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Abstract—The zero-error helper capacity of the modulo-
additive noise channel is studied both in the presence and in
the absence of feedback. In its presence, a complete solution of
said capacity is provided. In its absence, a solution is provided
when the alphabet size is prime. For all other cases, a necessary
and sufficient condition for positivity is provided. Thanks to the
help, the zero-error capacity may increase by more than the
help’s rate, and it can be positive yet smaller than one bit.

I. INTRODUCTION

This paper investigates the extent to which the zero-error
capacity can benefit from a rate-limited description of the
noise. We study both encoder assistance, where the descrip-
tion is provided to the encoder before transmission begins,
and decoder assistance, where it is provided to the decoder.
We show that, perhaps paradoxically, the zero-error helper
capacity can be calculated as a function of the description
rate even for some channels for which the no-help zero-error
capacity is unknown. This is not a contradiction because a
zero-rate description is not tantamount to no description: it
still allows for a binary description whose length is sublinear
in the blocklength.

We focus on memoryless modulo-additive noise channels
(MMANCs) whose time-k output Yk corresponding to the
time-k input xk is

Yk = xk ⊕ Zk, (1)

where {Zk} ∼ IID QZ is the channel noise; xk, Zk,
and Yk all take values in the set A =

{
0, 1, . . . , |A|−1

}
; and

“⊕” denotes mod-|A| addition. The channel law QY |X(·|·) is
thus

QY |X(y|x) = QZ(y 	 x), x, y ∈ A, (2)

where “	” denotes mod-|A| subtraction. A key role is played
by the cardinality |S| of the support set S of QZ ,

S =
{
z ∈ A : QZ(z) > 0

}
. (3)

Example 1. With |S| = 2, the MMANCs when |A| equals
3, 5, or 7 correspond respectively to the Triangle channel,
Shannon’s Pentagon channel [1], or the Heptagon channel
(a.k.a. the 3/2, 5/2, or 7/2 channels, respectively).

In the presence of a noiseless feedback link from the
receiver to the encoder, we calculate the zero-error helper
capacity both for encoder and decoder assistance (Theorem 4).
In its absence we show that, with zero-rate help (to the encoder
or decoder), the zero-error capacity is positive if, and only if,

the support S of the noise is a strict subset of A (Theorem 6).
When the cardinality of A is prime (as in Example 1) we
calculate the zero-error helper capacity in Theorem 5 using
structured codes. Calculating the zero-error helper capacity
without feedback when |A| is not prime is left as an open
problem.

These results add to the body of literature on the benefits of
helpers as measured in terms of the Shannon capacity1 [3]–
[5], error exponents [6], erasures-only capacity [5], listsize
capacity [5], [7], and secrecy [8].

II. PRELIMINARIES AND NOTATIONS

For a general discrete memoryless channel (DMC)
QY |X(·|·) with input alphabet X and output alphabet Y ,
a blocklength-n code consists of a message set M ={

1, 2, . . . , |M|
}

and an encoding function f : M →
Xn, m 7→ x(m) = (x1(m), . . . , xn(m)). The code is also
represented by the codebook C =

{
x(1),x(2), . . . ,x(|M|)

}
,

which is a multiset (i.e., a set allowing repeated elements) of
cardinality |M|.

The zero-error capacity C0 [1] is the supremum of rates R
for which there exists a sequence of blocklength-n code with
lim infn→∞

1
n log |M| = R and for which to every output

sequence y ∈ Yn there corresponds at most one compatible
message, i.e., a message m ∈M satisfying

Qn
Y |X(y|x(m)) > 0. (4)

A necessary and sufficient condition for C0 to be positive is
that there exist x, x′ ∈ X such that QY |X(y|x)·QY |X(y|x′) =
0 for all y ∈ Y [1]. This characterization can be used, for
example, to conclude that C0 is zero for the Triangle channel.
Whenever C0 is positive, we can transmit a bit by using the
channel once (with the input x or x′). Consequently, C0 cannot
be positive yet strictly smaller than one.

