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Abstract: The listsize capacity is computed for the Gaussian channel with a helper that—cognizant
of the channel-noise sequence but not of the transmitted message—provides the decoder with a
rate-limited description of said sequence. This capacity is shown to equal the sum of the cutoff rate of
the Gaussian channel without help and the rate of help. In particular, zero-rate help raises the listsize
capacity from zero to the cutoff rate. This is achieved by having the helper provide the decoder with
a sufficiently fine quantization of the normalized squared Euclidean norm of the noise sequence.

Keywords: bit pipe; cutoff rate; decoder assistance; Gaussian channel; helper; listsize capacity

1. Introduction

The order-ρ listsize capacity C(ρ)
list of a channel is the supremum of the coding rates for

which there exist codes guaranteeing the large-blocklength convergence to one of the ρ-th
moment of the cardinality of the list of messages that, given the received output sequence,
have positive a posteriori probability. It is zero for the Gaussian channel because, on this
channel, no codeword is ruled out by any received sequence so said list contains all the
messages. Here we derive this capacity for the Gaussian channel with a helper that observes
the noise sequence and describes it to the decoder using a rate-limited noise-free bit pipe;
see Figure 1.
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1. Introduction9

The order-ρ listsize capacity C(ρ)
list of a channel is the supremum of the coding rates10

for which there exist codes guaranteeing the large-blocklength convergence to one of11

the ρ-th moment of the cardinality of the list of messages that, given the received output12

sequence, have positive a posteriori probability. It is zero for the Gaussian channel13

because, on this channel, no codeword is ruled out by any received sequence, so said14

list contains all the messages. Here we derive this capacity for the Gaussian channel15

with a helper that observes the noise sequence and describes it to the decoder using a16

rate-limited noise-free bit pipe; see Figure 1.17
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Figure 1. Gaussian Channel with Decoder Assistance.

We show that the listsize capacity C(ρ)
list (Rh) is then the sum of bit-pipe’s rate Rh and

the order-ρ cutoff rate Rcutoff(ρ) of the Gaussian channel without a helper

C(ρ)
list (Rh) = Rcutoff(ρ) + Rh. (1)

The latter’s definition is similar to that of the listsize capacity, but with the list now
comprising only those messages that are a posteriori at least as likely as the transmitted
one. As we shall see, for the Gaussian channel with average power P, noise-variance N,
and corresponding signal-to-noise ratio (SNR) A ≜ P/N,

Rcutoff(ρ) = R0(ρ), (2)
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Figure 1. Gaussian channel with decoder assistance.

We show that the listsize capacity C(ρ)
list (Rh) is then the sum of bit-pipe’s rate Rh and

the order-ρ cutoff rate Rcutoff(ρ) of the Gaussian channel without a helper

C(ρ)
list (Rh) = Rcutoff(ρ) + Rh. (1)

The latter’s definition is similar to that of the listsize capacity, but with the list now
comprising only those messages that are a posteriori at least as likely as the transmitted
one. As we shall see, for the Gaussian channel with average power P, noise-variance N,
and corresponding signal-to-noise ratio (SNR) A , P/N,

Rcutoff(ρ) = R0(ρ), (2)
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where

R0(ρ) =
1
2

ln
1
2

1 +
A

1 + ρ
+

√(
1− A

1 + ρ

)2
+

4A

(1 + ρ)2


+

1 + ρ

2ρ

1
2

1 +
A

1 + ρ
−
√(

1− A

1 + ρ

)2
+

4A

(1 + ρ)2


+

1
2ρ

ln
1
2

1− A

1 + ρ
+

√(
1− A

1 + ρ

)2
+

4A

(1 + ρ)2

 (3)

(in nats) is a function that plays a prominent role in the analysis of the Reliability Function
of said channel (Section 7.4 in [1]), [2]. That analysis does not, however, carry over directly
to our setting because it deals with error exponents and not lists.

It is interesting to note that (1) also holds when the help rate Rh is zero: the number
of help bits required to increase the listsize capacity from zero to Rcutoff(ρ) is sublinear in
the blocklength. In fact, as we shall see, all it takes is a sufficiently fine quantization of the
normalized squared Euclidean norm of the noise sequence.

The relation (1) is reminiscent of the analogous result on the erasures-only capacity
Ce-o(Rh) of the Gaussian channel with a rate-Rh helper (Remark 10 in [3]), namely, that

Ce-o(Rh) = C + Rh, (4)

where C denotes the Shannon capacity of the Gaussian channel (without help) (Theo-
rem 9.1.1 in [4]), and Ce-o(Rh) is the erasures-only capacity, which is defined like C(ρ)

list (Rh)
but with the requirement on the ρ-th moment of the list replaced by the requirement that
the list be of size 1 with probability tending to one. (The Gaussian erasures-only capacity
with a helper is given by the RHS of (4) irrespective of whether the assistance is provided
to the encoder or decoder.) The latter result in turn is reminiscent of the analogous result
on the Shannon capacity with a helper C(Rh) [5–8]

C(Rh) = C + Rh. (5)

In proving (1), we shall focus on the “direct part,” i.e., that the right-hand side (RHS)
of (1) is achievable. The “converse,” that no rate exceeding the RHS of (1) is achievable, is
omitted because it follows directly from (Remark 4 in [3]): There it is shown that this is true
even if, given the received sequence and the provided help, the list contains only a subset of
the messages that are of positive a posteriori probability, namely, those that are a posteriori
at least as likely as the transmitted message.

The listsize capacity is relevant, for example, when the message set corresponds to
tasks [9] and the transmitted message corresponds to one that must be performed by the
decoder with absolute certainty. To ensure this, the decoder must perform all the tasks
in the list of tasks that are not ruled out by the received sequence. (In addition to the
transmitted task, other tasks need not but may be performed.) The ρ-th moment of the list’s
size then measures the receiver’s average effort.

Results on the listsize capacity and the erasures-only capacity of general discrete
memoryless channels (DMCs) in the absence of help are scarce. Noteworthy exceptions
are the results of Pinsker and Sheverdjaev [10], Csiszár and Narayan [11], and Telatar [12],
that provide sufficient conditions for the erasures-only capacity to equal the Shannon
capacity and for the listsize capacity to equal the cutoff rate. Asymptotic results on the
erasures-only capacity in the low-noise regime can be found in [13,14]. Once noiseless
feedback is introduced, the problems become more tractable [15–17].

