) Consider X as the output of feeding X̃ into a single-

server queue, then the expected total service time is at
most DT .

After the encoder sends the reconstructor the index for x̃
according to such a codebook, with the help of instantaneous
feedforward, the reconstructor can use the following scheme
to produce the covering set x̂.

• At the beginning the reconstruction signal is off: x̂(0) = 0
with probability one.

• If an arrival in x̃ occurs and x̂ is off, then the reconstructor
immediately switches on x̂.

• At every t where there is an arrival in the source
process x, the reconstructor compares the total number of
points in x̃ in [0, t] with the total number of points in x
in [0, t] (including the arrival at time t). If the former is
larger than the latter, it keeps x̂ on; if the two numbers
are equal, it switches x̂ off.

To analyze the performance of this scheme, we first note
that 1) guarantees that x̂ be on whenever there is an arrival in
the source x. We further note that the total time during which
x̂ is on is exactly the service time when x is considered as
the output of feeding x̃ into a single-server queue. Therefore,
2) guarantees that the expected total time that X̂(t) is on is at
most DT, and our desired distortion is achieved.

The above construction is very similar to the coding scheme
in [12] for the Poisson channel with feedback, which is based
on codes for the queueing channel.

VII. FINITE COST OF MISSING

So far in this paper we have assumed that the cost of
missing an arrival in the point pattern is infinite. In this
section we consider the problem where this cost is finite.
We concentrate on the case where the point pattern is gen-
erated by a homogeneous Poisson process of intensity λ on
the interval [0, T ]. This problem is formulated more naturally
in the context where the cost of being on and the cost of
missing are considered as two separate criteria, as in [13].
Here, however, we consider a single distortion function that
summarizes both costs.

Let the cost of missing one arrival be γ. Specifically, if the
total number of points in x that do not lie in x̂−1(1) is �, then
the distortion is given by

d(x, x̂) = μL
(
x̂−1(1)

)+ �γ

T
. (104)

The rate-distortion function R(D, λ, γ ) is then defined as
in Section II.

Let Db(p ‖ q) denote the relative entropy between
two Bernoulli distributions of parameters p and q ,
respectively:

Db(p‖q) � p log
p

q
+ (1 − p) log

1 − p

1 − q
, p, q ∈ [0, 1].

(105)

The following theorem characterizes R(D, λ, γ ) for the dis-
tortion function (104).

Theorem 7 (Finite Cost of Missing): The rate-distortion
function R(D, λ, γ) for a homogeneous Poisson process of
intensity λ and distortion function (104) is given by

R(D, λ, γ ) =
{
λ min

q
Db(q ‖ r(q)), D < min{1, λγ}

0, D ≥ min{1, λγ},
(106)
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where the minimum is over

q ∈
(

λγ − D

λγ
, 1

]

(107)

and r(q) is given by

r(q) = D − λγ (1 − q). (108)

The intuition behind Theorem 7 is as follows. Let r be the
expected per-second Lebesgue measure of the covering set,
and let q be the probability that an arrival in X is covered
by the chosen covering set. The expected number of missed
arrivals is then λT (1 − q), which contributes λγ (1 − q) to the
overall distortion. The distortion coming from the Lebesgue
measure of the covering set is r , so the overall expected
distortion is λγ (1 − q) + r , hence (108). Next consider the
rate required for such a covering set to be found. Heuristically,
the covering set can be thought of as drawn with its value at
every t ∈ [0, T ] IID according to the Bernoulli distribution of
parameter r . We wish to cover proportion q of the approx-
imately λT arrivals in X. By Sanov’s theorem [24], [25],
this probability is approximately 2−λT Db(q ‖ r), hence the
claimed expression for R(D, λ, γ ). The formal proof is given
below.

Proof of Theorem 7: The case where D ≥ min{1, λγ } is
simple: when D ≥ 1 the reconstructor can produce the all-one
signal, achieving expected distortion 1, and when D ≥ λγ
the reconstructor can produce the all-zero signal, achieving
expected distortion λγ. For the rest of the proof we thus
assume D < min{1, λγ}.

We again apply Scheme 1 to reduce the problem
to a discrete-time problem. The discrete-time distortion
function (8) is now replaced by

d�(0, 0) = 0 (109a)

d�(0, 1) = 1 (109b)

d�(1, 0) = λ�

1 − e−λ�
· γ

�
(109c)

d�(1, 1) = 1. (109d)

Here, d�(1, 0) requires some explanation. Given x� = 1,
there could be one or more arrivals in the corresponding
length-� interval, hence the cost of missing in this interval
could be γ, 2γ, etc. The expected number of arrivals in
this interval, conditional on there being at least one arrival,
is λ�/(1 − e−λ�). Hence the right-hand side of (109c) is
the expected distortion in the corresponding interval in the
continuous-time case. It is not equal to the actual distortion
in the continuous-time case. Since we are interested in the
overall expected distortion, (109c) suffices. We assume that
the discretization is fine enough so that