Determining the zero-error capacity for general DMCs
is an open combinatorial problem and is one of the holy
grails of information theory. It is known for some specific
channels including the Pentagon channel: Shannon showed
that 1

2 log 5 ≤ C0 ≤ log 5
2 in his 1959 paper [1], and Lovász

proved in 1979, using algebraic graph theory, that the lower
bound is tight [9]. To date, however, the zero-error capacity
of the 7/2 channel is unknown.

1Throughout this paper, “Shannon capacity” and “Shannon feedback ca-
pacity” refer to the supremum of the achievable rates, in the sense that the
probability of error tends to zero as the blocklength tends to infinity [2].



The problem is greatly simplified if a noiseless feedback
link reveals to the encoder the previously received channel
outputs. A blocklength-n encoder now consists of functions
fi : M × Yi−1 → X , (m, yi−1) 7→ xi(m, y

i−1) for i ∈
[n] , {1, 2, . . . , n}, and the zero-error feedback capacity
C0F is defined like C0 except that x(m) in (4) is replaced
by x(m,y) = (x1(m), x2(m, y1), . . . , xn(m, yn−1)). The
capacity C0F for this setting was determined by Shannon:

Theorem 2 ([1]). On a DMC, if C0 = 0, then the zero-error
feedback capacity C0F is also zero. Else, C0F = − log π0,
where

π0 = min
P∈P(X )

max
y∈Y

∑
x∈Xy

P (x) (5)

and Xy comprises the inputs that can induce the output letter
y with positive probability.

Note that, C0F > 0 iff C0 > 0, so C0F > 0 iff a bit
can be transmitted error-free in one channel use. Hence, also
C0F cannot be positive yet strictly smaller than one. Applying
Theorem 2 to the MMANC yields the following corollary.

Corollary 3. On the MMANC, if C0 = 0, the zero error
feedback capacity is also zero. Else,

C0F = log |A| − log |S|. (6)

Proof. Omitted.

Henceforth, we focus on MMANCs. Consider a helper in
a blocklength-n coding scheme, represented by the helping
function h : An → T , that is incognizant of the transmitted
message M , but that observes the noise sequence Z and
describes it as T = h(Z), with T taking values in a finite
set T . We distinguish between two kinds of assistance:

Decoder assistance corresponds to the scenario where the
description T is revealed to the decoder, as in Fig. 1a. In
the absence of feedback, with rate-Rh help, C0,dec(Rh) is
defined as the supremum of rates R for which there exists a
sequence of coding schemes, with transmission rate—defined
as lim infn→∞

1
n log |M|—being at least R, with help rate—

defined as lim supn→∞
1
n log |T |—being no larger than Rh,

and with zero probability of error, i.e., for any y ∈ An and
t ∈ T , at most one message m is compatible with (y, t) in
the sense that

Qn
Y |X(y|x(m)) > 0 and h(y 	 x(m)) = t. (7)

With feedback, C0F,dec(Rh) is defined by replacing x(m) with
x(m,y) in (7).

Encoder assistance corresponds to the scenario where T
is revealed noncausally to the encoder, as in Fig. 1b. In the
absence of feedback, the encoding function is f : M× T →
An, (m, t) 7→ x(m, t), and for given Rh, C0,enc(Rh) is defined
similarly so that to every y ∈ An there corresponds at most
one compatible message m in the sense that2

∃t ∈ T s.t. Qn
Y |X(y|x(m, t)) > 0 and h(y 	 x(m, t)) = t. (8)

2This condition is equivalent to QY|M (y|m) > 0, where QY|M (y|m) =∑
t∈T QT (t)QY|X,T (y|x(m, t), t).