The rest of the paper is organized as follows. Section 2 describes our set-up and
presents the main result. Section 3 contains some classical and some new observations
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regarding Gallager’s E0 function and its modification. Section 4 derives the cutoff rate
of the Gaussian channel without help and proves (2). Section 5 describes and analyzes a
coding scheme that proves the direct part of (1).

2. The Main Result

A power-P blocklength-n encoder f (n) for a message setM is a mapping

f (n) : M→ Rn (6)

that maps each message m ∈ M to an n-tuple f (n)(m) whose Euclidean norm ‖ f (n)(m)‖
satisfies

‖ f (n)(m)‖2 ≤ nP, m ∈ M. (7)

We sometimes use xm to denote f (n)(m), and xm,k to denote the k-th component of
xm, so

f (n)(m) = xm = (xm,1, . . . , xm,n). (8)

The encoder is said to be of rate R if the cardinality ofM is enR, in which case we
often assume thatM = {1, . . . , enR}. (We ignore the fact that enR need not be an integer;
this issue washes out in the large-n asymptotics we study.)

When a message m ∈ M is sent over the discrete-time additive Gaussian noise
channel using the encoder f (n), the channel produces the random vector Y ∈ Rn whose
k-th component Yk is

Yk = xm,k + Zk, k = 1, . . . , n, (9)

where {Zk} are independent and identically distributed (IID) zero-mean Gaussians of
variance N. We assume that N is positive and use w(y|x) to denote the density of the
channel’s output when its input is x, i.e., the mean-x variance-N Gaussian density

w(y|x) = 1√
2πN

e−
(y−x)2

2N , x, y ∈ R, (10)

which we extend to n-tuples in a memoryless fashion:

w(y|x) =
n

∏
k=1

w
(
yk|xk

)
, x, y ∈ Rn. (11)

For convenience, we define

A =
P

N
. (12)

Given an output sequence y and a message m, we define the “at-least-as-likely list”

L(m, y) =
{

m′ ∈ M : w(y|xm′) ≥ w(y|xm)
}

. (13)

Assuming, as we do, that the messages are a priori equally likely, this list comprises
the messages that, given the output sequence y, are a posteriori at least as likely as m.

If a message M, drawn equiprobably fromM, is transmitted over the channel with a
resulting received sequence Y, then the cardinality of the at-least-as-likely list is a random
positive integer, and we denote its ρ-th moment E

[
|L(M, Y)|ρ

]
:

E
[
|L(M, Y)|ρ

]
=

1
|M| ∑

m∈M

∫
w
(
y|xm) |L(m, y)|ρ dν(y), (14)

where ν(·) denotes the Lebesgue measure on Rn.
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For a given ρ > 0, we define the order-ρ cutoff rate Rcutoff(ρ) as the supremum of
the rates R for which there exists a sequence of rate-R power-P blocklength-n encoders
{ f (n)} satisfying

lim
n→∞

E
[
|L(M, Y)|ρ

]
= 1. (15)

Theorem 1. The order-ρ cutoff rate Rcutoff(ρ) of the additive Gaussian noise channel equals R0(ρ)
of (3).

Proof. See Section 4.

A Tn-valued description of the noise sequence Z = (Z1, . . . , Zn) is a mapping

φ(n) : Rn → Tn (16)

with the understanding that φ(n)(Z), which we denote T, is the description of Z. We say
that a sequence {φ(n)} of descriptions is of rate Rh (nats) if

lim
n→∞

1
n

ln
∣∣Tn
∣∣ = Rh. (17)

Suppose now that, in addition to the received sequence Y, the receiver is also presented
with the description T = φ(n)(Z) of the noise, and that, based on the two, it forms the
“remotely-plausible list” L(Y, T) comprising the messages that have positive a posteriori
probability given the two:

L(y, t) =
{

m ∈ M : φ(n)(y− xm) = t
}

. (18)

Given ρ > 0, the listsize capacity C(ρ)
list (Rh) with rate-Rh decoder assistance is the

supremum of the rates R for which there exists a sequence of rate-R power-P blocklength-n
encoders { f (n)} and a sequence {φ(n)} of descriptions of rate Rh such that

lim
n→∞

E
[∣∣L(Y, φ(n)(Z)

)∣∣ρ] = 1. (19)

Theorem 2. On the Gaussian channel, the listsize capacity with rate-Rh decoder assistance
C(ρ)

list (Rh) is given by

C(ρ)
list (Rh) = Rcutoff(ρ) + Rh (20)

where Rcutoff(ρ) is the order-ρ cutoff rate of the channel (without assistance) as given in (2) and (3).

Proof. The “converse,” that (19) cannot be achieved when the rate exceeds the RHS
of (20), follows from (Remark 4 in [3]). The “direct part,” describing a coding scheme
that achieves (19) with rates approaching the RHS of (20), is proved in Section 5.

3. Preliminaries

Given ρ ≥ 0 and any probability measure Q on R, Gallager’s E0 function for our
channel is defined as [1]

E0(ρ, Q) = − ln
∫

y∈R

(∫
x∈R

w(y|x)
1

1+ρ dQ(x)
)1+ρ

dν(y), (21)

where ν(·) is now the Lebesgue measure on R. The result of maximizing E0(ρ, Q) over all
Q under which E[X2] ≤ P, is denoted E∗0 (ρ):

E∗0 (ρ) = sup
Q :

∫
x2 dQ(x)≤P

E0(ρ, Q). (22)
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The multi-letter extension of E0 is

E(n)
0
(
ρ, Q(n)) = − 1

n
ln
∫

y∈Rn

(∫
x∈Rn

w(y|x)
1

1+ρ dQ(n)(x)
)1+ρ

dν(y), (23)

where Q(n) is a probability measure on Rn; the integrals are over Rn; the channel w(y|x) is
defined in (11). Similarly,

E(n),∗
0 (ρ) = sup

Q(n) :
∫
‖x‖2 dQ(n)(x)≤nP

E(n)
0 (ρ, Q(n)). (24)

Given probability measures Q(m) on Rm and Q(n) on Rn that satisfy the power con-
straints E[‖X‖2] ≤ mP and E[‖X‖2] ≤ nP respectively, the product measure Q(m) × Q(n)

on Rm+n satisfies the power constraint E[‖X‖2] ≤ (m + n)P and

(m + n) E(m+n)
0

(
ρ, Q(m) ×Q(n)) = m E(m)

0
(
ρ, Q(m)

)
+ n E(n)

0
(
ρ, Q(n)) (25)

because

(m + n) E(m+n)
0

(
ρ, Q(m) ×Q(n))

