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ABSTRACT

Normals with unknown parameters (NUP) can represent
many useful priors, and they allow to convert nontrivial
model-based estimation problems into iterations of least-
squares problems or linear-Gaussian estimation problems.
Sparsity inducing NUP priors have been known for some
time, and NUP priors for enforcing inequality constraints and
discrete-level constraints have been proposed recently.

We review this approach, and we develop it further by
proposing a NUP representation of certain non-Gaussian mes-
sages that occur in hierarchical models. For illustration, we
use a state space model with piecewise constant observation
noise variance.

Index Terms— Iteratively reweighted least squares,
Gaussian message passing, NUV priors, factor graphs, jump
Markov processes, variance estimation, outliers

1. INTRODUCTION

Normals with unknown variance (NUV) are a central idea of
sparse Bayesian learning [1–4], and they are closely related to
variational representations of sparsifying prior as in [5]. NUP
representations (normal with unknown parameters) of bina-
rizing priors [6] and of inequality constraints [7] have been
proposed recently. The main attraction of such NUV and
NUP priors is that they allow to convert non-Gaussian esti-
mation problems into iteratively reweighted least-squares or
iterations of linear-Gaussian estimation [8–10].

In consequence, NUP priors open a perspective of scal-
able model-based estimation and optimization far beyond
variations of sparse recovery, cf. [10].

This paper is semi-tutorial in the sense that we first review
the NUV/NUP approach (Sections 2 and 3). We then point out
that NUP representations are not restricted to priors, but can
also be used for messages in a factor graph [11]. Specifically,
we will address a problem that arises in hierarchical modeling
where variances of priors in a first-layer model are controlled
by a second-layer model. The connection between these two
models involves non-Gaussian messages, which we will show
to admit a (exact) NUP representation. For illustration, we use
a state space model with piecewise constant observation noise
variance.
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Fig. 1. Factor graph of system model (1) with fixed observa-
tion(s) Y = y, with a NUP prior on some variable (or param-
eter) X , and with X ′ subsuming other such variables.

The following notation will be used. ‖x‖ denotes the Eu-
clidean norm of x ∈ Rn. N (x;m,V ) and N (m,V ) denote
the normal probability density function with mean vector m
and covariance matrix V , with or without argument x.

We will use Forney-style factor graphs as in [11, 12], cf.
Fig. 1. For a directed edge X , the forward message and the
backward messages along X will be denoted by −→µX and←−µX ,
respectively.

2. BRIEF REVIEW OF NUP APPROACH—PART I:
SYSTEM LEVEL

Consider a statistical system model of the form

f(y, x, x′, θ, θ′)
4
= p(y|x, x′)p(x; θ)g(θ)p(x′; θ′)g′(θ′) (1)

with observation(s) Y and additional variables (random vari-
ables or parameters)X andX ′ such that, for fixed parameters
θ and θ′,

p(y, x, x′; θ, θ′)
4
= p(y|x, x′)p(x; θ)p(x′; θ′) (2)

is a Gaussian probability density function in y, x, x′. The
functions g(θ) and g′(θ′) are chosen such that the factors
p(x; θ)g(θ) and p(x′; θ′)g′(θ′) express some desired prior or
constraint on X and X ′, respectively, as will be detailed in
Section 3.

For fixed observation(s) Y = y, the variables X and X ′

and the parameters θ and θ′ are estimated by the methods de-
scribed below.



2.1. Joint MAP with Alternating Maximization

In this approach, the joint estimate is

(x̂, x̂′, θ̂, θ̂′) = argmax
x,x′,θ,θ′

f(y, x, x′, θ, θ′). (3)

It follows that

(x̂, x̂′) = argmax
x,x′

p(y|x, x′)ρ(x)ρ′(x′), (4)

where
ρ(x)

4
= max

θ
p(x; θ)g(θ) (5)

and ρ′(x′) 4= maxθ′ p(x
′; θ′)g′(θ′) are the effective priors on

X and X ′, respectively.
The maximization in (3) is carried out by iterating the fol-

lowing two steps for ` = 1, 2, . . . , until convergence:

Step 1: For fixed θ = θ(`) and θ′ = θ′(`), compute(
x(`), x′(`)

)
= argmax

x,x
f(y, x, x′, θ, θ′) (6)

= argmax
x,x′

p(y|x, x′)p(x; θ)p(x′; θ′) (7)

=
(

E[X], E[X ′]
)
, (8)

where the expectation is conditioned on Y = y and
with fixed θ = θ(`) and θ′ = θ′(`).

Step 2: For fixed x = x(`), compute

θ(`+1) = argmax
θ

p(x; θ)g(θ) (9)

and likewise θ′(`+1).