+
X Y

Encoder Decoder
M M̂

Helper

T (rate-limited)

Z

(a) With Decoder Assistance, with or without Feedback

+
X Y

Encoder Decoder
M M̂

Helper

T (rate-limited)

Z

(b) With Encoder Assistance, with or without Feedback

Fig. 1. Modulo-Additive Noise Channels

With feedback, the encoder employs functions fi : M×T ×
Ai−1 → A, (m, t, yi−1) 7→ xi(m, t, y

i−1) for i ∈ [n], and
C0F,enc(Rh) is defined by replacing x(m, t) by x(m, t,y) =
(x1(m, t), x2(m, t, y1), . . . , xn(m, t, yn−1)) in (8).

Throughout this paper, logarithms are of base 2 unless stated
otherwise. The positive integers are denoted Z+. For B,B′ ⊆
An, we define B∗ = B \ {0}; we denote the sumset and the
difference set by

B ⊕ B′ =
{
b⊕ b′ : b ∈ B, b′ ∈ B′

}
(9)

B 	 B′ =
{
b	 b′ : b ∈ B, b′ ∈ B′

}
; (10)

and for x ∈ An, we write x⊕B and x	B for {x} ⊕ B and
{x} 	 B. We use {ξ}+ to denote max{0, ξ}.

III. MAIN RESULTS

Theorem 4 (Assistance and Feedback). On the MMANC with
feedback and rate-Rh decoder or encoder assistance,

C0F,dec(Rh) = C0F,enc(Rh) = log |A| −
{

log |S| −Rh
}+
. (11)

Proof. See Section IV.

Theorem 5 (Assistance without Feedback). On the MMANC
with rate-Rh decoder or encoder assistance, if |A| is prime,
then

C0,dec(Rh) = C0,enc(Rh) = log |A| −
{

log |S| −Rh
}+
. (12)

Proof. See Section V-A.

Theorem 6 (Positivity without Feeback). On the MMANC
with zero-rate decoder or encoder assistance, the following
three statements are equivalent:

1) C0,dec(0) = 0;
2) C0,enc(0) = 0;
3) S = A, i.e., the noise distribution QZ is of full support.

Proof. If S = A and the assistance is of zero rate, then—even
with feedback—the zero-error capacities are zero (Theorem 4),
let alone in its absence. It thus remains to establish that, when



S is a strict subset of A, both C0,dec(0) and C0,enc(0) are
positive. This follows from Lemma 12 in Section V-B ahead,
i.e., from the lower bound in (43).

The above theorems have some noteworthy implications:

Remark 7. Assistance can increase the zero-error capacity
by more than its rate. Even zero-rate assistance can increase
the zero-error capacity. On the Pentagon channel, it raises the
zero-error capacity to log 5

2 , i.e., to C0F (Corollary 3). On the
Triangle channel, it raises the zero-error capacity from zero
to log 3

2 , which is strictly positive and hence exceeds C0F.

Remark 8. As on the Gel’fand-Pinsker channel with feed-
back [10], in all cases (with or without feedback, and with
decoder or encoder assistance), transmitting one bit error-
free may require more than one channel use. This is not the
case in the absence of assistance.

IV. FEEDBACK LINK PRESENT

In this section, we study the zero-error feedback capacity
with helper and establish Theorem 4; see Fig. 1a and 1b with
the feedback link. To this end, we need the following lemma.

Lemma 9. On the MMANC with feedback and rate-Rh de-
coder or encoder assistance, the Shannon capacities are given
by

CF,dec(Rh) = CF,enc(Rh) = log |A| −
{
H(QZ)−Rh

}+
. (13)

Proof. In light of [3, Theorem 12] and [4, Theorem 8],
which establish that the RHS of (13) can be achieved without
feedback, we only need to prove a converse. To that end,
we prove the stronger claim that—even if the description
T is presented to both encoder and decoder—the Shannon
feedback capacity does not exceed the RHS of (13). We
assume Rh ≤ H(QZ), because otherwise the result is obvious.