= − ln
∫

y∈Rm+n

( ∫
x∈Rm+n

w(y|x)
1

1+ρ d
(
Q(m) ×Q(n))(x))1+ρ

dν(y) (26)

= m E(m)
0 (ρ, Q(m)) + n E(n)

0 (ρ, Q(n)). (27)

The sequence
{

n E(n),∗
0 (ρ)

}
is thus superadditive, and Feket’s Subadditive lemma

implies that
{

E(n),∗
0 (ρ)

}
converges to its supremum:

lim
n→∞

E(n),∗
0 (ρ) = sup

n
E(n),∗

0 (ρ). (28)

We shall later see (cf. (55) ahead) that

1
ρ

sup
n

E(n),∗
0 (ρ) = R0(ρ), (29)

where R0(ρ) is defined in (3).
We shall also need Gallager’s modified E0 function. To highlight its relation to the

unmodified function, which is quite general, we shall use g(x) for x2 and g(x) for ‖x‖2. We
shall also replace P with Γ.

Given some ρ ≥ 0, some probability distribution Q on R under which E[g(X)] ≤ Γ,
and some r ≥ 0, the modified Gallager’s E0 function E0,m(ρ, Q, r) is defined as

E0,m(ρ, Q, r) = − ln
∫

y∈R

(∫
x∈R

er(g(x)−Γ) w(y|x)
1

1+ρ dQ(x)
)1+ρ

dν(y). (30)

We shall also be interested in the maximum of E0,m(ρ, Q, r) over both Q and r. We
distinguish between two cases depending on whether E[g(X)] ≤ Γ holds strictly or not.
In the former case we only allow r to be zero, whereas in the latter case it can be any
non-negative number. We thus define

E∗0,m(ρ, Q) =

{
supr≥0 E0,m(ρ, Q, r), if

∫
g(x)dQ(x) = Γ,

E0(ρ, Q), if
∫

g(x)dQ(x) < Γ,
(31)
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and
E∗∗0,m(ρ) = sup

Q :
∫

g(x)dQ(x)≤Γ

E∗0,m(ρ, Q). (32)

The next proposition provides a lower bound on lim E(n),∗
0 (ρ).

Proposition 1. Any probability distribution Q on R under which g(X) is of finite second moment
and of expectation Γ provides the lower bound

lim
n→∞

E(n),∗
0 (ρ) ≥ E∗0,m(ρ, Q). (33)

Proof. Let Q be any input distributions Q under which g(X) is of finite second moment
and E[g(X)] = Γ. For each n ∈ N, let Q(n) be the conditional distribution of the n-fold
product distribution Q×n given the event {X ∈ An}, where

An =
{

x ∈ Rn : nΓ− δ < g(x) ≤ nΓ
}

(34)

where δ > 0 is some positive constant. Thus, for every Borel measurable subset B of Rn,

Q(n)(B) = 1
µ

Q×n(B ∩An), B ∈ B(Rn) (35)

with

µ = Q×n(An). (36)

For any r ≥ 0, we can upper-bound the Radon–Nykodim derivative of Q(n) with
respect to product distribution Q×n as follows:

dQ(n)

dQ×n =
1
µ

I{x ∈ An} (37)

≤ 1
µ

er(g(x)−nΓ+δ) (38)

=
1
µ

erδ er(g(x)−nΓ) (39)

where I{statement} equals 1 if the statement is true and else 0. Using this bound on the
Radon–Nykodim derivative we obtain:

E(n)
0 (ρ, Q(n)) = − 1

n
ln
∫

y∈Rn

(∫
x∈Rn

w(y|x)
1

1+ρ dQ(n)(x)
)1+ρ

dν(y) (40)

≥ − 1
n

ln
∫

y∈Rn

(∫
x∈Rn

w(y|x)
1

1+ρ · 1
µ

erδer(g(x)−nΓ) dQ×n(x)
)1+ρ

dν(y) (41)

= −1 + ρ

n
ln

erδ

µ
− ln

∫
y∈R

(∫
x∈R

er(g(x)−Γ)w(y|x)
1

1+ρ dQ(x)
)1+ρ

dν(y) (42)

= −1 + ρ

n
ln

erδ

µ
+ E0,m(ρ, Q, r). (43)

By the Central Limit Theorem, µ tends to 1/2 as n tends to infinity, so (43) implies that

lim inf
n→∞

1
n

E(n)
0 (ρ, Q(n)) ≥ E0,m(ρ, Q, r). (44)

Taking the supremum of the RHS over all r ≥ 0, establishes that

lim inf
n→∞

1
n

E(n)
0
(
ρ, Q(n)) ≥ E∗0,m(ρ, Q) (45)
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and hence, by (24), proves (33).

We next turn to upper-bounding lim E(n),∗
0 (ρ).

Proposition 2. If the probability distribution Q(n) on Rn is such that E[g(X)] ≤ nΓ, and if fR is
any density on R, then

E(n)
0 (ρ, Q(n)) ≤ sup

P :
∫

g(x)dP(x)≤Γ

−(1 + ρ)
∫

x∈R
ln
(∫

y∈R
w(y|x)

1
1+ρ fR(y)

ρ
1+ρ dy

)
dP(x) (46)

and, consequently,

lim
n→∞

E(n),∗
0 (ρ) ≤ sup

P :
∫

g(x)dP(x)≤Γ

−(1 + ρ)
∫

x∈R
ln
(∫

y∈R
w(y|x)

1
1+ρ fR(y)

ρ
1+ρ dy

)
dP(x). (47)

Proof. The proof is based on Proposition 2 in [18], which implies that for every density
f (n)R on Rn and any probability measure Q(n) on Rn,

n E(n)
0
(
ρ, Q(n)) ≤ −(1 + ρ)

∫
x∈Rn

ln
(∫

y∈Rn
w(y|x)

1
1+ρ f (n)R (y)

ρ
1+ρ dy

)
dQ(n)(x). (48)

Applying this inequality to the product density

f (n)R (y) =
n

∏
i=1

fR(yi), (49)

where fR is a density on R, and using the product form of the channel (11), we obtain that
for any density fR on R

E(n)
0 (ρ, Q(n)) ≤ − 1

n
(1 + ρ)

n

∑
i=1

∫
xi∈R

ln
(∫

y∈R
w(y|xi)

1
1+ρ fR(y)

ρ
1+ρ dy

)
dQ(n)

i (xi) (50)

= −(1 + ρ)
∫

x∈R
ln
(∫

y∈R
w(y|x)

1
1+ρ fR(y)

ρ
1+ρ dy

)
dQ̄(x), (51)

where Q(n)
i is the i-th marginal of Q(n), and Q̄ is the probability measure on R defined by

Q̄ =
1
n

n

∑
i=1

Q(n)
i . (52)

Observe that if E[g(X)] ≤ nΓ under Q(n), then E[g(X)] ≤ Γ under Q̄. This observation
and (51) establish (46). Since (46) holds for all n, (47) must also hold.