2.2. Type II MAP with EM [1, 2]

In this approach, we first determine the MAP estimate

(θ̂, θ̂′) = argmax
θ,θ′

f(y, θ, θ′) (10)

where

f(y, θ, θ′)
4
=

∫ ∫
f(y, x, x′, θ, θ′) dx dx′; (11)

subsequently, we determine the estimate (x̂, x̂′) as in (7).
The maximization in (10) is carried out by expectation

maximization (EM) with hidden variables X and X ′, which
amounts to iterating(
θ(`+1), θ′(`+1)

)
= argmax

θ,θ′
E
[
log f(y,X,X ′, θ, θ′)

]
, (12)

for ` = 1, 2, . . . , where the expectation is conditioned on
Y = y and computed with θ = θ(`) and θ′ = θ′(`). The point
of using EM here is that the maximization in (12) splits into

θ(`+1) = argmax
θ

E
[
log p(X; θ)g(θ)

]
(13)

and likewise for θ′(`+1).
For the sake of clarity, we now specialize to

p(x; θ) =
1

(2πσ2)ν/2
exp

(
−‖x‖2

2σ2

)
(14)

for x ∈ Rν and θ = σ ≥ 0. Then (13) becomes

θ(`+1) = argmin
σ≥0

(
E
[
‖X‖2

]
2σ2

+ ν lnσ − ln g(σ)

)
, (15)

and likewise for θ′(`+1). Thus iterating (12) amounts to iter-
ating the following two steps until convergence:

Step 1: For fixed θ = θ(`) and θ′ = θ′(`), compute E
[
‖X‖2

]
and E

[
‖X ′‖2

]
.

Step 2: Compute (15) and likewise θ′(`+1).

2.3. Remarks

1. Step 1 of Sec. 2.1 amounts to a least-squares prob-
lem. Step 1 of Sec. 2.2 amounts to computing posterior
means and variances in a Gaussian model. Both cases
can be handled by Gaussian message passing in a
cycle-free factor graph of (2), cf. [11].

2. The methods of Sections 2.1 and 2.2 can get stuck in a
local minimum or a saddle point.

3. The maximizations in (7) and (12) can be replaced by
ascent steps.

4. The methods of Sections 2.1 and 2.2 can be mixed in
various ways.

5. The maximizations in (5), (9), and (13) can some-
times be replaced by minimizations, cf. the comment
below (17).

3. BRIEF REVIEW OF NUP APPROACH—PART II:
SELECTED NUP “PRIORS” OLD AND RECENT

A selection of some useful NUP priors is given in Box 1,
Box 2, and Table 1. The update rules for the parameter(s) θ of
p(x; θ) are given in terms of the current estimate x̂ = E[X];
for the EM update rules, we also need E[‖X‖2] or Var[X],
which are all computed with the current parameters (cf. Sec-
tion 2).

Box 1 is about representing the “prior” (I.1) (with p > 0 and
β > 0) in the form (5), with p(x; θ) = N (x; 0, (s2 + r2)I)
with fixed r2 ≥ 0. The scale factor

γ
4
= exp

(
−β(2− p)

2
(βpr2)

p
2−p

)
(16)



ρ(x) =

 exp(−β‖x‖p), if ‖x‖2−p > βpr2

γ exp
(
−‖x‖2
2r2

)
, if ‖x‖2−p ≤ βpr2

(I.1)

with γ as in (16) is obtained with the update rule

s2 =


‖x̂‖2−p

βp
− r2, if ‖x̂‖2−p > βpr2

0, if ‖x̂‖2−p ≤ βpr2
(I.2)

In particular, ρ(x) = exp(−β‖x‖) is obtained with

s2 =
‖x̂‖
β

(I.3)

Box 1. NUV representation of exp(−β‖x‖p) with p > 0 and
β > 0, optionally with a Gaussian patch around the origin.

ρ(x) =
1

‖x‖β
= exp(−β ln ‖x‖) (II.1)

is obtained with the update rule

s2 =
‖x̂‖2

β
(II.2)

EM update rule:

s2 =
E
[
‖X‖2

]
β

(II.3)

Box 2. p(x; θ)g(θ) = N (x; 0, s2I)csν−β .

makes (I.1) continuous with a continuous derivative. For
0 < p < 2, (I.1) and (I.2) result from (5) with θ = s2 and

g(s2)
4
=
(
2π(s2 + r2)

)ν/2
· exp

(
−β(2− p)

2

(
βp(s2 + r2)

) p
2−p

)
, (17)

where ν is the dimension of x.
For 0 < p < 2, versions of (I.1) and (I.2) have been

known for some time, cf. [5, 13]. But (I.1) and (I.2) work
also for p > 2, which we have not seen in the prior literature.
However, for p > 2, the derivation must be modified: the
maximization in (5) must be replaced by minimization, and
the friendly cooperation of minimization and maximization
relies on the minimax theorem.