Let M be a uniformly drawn message, then for any se-
quence of coding schemes of rate R with rate-Rh assistance
and vanishing probabilities of error, we have

log |M| = H(M) (14)
= I(M ;Y, T ) +H(M |Y, T ) (15)
= I(M ;Y, T ) + nδn (16)
= I(M ;Y|T ) + nδn (17)
= H(Y|T )−H(Y|M,T ) + nδn (18)
≤ H(Y)−H(Y|M,T ) + nδn (19)
≤ H(Y)−H(Z|M,T ) + nδn (20)
= H(Y)−H(Z|T ) + nδn (21)
= H(Y)−H(Z) + I(Z;T ) + nδn (22)
≤ H(Y)−H(Z) + log |T |+ nδn (23)
≤ n log |A| − nH(QZ) + log |T |+ nδn, (24)

where (16) holds for some {δn} tending to zero by Fano’s
inequality; (17) and (21) hold because T is a function of Z,
so (Z, T ) is independent of M ; and (20) holds because in the
presence of feedback and help, Z is a function of (Y,M, T )

namely Zi = Yi 	 fi(M,T, Y i−1) for i ∈ [n]. Dividing the
inequalities by n and letting n tend to infinity establish the
converse.

Proof of Theorem 4. We first establish the converse for de-
coder assistance. If Q̃Y |X is any auxiliary MMANC over A
of noise distribution Q̃Z ∈ P(A) that is absolutely continuous
with respect to QZ (i.e., whose support is contained in S,
denoted by Q̃Z � QZ), then its Shannon feedback capacity
with decoder assistance C̃F,dec(Rh) forms an upper bound on
C0F,dec(Rh), because any error-free coding scheme for the
original channel is also error-free on the auxiliary channel.
Indeed, for any y ∈ An and t ∈ T , the absolute continuity
hypothesis implies that(
Q̃n

Y |X(y|x(m,y)) > 0
)

=⇒
(
Qn

Y |X(y|x(m,y)) > 0
)

(25)

so if a message m is compatible with (y, t) on the auxiliary
channel (in the sense that Q̃n

Y |X(y|x(m,y)) > 0 and h(y 	
x(m,y)) = t), then it is also compatible with (y, t) on the
original channel.

Therefore,

C0F,dec(Rh) ≤ min
Q̃Z : Q̃Z�QZ

C̃F,dec(Rh) (26)

= min
Q̃Z : Q̃Z�QZ

{
log |A| −

{
H(Q̃Z)−Rh

}+}
(27)

= log |A| − {log |S| −Rh}+, (28)

where (27) follows from Lemma 9. Similar arguments apply
also to encoder assistance.

We now turn to the direct part.
• Case 1: Rh ≥ log |S|. In this case feedback is unnecessary.
The codebook comprises all the distinct sequences in An.
Using dn log |S|e bits, the helper can describe the noise
sequence Z precisely. The decoder (resp. encoder) subtracts
the noise from the received sequence (resp. from the codeword
to be transmitted), so the codeword and the message can be
received error-free. This establishes the achievability of log |A|
bits per channel use.
• Case 2: Rh = 0. A two-phase coding scheme is proposed.
In Phase 1, we follow Shannon’s construction in his proof
of Theorem 2 [1], where the encoder repeatedly reduces
the decoder’s ambiguity. In the i-th channel use, thanks to
the feedback, the encoder reconstructs the list of messages
compatible with Y i−1 and evenly assigns them to different
input symbols (in some way that is agreed upon with the
decoder ahead of transmission). Only |S| out of |A| input
symbols are compatible with Yi, and the number of compatible
messages is reduced by a factor of roughly |S||A| . More precisely,

Shannon showed that if |M| =
⌊( |S|
|A|
)−n⌋

, then after n
channel uses, the number of compatible messages is at most
|A|2. The final ambiguity is removed in Phase 2, where the
helper comes into play. Since the list of compatible messages
is of maximal length |A|2 and known to the encoder, it can
inform the decoder which element of the list is the correct
one in two additional channel uses. This information can be



conveyed error-free as long as the helper informs the decoder
(resp. encoder) of the exact value of Zn+2

n+1 ∈ S2 and the
decoder (resp. encoder) subtracts the noise after (resp. before)
the transmission. The rate of help is therefore

lim
n→∞

1

n+ 2
log |S|2 = 0 (29)

and the transmission rate

lim
n→∞

1

n+ 2
log |M| = lim

n→∞

log
⌊( |S|
|A|
)−n⌋

n+ 2
= log

|A|
|S|

. (30)