4. The Cutoff Rate of the Gaussian Channel

In this section, we prove Theorem 1. Since scaling the output does not change the
cutoff rate, we will assume WLOG that the noise variance is 1 and the transmit power is A;
see (12). Thus,

w(y|x) = 1√
2π

e−
(y−x)2

2 , x, y ∈ R, (53)

and each codeword xm satisfies

‖xm‖2 ≤ nA. (54)
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4.1. Computing lim E(n),∗
0 (ρ)

Here we shall establish that on the Gaussian channel (53)

lim
n→∞

E(n),∗
0 (ρ) = ρR0(ρ) = E∗0,m(ρ, QG), (55)

where R0(ρ) is defined in (3), and QG is the zero-mean variance-A Gaussian distribution.
To this end, we shall derive matching upper and lower bounds on the limit. We begin with
the former.

4.1.1. Upper-Bounding lim E(n),∗
0 (ρ)

We show that on the channel (10)

lim
n→∞

E(n),∗
0 (ρ) ≤ ρR0(ρ). (56)

The proof is based on Proposition 2 with the density fR corresponding to a centered
Gaussian of variance σ2, where

σ2 =
A

(1 + ρ)β
+ 1 (57)

and

β =
1
2

1− A

1 + ρ
+

√(
1− A

1 + ρ

)2
+

4A

(1 + ρ)2

. (58)

Evaluating the RHS of (47) for this density, we obtain

sup
P : E[X2]≤A

−(1 + ρ)
∫

x∈R
ln
∫

y∈R
w(y|x)

1
1+ρ fR(y)

ρ
1+ρ dy dP(x) (59)

= sup
P : E[X2]≤A

−(1 + ρ)
∫

x∈R
ln
∫

y∈R
1

(
√

2π)
1

1+ρ

e−
(y−x)2

2(1+ρ)
1

(
√

2πσ2)
ρ

1+ρ

e
− y2ρ

2σ2(1+ρ) dy dP(x) (60)

= sup
P : E[X2]≤A

−(1 + ρ)
∫

x∈R
ln

(√
2π(1 + ρ)2

ρ

√
σ2

1
1+ρ

)
1√

2πσ2
1

e
− x2

2σ2
1 dP(x) (61)

= sup
P : E[X2]≤A

−(1 + ρ) ln

√ (1 + ρ)2

ρ

√
σ2

1
1+ρ 1√

σ2
1

+ (1 + ρ)
∫

x∈R
x2

2σ2
1

dP(x) (62)

= −(1 + ρ) ln

√ (1 + ρ)2

ρ

√
σ2

1
1+ρ 1√

σ2
1

+ (1 + ρ)
A

2σ2
1

(63)

=
1 + ρ

2
A

σ2
1
+

1 + ρ

2
ln σ2

1 −
1
2

ln σ2 − 1 + ρ

2
ln

(1 + ρ)2

ρ
(64)

where in (61) we defined

σ2
1 , 1 + ρ +

σ2(1 + ρ)

ρ
(65)

=
A

ρβ
+

(1 + ρ)2

ρ
. (66)

To conclude the proof, it remains to show that the RHS of (64) coincides with ρR0(ρ).
To this end, observe that some basic algebra reveals that

β
(

β− 1 +
A

1 + ρ

)
=

A

(1 + ρ)2 (67)
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and (
β +

A

1 + ρ

)
(1− β) =

Aρ

(1 + ρ)2 . (68)

Therefore, the first term in (64) can be rewritten as

1 + ρ

2
A

σ2
1
=

1 + ρ

2
A

A
ρβ + (1+ρ)2

ρ

=
1 + ρ

2
Aρ

(1 + ρ)2
β

A
(1+ρ)2 + β

(69)

=
Aρ

2(1 + ρ)

1
β + A

1+ρ

=
(1 + ρ)(1− β)

2
, (70)

and the remaining terms rewritten as

1 + ρ

2
ln σ2

1 −
1
2

ln σ2 − 1 + ρ

2
ln

(1 + ρ)2

ρ

=
1 + ρ

2
ln
(

A

ρβ
+

(1 + ρ)2

ρ

)
− 1

2
ln
(

A

(1 + ρ)β
+ 1
)
− 1 + ρ

2
ln

(1 + ρ)2

ρ
(71)

=
1 + ρ

2
ln
(

A

(1 + ρ)2β
+ 1
)
− 1

2
ln
(

A

(1 + ρ)β
+ 1
)

(72)

=
ρ

2
ln
(

β +
A

1 + ρ

)
+

1
2

ln β. (73)

The sum equals to ρR0(ρ).

4.1.2. Lower-Bounding lim E(n),∗
0 (ρ)

To lower-bound lim E(n),∗
0 (ρ), we shall use Proposition 1 with Q chosen as a centered

variance-A Gaussian distribution QG. For this probability distribution Gallager calculated
E∗0,m(ρ, QG) (Section 7.4 in [1]). He showed that for any ρ > 0,

E∗0,m(ρ, QG) = ρR0(ρ), (74)

where R0(ρ) is defined in (3). Using this result and Proposition 1 we obtain

lim
n→∞

E(n),∗
0 (ρ) ≥ E∗0,m(ρ, QG) (75)

= ρR0(ρ). (76)

4.2. The Mapping ρ 7→ R0(ρ) Is Monotonically Decreasing

For the purpose of proving the achievability of R0(ρ), we will need the fact that it is
monotonically decreasing in ρ. In view of (55), it suffices to show that, for every n ∈ N,
the mapping ρ 7→ ρ−1E(n),∗

0 (ρ) is monotonically decreasing. In view of (24), the latter will

follow once we establish the monotonicity of ρ 7→ ρ−1E(n)
0 (ρ, Q(n)) for any fixed Q(n). Since

E(n)
0 (ρ, Q(n)) evaluates to zero at ρ = 0, this monotonicity can be established by showing

that the mapping ρ 7→ E(n)
0 (ρ, Q(n)) is concave. This is established in (Appendix 5.B

in [1]). (That appendix deals with finite alphabets, but the proof goes through also to
our case.)

