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Abstract—Normal priors with unknown variance (NUV) are
well known to include a large class of sparsity promoting priors
and to blend well with Gaussian message passing. Essentially
equivalently, sparsifying norms (including the L1 norm) as well
as the Huber cost function from robust statistics have variational
representations that lead to algorithms based on iteratively
reweighted L2-regularization. In this paper, we rephrase these
well-known facts in terms of factor graphs. In particular, we
propose a smoothed-NUV representation of the Huber function
and of a related nonconvex cost function, and we illustrate
their use for sparse least-squares with outliers and in a natural
(piecewise smooth) prior for imaging. We also point out pertinent
iterative algorithms including variations of gradient descent and
coordinate descent.

I. INTRODUCTION

It seems obvious that sparsity inducing priors in otherwise
linear Gaussian problems obliterate Gaussianity. Likewise (and
essentially equivalently), least-squares problems with sparsity
inducing regularization are no longer least squares problems.
However, Gaussianity and least-squares are so attractive that
workarounds have been sought and found. For example,
approximate message passing (AMP) as in [1]-[3] works
with temporary Gaussian approximations, and sparse solutions
of least-squares problems can be computed by iteratively
reweighted least-squares methods [4], [5].

Another workaround is offered by normal priors with un-
known variance (NUV), the key idea of sparse Bayesian
learning [6]-[9]. Specifically, consider a generic situation with

X = (Xi,...,Xg) (taking values in RX), observations
Y =y = (y1,...,yn) € RV, Gaussian likelihood function
p(y|x), and i.i.d. prior (possibly an improper prior)
K
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Assume now that p(z) can be written as
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Factor graph of the product in (5).

where p is a nonnegative function (not necessarily a probability
density function). Then

K
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as illustrated in Fig. 1.

Interestingly, (2) is not very restrictive at all: essentially all
sparsity inducing priors (including, in particular, the Laplace
distribution) can be represented in this way [7]. In fact, taking
logarithms in (2) reveals it to be a thinly disguised variational
representation as in [5], see also [10].

One way to use a NUV representation as in (2) is to estimate
s = (s1,...,5K) in (5) by expectation maximization (EM)
[71, [9]. In every iteration of the EM algorithm, the temporary
estimate of s is plugged into (5), turning Xi,..., Xk into
Gaussian random variables. This works very well. The main
limitation is that the EM algorithm requires the posterior
variances of X;,..., Xk in each iteration, which may be
infeasible for large problems. However, crude approximations
of these variances may do, cf. [11].

In this paper, we focus on another class of algorithms that do
not require the posterior variances of X, ..., Xx. In essence,
(4) and (5) suggest algorithms to compute the MAP estimate
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Fig. 2. Factor graph of p(xk|sk)p(sk,r) with p(zg|sk) as in (8) and (9).
The dashed box will be referred to as “smoothed NUV” (SNUV).

that iterate between an ascent step over x with fixed s and
maximization over s with fixed x. The first step is entirely
Gaussian while the second step decouples into easy (usually
closed-form) scalar optimizations. Note that any such algo-
rithm is guaranteed to converge to a local maximum (or a
saddle point) of p(y, ). In the first step, if we choose to
maximize over x (rather than just ascending), we effectively
obtain a reweighted-L2 algorithm. However, a single step of
gradient ascent over x, or a round of coordinate ascent over
all components of x, may be more attractive (cf. Section IV).

In the optimization literature, the advantages of such al-
gorithms are well known [5]. In this paper, we rephrase this
approach in terms of factor graphs [12], [13], with a focus on
a generalization of (2) to smoothed-NUV representations that
appears to be new.

The paper is structured as follows. The smoothed-NUV
(SNUYV) representation of some cost functions and priors will
be described in Section II. Two exemplary applications will be
given in Section III. Algorithms are addressed in Section IV.
Section V concludes the paper.

The following notation will be used. N (i, c?) denotes a
normal distribution with mean p and variance o2. The k-
th column of a matrix A will be denoted A. ;. A diagonal
matrix with diagonal elements a;,...,ax will be denoted
diag(a,...,ak). All logarithms are natural logarithms. For
the factor graph notation we refer to [12], [13].

II. SMOOTHED-NUYV REPRESENTATIONS
OF SOME COST FUNCTIONS

In this paper, we focus on scalar functions as in (2), but
with more general factors p(xy|sy) than (3). Specifically, we
consider functions with factor graph representations as in
Figures 2 and 3.

We begin with Fig. 2, which expresses X}, as the sum of two
independent zero-mean normal random variables 7 and Uy
with fixed variance 72 and unknown variance S, respectively,

Fig. 3. Factor graph of variational representation (with Uy, to be eliminated
by maximization) of p(zy|sk)p(sk,r) with p(zg|sk) as in (13) and (14).

Fig. 4. Solid (black and blue): Huber function (24) with 3 = r = 1. Dashed
and solid blue: cost function (29) with » = 1. Dashed and dotted: (29) with
r=1/4.

and with a (possibly improper) prior p(sg, r) on Sy. The inside
of the dashed box in Fig. 2 represents the function

p(wr|ur)p(uklsk)
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and the exterior function of the dashed box is
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We will see below that p(sg, ) can be chosen such that

—logp(zx) = — sup log (p(zk|sk)p(sk, 7)) (10)

s >0
is any of the functions plotted in Fig. 4. In the special case
r = 0, we recover the NUV representation (2). In the special
case p(sg,r) = d(sg) (the Dirac delta), p(xy) is Gaussian
with variance 72.