• Case 3: 0 < Rh < log |S|. We divide the transmission block
into two parts of relative length Rh

log |S| and 1− Rh
log |S| . We then

apply the aforementioned coding schemes for helper rates of
log |S| and zero, respectively. The total rate achieved by this
time-sharing scheme is

Rh log |A|
log |S|

+

(
1− Rh

log |S|

)(
log |A| − log |S|

)
= log |A| − log |S|+Rh. (31)

V. FEEDBACK LINK ABSENT

In this section, we study the zero-error helper capacity in
the absence of feedback, as in Fig. 1a and 1b without the
feedback link.

A. Prime Cardinality

We begin with the case where |A| is a prime. Before prov-
ing Theorem 5 we remark that it, together with Merhav’s upper
bound on the Reliability Function with encoder assistance
[6, Eq.(57)]3, characterizes the range of rates for which the
Reliability Function is infinite:

Remark 10. When |A| is prime, the Reliability Function
of the MMANC with encoder assistance is infinite or finite
depending on whether the rate is smaller or larger than
log |A| −

{
log |S| −Rh

}+
.

Proof of Theorem 5. Since feedback cannot hurt, it follows
from Theorem 4 that we only need to prove the direct part.
This is trivial unless |S| < |A|, which we proceed to assume.
We first focus on decoder assistance.
• Case 1: Rh ≥ log |S|. Follows from the proof for Theo-
rem 4, where feedback is ignored.
• Case 2: Rh = 0. We will construct a sequence of
blocklength-n codebooks of rate

(
log |A||S| − εn

)
that can be

decoded error-free utilizing rate-ε′n decoder assistance, for
some {εn} and {ε′n} tending to zero.

The codes we construct have two key properties. The
first is that they are L-list-decodable where L ∈ Z+ grows
subexponentially with n. That is, every y ∈ An is compatible
with at most L messages. This guarantees that the decoder’s
ambiguity could be eliminated with a sublinear number of
bits. Elias [11] established the existence such codebooks of

3If R > log |A| −
{
log |S| −Rh

}+, then Q̃Z = Unif(S) is feasible for
the minimization in [6, Eq.(57)], hence its RHS is finite.

rate log |A||S| − Θ(L−1). But this is not enough, because, in
the absence of feedback, neither the transmitter nor the helper
can determine the list facing the decoder. This is where the
second property comes in: To overcome this issue and enable
the helper to remove the ambiguity, we shall introduce a linear
structure on the code, and this is where the assumption that
|A| is a prime will be essential: it will allow us to view A as
a field.

The existence of structured L-list-decodable codes can be
established using a variation on a theme by Elias [11]. Specif-
ically, we need the following lemma.

Lemma 11. Consider a MMANC with |A| = p, where p is
prime. Given L ∈ Z+, define

RL = max

{
0, log

|A|
|S|
− log2 |A|

log(L + 1)

}
. (32)

Then, for any n ∈ Z+, there exists a blocklength-n linear
code over the field Fp of rate log |A|

n b nRL

log |A|c that is L-list-
decodable.

Proof. Omitted.