4.3. Achievability of R0(ρ)

The achievability of R0(ρ) will be proved using a random-coding argument. Let Q be
the zero-mean variance-A Gaussian distribution, let δ > 0 be a positive constant, and let
Q(n) be the distribution on Rn defined in (35) and (36). Draw the codewords {Xm}m=1,...,enR

of a blocklength-n random codebook independently, each according to Q(n), so ‖Xm‖2 ≤ nA
with probability 1 for every m ∈ M. By symmetry, E

[
|L(m, Y)|ρ

]
(where the expectation is
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over the random choice of codebook and on the channel behavior) does not depend on m.
Consequently,

E
[
e−nR ∑

m∈M
|L(m, Y)|ρ

]
= E

[
|L(1, Y)|ρ

]
, (77)

and if we establish that E
[
|L(1, Y)|ρ

]
tends to 1, it will follow by the random-coding

argument that there exists a codebook for which the LHS of (77)—with the expectation now
over the channel behavior only—tends to 1.

Defining

Bm(x1, y) = 1
{

w(y|Xm) ≥ w(y|x1)
}

, x1, y ∈ Rn, (78)

we can express the RHS of (77) as

E
[
|L(1, Y)|ρ

]
= E

[(
1 + ∑

m 6=1
Bm(X1, Y)

)ρ]
, (79)

and we seek to show that

lim
n→∞

E
[(

1 + ∑
m 6=1

Bm(X1, Y)
)ρ]

= 1. (80)

To this end, we shall need the following lemma.

Lemma 1. Let {Zn} be a sequence of random variables taking values in N, and let ρ > 0 be fixed.
The following two conditions are then equivalent:

(i) E[(1 + Zn)ρ] = 1 + o(1)
(ii) E[Zρ

n] = o(1)

where o(1) tends to zero as n tends to infinity. Thus(
lim

n→∞
E[(1 + Zn)

ρ] = 1
)
⇐⇒

(
lim

n→∞
E[Zρ

n] = 0
)

. (81)

Proof. The implication (ii) =⇒ (i) follows by noting for any z ∈ N and ρ > 0

(1 + z)ρ ≤ 1 + 2ρzρ, (82)

so

E[(1 + Zn)
ρ] ≤ 1 + 2ρ E[Zρ

n]. (83)

As for the implication (i) =⇒ (ii), note that any y ∈ N and ρ > 0

(1 + y)ρ ≥ yρ + 1{y = 0}, (84)

so

E[(1 + Zn)
ρ] ≥ E[Zρ

n] + Pr[Zn = 0]. (85)

The implication is now established by noting that (i) implies that Pr[Zn = 0] → 1
because, by Markov’s inequality (and the strict positivity of ρ),

Pr[Zn 6= 0] = Pr[(1 + Zn)
ρ − 1 ≥ 2ρ − 1] (86)

≤ E[(1 + Zn)ρ]− 1
2ρ − 1

. (87)
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In light of the above lemma, to establish (80) it suffices to show that

lim
n→∞

E
[(

∑
m 6=1

Bm(X1, Y)
)ρ]

= 0, (88)

i.e., that

lim
n→∞

E
[
E
[(

∑
m 6=1

Bm(x1, y)
)ρ ∣∣∣∣X1 = x1, Y = y

]]
= 0, (89)

where the outer expectation is over X1 and Y.
A related expectation—but one where it is the conditional expectation that is raised to

the ρ-th power—is studied in the following lemma:

Lemma 2. If ρ > 0 and R < R0(ρ), then

lim
n→∞

E
[
E
[

∑
m 6=1

Bm(x1, y)
∣∣∣∣X1 = x1, Y = y

]ρ]
= 0. (90)

Proof. See Appendix A.

To establish (88) using this lemma, we distinguish between two cases depending on
whether 0 < ρ ≤ 1 or ρ > 1. In the former case x 7→ xρ is concave, so Jensen’s inequality
implies that

E
[
E
[(

∑
m 6=1

Bm(x1, y)
)ρ ∣∣∣∣X1 = x1, Y = y

]]
≤ E

[
E
[

∑
m 6=1

Bm(x1, y)
∣∣∣∣X1 = x1, Y = y

]ρ]
, (91)

which, together with Lemma 2, implies (88) whenever R < R0(ρ).
Suppose now that ρ > 1. Conditional on the transmitted codeword x1 and the output

y, the random variables {Bm}m 6=1 are IID Bernoulli, with Bm determined by Xm. We can
thus use Rosenthal’s technique (Lemma 5.10 in [19]), [20] to obtain

E
[(

∑
m 6=1

Bm(x1, y)
)ρ ∣∣∣∣X1 = x1, Y = y

]

≤ 2ρ2
max

{
E
[

∑
m 6=1

Bm(x1, y)
∣∣∣∣X1 = x1, Y = y

]ρ

,E
[

∑
m 6=1

Bm(x1, y)
∣∣∣∣X1 = x1, Y = y

]}
(92)

≤ 2ρ2
(
E
[

∑
m 6=1

Bm(x1, y)
∣∣∣∣X1 = x1, Y = y

]ρ

+E
[

∑
m 6=1

Bm(x1, y)
∣∣∣∣X1 = x1, Y = y

])
. (93)

Taking the expectation over X1 and Y yields

E
[
E
[(

∑
m 6=1

Bm(x1, y)
)ρ ∣∣∣∣X1 = x1, Y = y

]]
(94)

≤ 2ρ2E
[
E
[

∑
m 6=1

Bm(y)
∣∣∣∣Y = y

]ρ]
+ 2ρ2E

[
E
[

∑
m 6=1

Bm(y)
∣∣∣∣Y = y

]]
(95)

≤ 2ρ2E
[
E
[

∑
m 6=1

Bm(x1, y)
∣∣∣∣X1 = x1, Y = y

]ρ]
+ 2ρ2E

[
E
[

∑
m 6=1

Bm(x1, y)
∣∣∣∣X1 = x1, Y = y

]]
. (96)

The first term on the RHS can be treated using the lemma. The second—but for the 2ρ2

constant—is the one encountered when ρ is 1. Since by Section 4.2, R0(ρ) ≤ R0(1) (because
ρ > 1 for the case at hand), it too tends to zero when R < R0(ρ).
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4.4. No Rate Exceeding R0(ρ) Is Achievable

To show the converse, we need Arıkan’s lower bound on guessing [21].
Fix any sequence of rate-R blocklength-n codebooks {Cn} satisfying the cost constraint.