Box 2 is about p(x; θ)g(θ) with p(x; θ) = N (x; 0, s2I) and
g(θ) of the form csν−β , where ν is the dimension of x. Us-
ing (5), the prior (II.1) is obtained with the update rule (II.2).
With this same p(x; θ)g(θ), the EM update rule (13) becomes
(II.3).

For β > 0, both (II.2) and (II.3) are strongly sparsifying.

update rules

constraint −→σ 2
X

−→mX

X ≥ a |x̂− a|
β

x̂, if x̂ ≥ a
2a− x̂, if x̂ < a

X ≤ b |x̂− b|
β

x̂, if x̂ ≤ b
2b− x̂, if x̂ > b

X ∈ {a, b}

1

wa + wb

waa+ wbb

wa + wb

with wa = β/
(

Var[X] + (x̂− a)2
)

and wb = β/
(

Var[X] + (x̂− b)2
)

Table 1. NUP representations of constraints on X ∈ R. The
constraints can be enforced with sufficiently large β.

Generally speaking, (II.3) converges much slower, but is less
likely to get trapped in a “bad” local maximum.

For β > 0, the idea of Box 2 is ancient, cf. [14]. Choos-
ing β < 0 may seem nonsensical, but it is possible and will
actually be used in Section 4; in this case, s2 will be negative
(and should be denoted by a different symbol), and the “nor-
mal prior” p(x; θ) with fixed θ = s2 is simply the function
exp
(
‖x‖2/(−2s2)

)
.

Table 1 summarizes recent NUP representations of con-
straints from [6, 7]. For fixed θ, p(x; θ) = N (x;−→mX ,−→σ 2

X) is
scalar Gaussian, with update rules for the mean −→mX and the
variance −→σ 2

X as in the table.
The derivation of the inequality constraints [7] begins

with the prior

ρ(x) = exp(−β|x− a|) exp(−β|x− b|), (18)

which is flat for a ≤ x ≤ b; for a < b and sufficiently large
β, this prior effectively restricts X to [a, b]. Using (I.3) for
each of the two factors in (18) yields a NUP realization of
this interval constraint. Finally, we form the limits b → ∞
and a→ −∞.

The binarizing constraint is derived analogously to the in-
terval constraint, but with (II.3) instead of (I.3). For its further
discussion, we refer to [6].

4. NUP MESSAGES IN A HIERARCHICAL MODEL

4.1. Motivation

Consider, for example, a model for piecewise constant data
with level jumps at arbitrary unknown times, as illustrated in
Fig. 2. We can write this as

Xk = Xk−1 + Uk (19)
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Fig. 2. Fitting a piecewise constant model to noisy data.

with scalar level Xk and sparse input Uk, k = 1, . . . , N . We
observe the noisy data Y̌k = Xk + Rk with i.i.d. zero-mean
Gaussian noiseRk, and we wish to recoverXk. Using the ap-
proach of Sections 2 and 3, we model Uk with a sparsifying
prior from Box 1 or Box 2. In consequence, we can estimate
Xk and Uk by iterations of least squares or Gaussian mes-
sage passing as described in Section 2, with good results as
illustrated in Fig. 2, cf. [12].

In a next step, we wish to use such a model as a second-
layer model that controls the variance of “noise” in a first-
layer model. For example, the first-layer model could also
have the form (19), but with inputs Uk that are independent
zero-mean Gaussians with (unknown) piecewise constant
variance. For another example, the first-layer model is still
as in (19), but the variance of the observation noise Rk is
(unknown and) piecewise constant. Similar situations have,
of course, been studied in the literature [15–20], without,
however, fully achieving our present goal: we wish to treat
the second-layer model conceptually and algorithmically like
the first-layer model (i.e., with least squares or Gaussian mes-
sage passing), and we wish to connect the two layers without
approximations.

4.2. Problem Statement

For the sake of exposition, we now specialize to the set-
ting of Fig. 3: a first model (Model 1) produces an output
Y1, . . . , YN ∈ R, of which we observe the noisy version

Y̆k = Yk +Rk, (20)

k = 1, . . . , N . The observation noise variables Rk ∈ R are
independent zero-mean Gaussians with unknown variances
S2
k . A second model (Model 2) produces Z1, . . . , ZN ∈ R,

which determine S2
1 , . . . , S

2
N by

S2
k = g(Zk) (21)

for some given function g. Natural choices for g include
g(zk) = zνk for ν ∈ {1, 2,−1,−2}.

For given Y̆k = y̆k, k = 1, . . . , N,we wish to estimate the
other variables. We assume that both Model 1 and Model 2
are tractable by Gaussian message passing (perhaps with NUP
priors as in Sections 2 and 3). Finally, we aim for an alternat-
ing maximization approach, i.e., we repeat the following two
steps until convergence:

Model 1
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Fig. 3. Setting of Section 4.2: Model 2 is a joint prior on the
observation noise variances S2

1 , . . . , S
2
N of Model 1.