We now use Lemma 11 to complete the proof of Theorem 5
for the case of Rh = 0. Let {Ln} be a sequence of positive
integers tending to infinity subexponentially, e.g., Ln = Θ(n).
The lemma implies that, for every blockelength n, there
exists a linear code Cn of rate log |A|

n b nRLn

log |A|c that is Ln-list-
decodable. The code C′n we propose to use is the subset of Cn
comprising all the distinct elements in Cn. It satisfies: (i) C′n
is a subgroup of Zn

p , (ii) C′n is Ln-list-decodable, and (iii)

|Cn| ≥ |C′n| ≥
|Cn|
Ln

. (33)

This latter property and the fact that {Ln} is subexponential
imply that {C′n} has the desired rate:

lim
n→∞

1

n
log |C′n| = lim

n→∞

1

n
log |Cn| (34)

= lim
n→∞

RLn
(35)

= lim
n→∞

log
|A|
|S|
− log2 |A|

log(Ln + 1)
(36)

= log
|A|
|S|

, (37)

where (34) follows from (33) and the fact that {Ln} is
subexponential; and (37) holds because {Ln} tends to infinity.

We next show that—although the helper is incognizant
of the list—a dlog Lne-bit description of the noise sequence
(which is of zero rate as Ln is subexponential in the block-
length n) suffices to guarantee zero-error transmission of the
codebook C′n. To this end, we propose the following helper.
To simplify its description, we drop the subscript n. For
z, z′ ∈ Sn, let us write z ∼ z′ if their componentwise
difference is in C′, i.e.,(

z ∼ z′
)
⇐⇒

(
z	 z′ ∈ C′

)
, z, z′ ∈ Sn. (38)



Since C′ is a subgroup of Zn
p , this relation is an equivalence

relation, and z ∼ z′, i.e., z and z′ are equivalent, if, and only
if, z and z′ belong to a same coset of C′.

Our proposed helper assigns labels to noise sequences in Sn
in such a way that nonidentical equivalent noise sequences are
assigned differing labels. To see why such a helper leads to
zero errors, note that if x ∈ C′ is transmitted and x ⊕ z is
received (where z ∈ Sn), then the decoder can confuse x
with some x′ only if: x′ is also a codeword; x⊕ z = x′ ⊕ z′

for some z′ ∈ Sn; and z and z′ have the same label. The
former two conditions imply that z ∼ z′, and hence that z
and z′ are identical or of differing labels. The third condition
then implies that they are, in fact, identical, so x′ equals x.

It remains to verify that we can find a labeling rule as above
with L different labels. This will follow once we show that,
for every z ∈ Sn, ∣∣[z]

∣∣ ≤ L. (39)

This inequality follows from the L-list-decodability property
of C′, i.e., that for every y ∈ An,

L ≥
∣∣(y 	 C′) ∩ Sn∣∣. (40)

Because C′ is a subgroup of Zn
p , this is equivalent to

L ≥
∣∣(y ⊕ C′) ∩ Sn∣∣, (41)

so each coset of C′ intersects Sn in at most L points, and (39)
follows. This establishes the achievability.
• Case 3: 0 < Rh < log |S|. Follows by time sharing.

The case with encoder assistance is essentially identical. If
Rh ≥ log |S|, the rate log |A| is achievable as in the proof of
Theorem 4. If Rh = 0, the relation

C0,enc(0) ≥ C0,dec(0) (42)

holds because, in the presence of encoder assistance, any zero-
rate help to the encoder can be conveyed to the decoder with
negligible extra help and negligible loss in rate: the encoder
simply appends a frame to convey the help, with the frame
being of sublinear length (because the help to be conveyed
is of zero rate); it requests that the helper provide it with a
precise description of the noise affecting the frame (with the
extra help being negligible because the frame is short); and
it subtracts that noise from the transmission in that frame so
as to render it noise free. For intermediate values of Rh, the
achievability follows by time sharing.

B. General Case

For the general case where |A| may not be a prime, we
provide the following lower bound, which, together with
Theorem 4, established Theorem 6.

Lemma 12 (Zero-Rate Helper and No Feedback). The zero-
error capacity of the MMANC with zero-rate decoder or
encoder assistance satisfies

C0,enc(0) ≥ C0,dec(0) ≥ 1

2

(
log |A| − log |S|

)
. (43)

Proof of Lemma 12. Omitted.
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