For any n ∈ N, let

Q(n)(x) =

{
1
|Cn | if x ∈ Cn,

0 otherwise
(97)

be the induced probability distribution on Rn. Since the codebook satisfies the cost con-
straint, E[‖X‖2] ≤ nA under Q(n).

Given y, list the messages m ∈ M in decreasing order of likelihood w(y|xm) (resolving
ties arbitrarily, e.g., ranking low numerical values of m higher), and let G(m|y) denote the
ranking of the message m in this list. Note that

|L(m, y)| ≥ G(m|y), (98)

where the inequality can be strict because there may be messages that are in L(m, y)
because they have the same likelihood as m, and that are yet ranked lower than m by G(·|y)
because of the way ties are resolved. It follows from this inequality that the ρ-th moment
of |L(M, Y)| cannot tend to one unless the ρ-th moment of G(M|Y) does. By Arıkan’s
guessing inequality [21],

E
[
G(M|Y)ρ

]
≥ (1 + nR)−ρ · exp

(
nρR− nE(n)

0 (ρ, Q(n))
)

, (99)

so the ρ-th moment of G(M|Y) can tend to one only if

ρR ≤ lim inf
n→∞

E(n)
0 (ρ, Q(n)). (100)

From this, the converse now follows using (24) and (55) because

lim inf
n→∞

E(n)
0 (ρ, Q(n)) ≤ lim

n→∞
E(n),∗

0 (ρ) (101)

= ρR0(ρ). (102)

5. The Direct Part of Theorem 2

In this section we prove the direct part of Theorem 2: when the decoder can be
provided with a rate-Rh description of the noise, the convergence (19) can be achieved at
all transmission rates below R0(ρ) + Rh. As noted earlier, the converse follows directly
from (Remark 4 in [3]).

Our proof treats the cases Rh = 0 and Rh > 0 separately. As in Section 4, we assume
that the channel is normalized to having noise variance 1 and transmit power A.

5.1. Case 1: Rh = 0

The analogous result for the modulo-additive channel was proved in [3] by having
the helper provide the decoder with a lossless description of the type of the noise sequence.
Since this type fully specifies the a posteriori probability of the transmitted message, the
decoder’s remotely-plausible-with-this-help list L(Y, T) contains only messages whose a
posteriori probability is equal to that of the correct message. It is therefore a subset of the
at-least-as-likely list L(M, Y) (without help) and hence of smaller-or-equal ρ-th moment.
Consequently, any rate that allows the latter to tend to one, also allows the former to tend
to one.

On the Gaussian channel the likelihood w(y|xm) is specified by the normalized squared
Euclidean norm of the noise sequence ‖z‖2/n. The latter, however, cannot be described at
zero rate with infinite precision. This motivates us to quantize it and have the quantized
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version be the zero-rate help. The result will then follow by considering the high-resolution
limit of the achievable rates. For this purpose, a uniform quantizer will do.

Given some large M > 0 (which determines the overload region) and some large K
(corresponding to the number of quantization cells), we partition the interval [0, M] into
K subintervals, each of length ∆ = M/K. The helper, upon observing the noise sequence
Z, produces

T = φ(n)(Z) =

{⌊
‖Z‖2/(n∆)

⌋
if ‖Z‖2/n < M,

K otherwise
. (103)

The constant M, which does not depend on the blocklength n, is chosen large enough
to guarantee that the large-deviation probability of overload Pr [‖Z‖2/n ≥ M] decay suffi-
ciently fast in n so that the contribution of the overload to the ρ-th moment of the list be
negligible, even if an overload results in the list containing all enR codewords:

lim
n→∞

enρR · Pr
[
n−1‖Z‖2 ≥ M

]
= 0. (104)

(Upper bounds on the tail of the χ2 distribution show, for example, that for R < R0(ρ),
the choice M = max{2, 20ρR0(ρ)} will do.) Since the help takes values in the finite set
Tn = {0, 1, . . . , K}, where K does not depend on the blocklength, it is of zero rate.

As in Section 4.3, we consider a random codebook {Xm}m=1,...,enR whose codewords
are drawn independently from the conditional Gaussian distribution, i.e., from Q(n) defined
in (35) and (36) with Q being QG, the centered variance-A Gaussian distribution. Using the
same symmetry arguments, we also assume that the transmitted message is m = 1 and
study the ρ-th moment of the list under this assumption. Defining

Vm(x1, y) = 1
{

φ(n)(y− Xm) = φ(n)(y− x1)
}

, x1, y ∈ Rn, (105)

we can express the ρ-th moment of the remotely-plausible list when m = 1 as

E
[
|L(Y, T)|ρ

]
= E

[(
1 + ∑

m 6=1
Vm(X1, Y)

)ρ]
. (106)

In view of Lemma 1, we need to prove that

lim
n→∞

E
[(

∑
m 6=1

Vm(X1, Y)
)ρ]

= 0, (107)

where the expectation is over both the random choice of the codebook and the channel
behavior.

To analyze the LHS of (107), we define for every x1, y ∈ Rn and every message m 6= 1
the binary random variable

Bm(x1, y; ∆) = 1

{
w(y|Xm) ≥ w(y|x1) · e−

n∆
2

}
. (108)
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Our analysis of Vm(x1, y) depends on whether φ(n)(y− x1) differs from K (no overload)
or equals K (corresponding to quantizer overload). In the former case, the random variable
Vm(x1, y) can be upper bounded by Bm(x1, y; ∆) because

Vm(x1, y) = 1
{

φ(n)(y− Xm) = φ(n)(y− x1)
}

(109)

≤ 1
{∣∣‖y− Xm‖2 − ‖y− x1‖2∣∣ < n∆

}
(110)

≤ 1
{
‖y− Xm‖2 ≤ ‖y− x1‖2 + n∆

}
(111)

= 1

{
e−
‖y−Xm‖2

2 ≥ e−
‖y−x1‖2+n∆

2

}
(112)

= Bm(x1, y; ∆), (113)

where (110) holds because, for the case at hand, the equality of helper’s description implies
that ‖y−Xm‖2 and ‖y− x1‖2 lie in a same interval of length n∆. In the latter case—which is
exponentially rare when M exceeds the noise variance—we simply upper bound Vm(x1, y)
by 1.