� < γ, (110)

which implies

λ�

1 − e−λ�
· γ

�
> 1, (111)

i.e.,

λγ − 1 + e−λ� > 0. (112)

It is easy to verify that Lemma 1 continues to hold in
the following sense: if R�(D, λ, γ ) is the rate-distortion
function of the discrete-time problem that results from
applying Scheme 1 and the above distortion function, then

R(D, λ, γ ) = lim
�↓0

R�(D, λ, γ )

�
. (113)

We next evaluate R�(D, λ, γ ). To this end, consider the
following conditional distribution

PX̂�|X�(0|0) = 1 − p (114a)

PX̂�|X�(1|0) = p (114b)

PX̂�|X�(0|1) = 1 − q (114c)

PX̂�|X�(1|1) = q. (114d)

To meet the distortion criterion, we need

D ≥ E
[
d�(X�, X̂�)

]
(115)

= PX (0)PX̂ |X (0|0)d�(0, 0) + PX (0)PX̂ |X (1|0)d�(0, 1)

+PX (1)PX̂ |X (0|1)d�(1, 0)

+PX (1)PX̂ |X (1|1)d�(1, 1) (116)

= e−λ� · (1 − p) · 0 + e−λ� · p · 1

+(1 − e−λ�) · (1 − q) · λ�

1 − e−λ�
· γ

�

+(1 − e−λ�) · q · 1 (117)

= λγ + e−λ� p − (λγ − 1 + e−λ�)q. (118)

Combined with (112), this implies that, to meet the distortion
constraint, q must satisfy

q ≥ λγ − D + e−λ� p

λγ − 1 + e−λ�
. (119)

Noting that we are considering the case D < {1, λγ } and that
p ≤ 1, we further obtain that q must satisfy

q ≥ (λγ − D + e−λ�)p

λγ − 1 + e−λ�
(120)

≥ p. (121)

But I (X�; X̂�) for the conditional law (114) is monotonically
decreasing in p for p in the interval [0, q]. So, for a fixed q ,

minimizing I (X�; X̂�) is achieved by maximizing p, and we
should choose p to achieve (118) with equality:

p = eλ�
(
(λγ − 1 + e−λ�)q − λγ + D

)
, (122)

where q must satisfy

q ≥ λγ − D

λγ − 1 + e−λ�
. (123)

With p = p(q,�) chosen as in (122), the mutual information
I (X�; X̂�) can be expressed as a function of q and � (and,
of course, D, λ, and γ):

I (X�; X̂�)

= H (X̂�) − H (X̂�|X�) (124)

= Hb
(
e−λ� p(q,�) + (1 − e−λ�)q

)

− e−λ�Hb(p(q,�)) − (1 − e−λ�)Hb(q) (125)

� f (q,�). (126)
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Fixing any

q >
λγ − D

λγ
, (127)

which satisfies (123) for small enough �, we have

lim
�↓0

f (q,�)

�

= ∂ f (q,�)

∂�

∣
∣
∣
∣
�=0

(128)

= log
1 − p(q, 0)

p(q, 0)
· ∂
(
e−λ� p(q,�) + (1 − e−λ�)q

)

∂�

∣
∣
∣
∣
∣
�=0

+ λHb(p(q, 0)) − log
1 − p(q, 0)

p(q, 0)
· ∂p(q,�)

∂�

∣
∣
∣
∣
�=0

− λHb(q) (129)

= log
1 − p(q, 0)

p(q, 0)
·
(

−λp(q, 0) + ∂p(q,�)

∂�

∣
∣
∣
∣
�=0

+ λq

)

+ λHb(p(q, 0)) − log
1 − p(q, 0)

p(q, 0)
· ∂p(q,�)

∂�

∣
∣
∣
∣
�=0

− λHb(q) (130)

= λ(q − p(q, 0)) log
1 − p(q, 0)

p(q, 0)
+ λHb(p(q, 0))

− λHb(q) (131)

= λq log
1

p(q, 0)
+ λ(1 − q) log

1

1 − p(q, 0)
− λHb(q)

(132)

= λDb(q ‖ p(q, 0)). (133)

The proof is complete when we obtain from (122)

p(q, 0) = λγ q − λγ + D, (134)

which is the same as r(q) given in (108). �

VIII. CONCLUDING REMARKS

This paper introduced a new quantization problem for point
processes: to describe the points so as to allow the reconstruc-
tor to generate a covering set that is small in its Lebesgue
measure and that is yet guaranteed to contain all the points.
The asymptotic tension between the description length and the
size of the covering set was quantified for Poisson processes in
various settings. The problem in its various settings provides
new insight into the relationship between point processes,
Poisson channels, and queues. It is related, but not equivalent,
to the continuous-alphabet version [26] of the problem of
source coding with lists [27].

Unlike the queueing-motivated quantization problems, our
problem does not require a notion of order for the
points: it easily generalizes to Poisson random fields or
Poisson processes on general nonatomic measure spaces.
Moreover—unlike some of the other formulations that deal
with the quantization of the inter-arrival times—it is of a
purely continuous-time nature.
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