Step 1: Estimate Y1, . . . , YN for fixed Z1, . . . , ZN by Gaus-
sian message passing in Model 1.

Step 2: Estimate Z1, . . . , ZN for fixed Y1, . . . , YN by Gaus-
sian message passing in Model 2.

Step 1 is conceptually trivial: in this step, R1, . . . , RN are in-
dependent zero-mean Gaussians with known variances g(Zk).

However, there is a problem with Step 2: even for fixed
Yk, the backward sum-product messages ←−µZk

(cf. [11]) are
not Gaussian (for any meaningful choice of g). Previous pro-
posals to solve this problem resorted to approximations, cf.
[18–20]. We are now going to propose an exact NUP repre-
sentation of←−µZk

for

Sk = Z−1k . (22)

4.3. Proposed Solution

For ease of notation, we here simplify Rk and Sk in Fig. 3
to R and S, respectively. We begin with the factor graph in
Fig. 4 (left), which represents

N (r; 0, s2) =

∫ ∞
−∞
N (u; 0, 1)δ(r − us) du, (23)

where δ denotes the Dirac delta. With s = 1/z and

δ(r − us) = |z|δ(u− zr), (24)

(23) becomes

N (r; 0, z−2) = γ|z|
∫ ∞
−∞
N (u; 0, 1)δ(u− zr) du (25)

(with some immaterial constant γ) as in Fig. 4 (right).
But the function |z| has a NUV representation as in Box 2

with β = −1 (which actually works, as mentioned in Sec-
tion 3). In this way, for fixed R = r̂, we obtain a Gaussian
message←−µZ . However, this message has mean zero, which is
unhelpful for the problem stated in Section 4.2.
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Fig. 4. Reversing the multiplier (with Z = 1/S).
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Fig. 5. Proposed solution: this factor graph with NUP repre-
sentations of |z| and of the constraint Z ≥ 0.

Therefore, in a next step, we add the constraint Z ≥ 0 (as
shown in Fig. 5), a NUP representation of which was given in
Table 1.

From Fig. 5 with fixed R = r̂, and with the mentioned
NUP representations, we easily obtain the Gaussian message
←−µZ with variance

←−σ 2
Z =

(
r̂2 − ẑ−2 + β|ẑ|−1

)−1
(26)

and mean
←−mZ = β←−σ 2

Z , (27)

where ẑ is the value of Z from which the NUP parameters
were last updated. The parameter β stems from Table 1 and
must be chosen large enough so that (26) is positive; other-
wise, the choice of β is immaterial for correctness, but it may
affect the speed of convergence.

4.4. Modifications for EM Setting

A natural modification of the problem statement of Sec-
tion 4.2 is to estimate Z1, . . . , ZN by expectation maximiza-
tion with hidden variables Y1, . . . , YN . There is no space
here to develop this approach, but in result, the only change
is that r̂2 in (26) is replaced by E[R2], where the expectation
is computed with Z1, . . . , ZN fixed to their present estimates
ẑ1, . . . , ẑN .
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Fig. 6. Top: zero-mean Gaussian noise with piecewise con-
stant variance. Bottom: actual and estimated variance S2

k .
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Fig. 7. Piecewise constant model with piecewise constant ob-
servation noise variance. Top: given noisy data, ground truth
(covered by estimate), and estimate. Bottom: actual and esti-
mated value of Zk = 1/

√
S2
k .

4.5. Examples

Two numerical examples with models as in Fig. 3 are shown
in Figs. 6 and 7. In both examples, Model 2 is piecewise
constant as in (19), with a sparsifying NUV prior on Uk of
the form (II.1) (with β > 0) that is handled with (II.2). In
Fig. 6, Model 1 is simply Yk = 0 for all k, i.e., Y̆1, . . . , Y̆N
is a sequence of zero-mean Gaussian random variables with
piecewise constant variance.

In Fig. 7, Model 1 is itself piecewise constant as in (19).
Note that the high-noise burst beginning at k = 60 does not
derail the estimation of the actual data according to Model 1.

5. CONCLUSION

NUP representions allow to convert non-Gaussian estima-
tion problems into iteratively reweighted least squares or
iterated linear-Gaussian estimation problems. We briefly
reviewed this approach, including recently proposed NUP



representations of binarizing priors and of inequality con-
straints. We then proposed a (exact) new NUP representation
of non-Gaussian messages that occur when the variances of
priors in a first model are controlled by a second model; in
consequence, estimation in such models is reduced to iterated
linear-Gaussian estimation, which we illustrated with a model
of piecewise constant noise variance.

In conclusion, we venture to suggest that NUP representa-
tions of priors and messages open a new perspective of scal-
able multi-layer (or multi-component) models that are com-
putationally tractable.
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