The ρ-th moment of the list can now be expressed using the law of total expectation as

E
[(

∑
m 6=1

Vm(X1, Y)
)ρ]

= E
[(

∑
m 6=1

Vm(X1, Y)
)ρ ∣∣∣∣ T 6= K

]
Pr[T 6= K] +E

[(
∑

m 6=1
Vm(X1, Y)

)ρ ∣∣∣∣ T = K
]

Pr[T = K] (114)

≤ E
[(

∑
m 6=1

Bm(X1, Y; ∆)
)ρ ∣∣∣∣ T 6= K

]
Pr[T 6= K] + enρR Pr[T = K] (115)

≤ E
[(

∑
m 6=1

Bm(X1, Y; ∆)
)ρ]

+ enρR Pr[T = K]. (116)

The second term on the RHS of (116) tends to zero by (104). The first term is studied
in the following lemma:

Lemma 3. If ρ > 0, ∆ > 0, and R < R0(ρ)− ∆, then

lim
n→∞

E
[(

∑
m 6=1

Bm(X1, Y; ∆)
)ρ]

= 0. (117)

Proof. See Appendix B.

For a given R < R0(ρ), achievability is thus established using this lemma and (116) by
picking M sufficiently large for (104) to hold, and then picking K large enough to guarantee
that R < R0(ρ)−M/K so that, by Lemma 3, the first term on the RHS of (116) will also
tend to zero.

5.2. Case 2: Rh > 0

The key to proving the achievability of Rcutoff(ρ) + Rh is in showing that rate-Rh
help can be utilized to increase the data rate by Rh, and that this can be done losslessly,
with arbitrarily small (positive) power, and in one channel use. To show how this can be
done, we show that—by using the channel once to send a single input that is bounded
by
√

A (with A any prespecified positive number) and using help taking values in the set
T = {0, . . . , κ− 1}—we can send error-free a message taking values in said set. To transmit
m ∈ {0, . . . , κ − 1}, the encoder sends

x = m ·
√

A

κ
, (118)
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which is upper-bounded by
√

A. Upon observing the noise Z, the helper produces the
description T by quantizing the normalized noise and taking modulo, i.e.,

T =

⌊
Z · κ√

A

⌋
mod κ, (119)

which is an element of {0, . . . , κ − 1}. Based on Y and T, the decoder can calculate

m̂ =

⌊
Y · κ√

A
− T

⌋
mod κ, (120)

which equals m, because

m̂ =

⌊(
x + Z

)
· κ√

A
− T

⌋
mod κ (121)

=

⌊
m + Z · κ√

A
− T

⌋
mod κ (122)

=

(
m +

⌊
Z · κ√

A

⌋
− T

)
mod κ (123)

= m, (124)

where (123) holds because m and T are both integers.
Using this building-block, we can now prove the achievability of Rcutoff(ρ) + Rh by

employing two-phase time sharing. Specifically, we propose the following blocklength-
(n + 1) scheme. In the first n channel uses, the helper operates at rate zero as in Section 5.1.
By the achievability result proved in Section 5.1, for any R < R0(ρ), there exists a sequence
of blocklength-n rate-R codebooks {xm}m=1,...,enR , with ‖xm‖2 ≤ (n− 1)A for every m, and
zero-rate helpers φ(Zn), such that the remotely-plausible-list L(Yn, φ(Zn)) satisfies

lim
n→∞

E
[∣∣L(Yn, φ(Zn))

∣∣ρ] = 1. (125)

In the (n + 1)-th channel-use we use the aforementioned coding scheme with κ being
denRhe. Since that scheme is error-free, the overall remotely-plausible-list for the two phases
has the same cardinality as that of the first phase, namely

∣∣L(Yn, φ(Zn))
∣∣, and hence, its

ρ-th moment tends to 1 by (125).
The achievability now follows by verifying that, the power of the transmitted input

sequence x satisfies

‖x‖2 = ‖xn‖2 + ‖xn+1‖2 ≤ nA + A = (n + 1)A; (126)

the rate of the helper is

1
n + 1

(
0 + nRh

)
(127)

and the rate achieved by the scheme is

1
n + 1

(
nR0(ρ) + nRh

)
(128)

which tend to Rh and R0(ρ) + Rh, respectively, as n tends to infinity.
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Appendix A. Proof of Lemma 2

We shall establish that the expectation

E
[
E
[

∑
m 6=1

Bm(x1, y)
∣∣∣∣X1 = x1, Y = y

]ρ]
(A1)

=
∫

y∈Rn

∫
x1∈Rn

E
[

∑
m 6=1

Bm(x1, y)
∣∣∣∣X1 = x1, Y = y

]ρ

w(y|x1) dQ(n)(x1)dν(y) (A2)

tends to zero as n tends to infinity whenever R < R0(ρ).
First notice that conditional on the transmitted codeword x1 and the channel output y,

the random variables {Bm}m 6=1 are IID Bernoulli, with Bm determined by Xm and being of
probability of success

p(x1, y) = Pr
[
w(y|Xm) ≥ w(y|x1)

]
(A3)

= Pr
[
w(y|Xm)

1
1+ρ ≥ w(y|x1)

1
1+ρ

]
(A4)

≤ w(y|x1)
− 1

1+ρ E
[
w(y|Xm)

1
1+ρ

]
, (A5)

where the last inequality follows from Markov’s inequality. Thus

E
[
E
[

∑
m 6=1

Bm(x1, y)
∣∣∣∣X1 = x1, Y = y

]ρ]
=
∫

y∈Rn

∫
x1∈Rn

E
[

∑
m 6=1

Bm(x1, y)
∣∣∣∣X = x1, Y = y

]ρ

w(y|x1)dQ(n)(x1)dν(y) (A6)

≤ enρR
∫

y∈Rn

∫
x1∈Rn

p(x1, y)ρ w(y|x1)dQ(n)(x1)dν(y) (A7)

≤ enρR
∫

y∈Rn

∫
x1∈Rn

E
[
w(y|Xm)

1
1+ρ

]ρ
w(y|x1)

1
1+ρ dQ(n)(x1)dν(y). (A8)

= enρR
∫

y∈Rn
E
[
w(y|Xm)

1
1+ρ

]ρ
(∫

x1∈Rn
w(y|x1)

1
1+ρ dQ(n)(x1)

)
dν(y) (A9)

= enρR
∫

y∈Rn

(∫
x∈Rn

w(y|x)
1

1+ρ dQ(n)(x)
)1+ρ

dν(y) (A10)

≤
(

erδ

µ

)1+ρ

enρR

(∫
y∈R

(∫
x∈R

er(x2−A) w(y|x)
1

1+ρ dQG(x)
)1+ρ

dν(y)

)n

(A11)

=

(
erδ

µ

)1+ρ

enρR e−nE0,m(ρ,QG,r), (A12)

where (A11) follows from the upper bound (39) on the Radon–Nykodim derivative and
holds for every r ≥ 0. Choosing r as r? that achieves E∗0,m(ρ, QG) (cf. (31)), we obtain

E
[
E
[

∑
m 6=1

Bm(x1, y)
∣∣∣∣X1 = x1, Y = y

]ρ]
≤
(

er?δ

µ

)1+ρ

enρR e−nE∗0,m(ρ,QG) (A13)

=

(
er?δ

µ

)1+ρ

enρ(R−R0(ρ)), (A14)

where the last equality follows from (74).
The Central Limit Theorem guarantees that, as n tends to infinity, µ approaches 1/2.

Consequently, the RHS of (A14) tends to zero whenever R < R0(ρ).
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Appendix B. Proof of Lemma 3

To prove the lemma, we shall establish that, whenever R < R0(ρ)− ∆,

lim
n→∞

E
[
E
[

∑
m 6=1

Bm(x1, y; ∆)
∣∣∣∣X1 = x1, Y = y

]ρ]
= 0, (A15)

where the outer expectation is over X1 and Y. From this (117) will follow in much the same
way that (88) followed from (90) in Section 4.3.

To establish (A15), first note that, conditional on the transmitted codeword x1 and
the channel output y, the random variables {Bm(x1, y; ∆)}m 6=1 are IID Bernoulli, with Bm
determined by Xm and being of probability of success

p(x1, y; ∆) = Pr
[
w(y|Xm) ≥ w(y|x1) e−

n∆
2

]
(A16)

= Pr
[
w(y|Xm)

1
1+ρ ≥ w(y|x1)

1
1+ρ e−

n∆
2(1+ρ)

]
(A17)

≤ w(y|x1)
− 1

1+ρ e
n∆

2(1+ρ) E
[
w(y|Xm)

1
1+ρ

]
, (A18)

where the last inequality follows from Markov’s inequality. Consequently,

E
[
E
[

∑
m 6=1

Bm(x1, y; ∆)
∣∣∣∣X1 = x1, Y = y

]ρ]
=
∫

y∈Rn

∫
x1∈Rn

E
[

∑
m 6=1

Bm(x1, y; ∆)
∣∣∣∣X = x1, Y = y

]ρ

w(y|x1)dQ(n)(x1)dν(y) (A19)

≤ enρR
∫

y∈Rn

∫
x1∈Rn

p(x1, y; ∆)ρ w(y|x1)dQ(n)(x1)dν(y) (A20)

≤ enρRe
nρ∆

2(1+ρ)

∫
y∈Rn

∫
x1∈Rn

E
[
w(y|Xm)

1
1+ρ

]ρ
w(y|x1)

1
1+ρ dQ(n)(x1)dν(y) (A21)

< enρ∆enρR
∫

y∈Rn

∫
x1∈Rn

E
[
w(y|Xm)

1
1+ρ

]ρ
w(y|x1)

1
1+ρ dQ(n)(x1)dν(y) (A22)

where (A22) holds because ρ, ∆ > 0 so nρ∆/
(
2(1 + ρ)

)
< nρ∆.

Except for the enρ∆ factor, the RHS of (A22) is identical to the RHS of (A8), which was
shown to decay at least as fast as enρ(R−R0(ρ)); see (A14). It follows that the RHS of (A22)
tends to zero whenever R + ∆ < R0(ρ).

References
1. Gallager, R.G. Information Theory and Reliable Communication; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1968.
2. Verdú, S. Error exponents and α-mutual information. Entropy 2021, 23, 199. [CrossRef]
3. Lapidoth, A.; Marti, G.; Yan, Y. Other helper capacities. In Proceedings of the 2021 IEEE International Symposium on Information

Theory (ISIT), Victoria, Australia, 12–20 July 2021; pp. 1272–1277. [CrossRef]
4. Cover, T.M. Elements of Information Theory, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006.
5. Kim, Y. Capacity of a class of deterministic relay channels. IEEE Trans. Inf. Theory 2008, 54, 1328–1329. [CrossRef]
6. Bross, S.I.; Lapidoth, A.; Marti, G. Decoder-assisted communications over additive noise channels. IEEE Trans. Commun. 2020,

68, 4150–4161. [CrossRef]
7. Lapidoth, A.; Marti, G. Encoder-assisted communications over additive noise channels. IEEE Trans. Inf. Theory 2020, 66, 6607–6616.

[CrossRef]
8. Merhav, N. On error exponents of encoder-assisted communication systems. IEEE Trans. Inf. Theory 2021, 67, 7019–7029.

[CrossRef]
9. Bunte, C.; Lapidoth, A. Encoding tasks and Rényi entropy. IEEE Trans. Inf. Theory 2014, 60, 5065–5076. [CrossRef]
10. Pinsker, M.S.; Sheverdjaev, A.Y. Transmission capacity with zero error and erasure. Probl. Peredachi Informatsii 1970, 6, 20–24.
11. Csiszar, I.; Narayan, P. Channel capacity for a given decoding metric. IEEE Trans. Inf. Theory 1995, 41, 35–43. [CrossRef]
12. Telatar, I.E. Zero-error list capacities of discrete memoryless channels. IEEE Trans. Inf. Theory 1997, 43, 1977–1982. [CrossRef]
13. Ahlswede, R.; Cai, N.; Zhang, Z. Erasure, list, and detection zero-error capacities for low noise and a relation to identification.

IEEE Trans. Inf. Theory 1996, 42, 55–62. [CrossRef]

http://doi.org/10.3390/e23020199
http://dx.doi.org/10.1109/ISIT45174.2021.9517712
http://dx.doi.org/10.1109/TIT.2007.915921
http://dx.doi.org/10.1109/TCOMM.2020.2984215
http://dx.doi.org/10.1109/TIT.2020.3012629
http://dx.doi.org/10.1109/TIT.2021.3111541
http://dx.doi.org/10.1109/TIT.2014.2329490
http://dx.doi.org/10.1109/18.370120
http://dx.doi.org/10.1109/18.641560
http://dx.doi.org/10.1109/18.481778


Entropy 2022, 24, 29 18 of 18

14. Bunte, C.; Lapidoth, A.; Samorodnitsky, A. The zero-undetected-error capacity approaches the Sperner capacity. IEEE Trans. Inf.
Theory 2014, 60, 3825–3833. [CrossRef]
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