A. Probabilistic Representation vs. Variational Representation

Fig. 2 and Fig. 3 are similar, but not identical. The former
embodies a probabilistic view: for any fixed sk, p(zi|sk) is a
(properly normalized) Gaussian density and Uy, is eliminated
by marginalization. The latter embodies a variational view,
where Uy, is eliminated by maximization. Nonetheless, Figures
2 and 3 can represent the same set of functions p(zy), cf. (15)
and (16) below.

Specifically, the inside of the dashed box in Fig. 3 represents
the function

B2k, Uk, k) 2 o= (zr—ur)?/(2r%) ;—ui/(257) (a1
Maximizing over uy yields
argqglax d(xg, uk, sK) = Tfféz (12)
and further (after some calculations)
Blaxlsk) = max ¢(a, U, k) (13)
_ eﬁsﬁ/(z(r%rsi)). (14)

It follows that Fig. 2 (with integration over uy) and Fig. 3
(with maximization over uy) represent the same function

p(zklsk)p(sk, ) = D(wk|sk)p(sk,T) (15)
if we choose
p(sk, ) = p(sk,7)y/2m(r? + s2). (16)
In particular, with (16), we have
plak) = max p(zk|sk)p(sk, ) a7
Sk =2
= max p(xg|sk)p(sk,T). (18)
SA-,ZO
B. Huber Cost Function and L1 Norm
In order to achieve (24) below, we choose
Pk, ) = e 75k (19)
or, equivalently,
plsk, ) = /2m(r2 + s7)e 75k /2 (20)

with 8 > 0 for s, > 0 and p(sk,7) = p(sk,r) = 0 for s, < 0.
In this case,

argmax p(x|sk)p(sk,7)
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resulting in
—logp(zr) = K(zk) (23)
2 z3/(2r%), |zk| < Br? 24)
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Fig. 5. Regrouping Fig. 3 corresponds to writing the Huber function as the
Moreau—Yosida regularization of the absolute-value function.

This convex function is known as the Huber cost function [15],
cf. Fig. 4. For r > 0, (24) is strictly convex and everywhere
continuously differentiable.

For » = 0, (24) reduces to the absolute-value function.
In this case, (21)—(24) amount to the standard variational
representation of the absolute-value function [5]. This applies,
in particular, to Uy, in Fig. 3. Regrouping Fig. 3 as in Fig. 5
amounts to writing the Huber function as the Moreau—Yosida
regularization (or Moreau envelope) of the absolute-value
function [14, Chapt. 3].

In the iteratively reweighted algorithms of Section IV, the
functions (19), (20), and (24) are not used for the actual
computations, which use only (22). The same comment applies
to the analogous expressions (25), (29), and (27) below.

C. Plain SNUV

By “plain SNUV”, we mean that p(sg,r) is constant. For
(29) below to look nice, we choose

p(sg, 1) = V2. (25)
In this case,
argmax p(zx|sk)p(sk, 1)
SkZO
zi /2 1 o2
=argmin | ——— +log/r? + s > (26)
20 <2(T2 +) ;
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= 27
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resulting in
—logp(zr) = K(xk) (28)
a [ 23/(2r?) +logr, ai <r?
= 2 2 (29)
log |xk| +1/2, xy > re.

This function is not convex, cf. Fig. 4. For r > 0, (29) is
everywhere continuously differentiable.
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Fig. 6. Factor graph of least-squares problem as in Section III-A with
smoothed-NUV factors (SNUV) as in Fig. 2. The large box represents the
constraint Y = AX.

III. EXAMPLES AND APPLICATIONS
A. Approximately Sparse Least Squares with Outliers

For a given matrix A € RV*K and y € RV, we wish to
determine x € RX and ¢ - y such that

K N
S hxlan) + 3 relGa)
k=1

n=1

(30)

is as small as possible, where xx and k. are cost functions
as in (24) or as in (29). Thus p(xy) £ e—rx(zr) gnd p(Cn) =
e%<(&) are priors as in Section II, with parameters rx and
sx = (sx1,...,8x,Kx), and r¢ and s¢ = (S¢1,...,5¢,N)s
respectively. The corresponding factor graph is shown in
Fig. 6.

Clearly, for fixed Sx = sx and fixed S¢ = s¢, the factor
graph reduces to a linear Gaussian factor graph.

Let (%,5x, l, 5¢) be a maximizer of the total model
p(y, z,s8x,¢, s¢), ie., (:%,f) is a minimizer of (30). (In the
nonconvex case, take any maximizer (or minimizer, respec-
tively), e.g., as found by some specific algorithm.) For rx > 0,
2 is not generally sparse. However, sx is generally sparse
even for rx > 0. In typical applications, 5x  7# O indicates
a significant component of £. Likewise, 3. is generally sparse
and 3¢, # 0 indicates an outlier in y.

B. Priors for Imaging

Let X = (Xy,...,Xk) be grayscale pixel or voxel values.
(The generalization to color images is straightforward, cf.
[16].) Many imaging problems (denoising, deblurring, tomo-
graphic reconstruction, ...) can be formulated as follows:
based on observations y € RY, we estimate X by

L
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Fig. 7. Factor graph of imaging problems as in Section III-B with smoothed-
NUV factors (SNUV) as in Fig. 2. The large boxes represent linear constraints.

Fig. 8. Tomographic reconstruction of a standard test object with smoothly
changing background from very few simulated projections: regularization with
plain SNUV (left) and with standard TV (right).

with known observation matrix A € RY*X and where
¢ = Dz € R% (with a suitable matrix D) is the vector
of all differences between neighboring pixels. If « is chosen
to be any of the cost functions in Section II, (31) can be
represented by the factor graph in Fig. 7. (Similar priors have
been proposed, e.g., in [17], [18].)

In our numerical experiments (focussing on tomography),
the best results are achieved with plain SNUV as in (29)
(apparently first proposed in [11]), which beats the Huber cost
function (24), which in turn beats the standard total-variation
(TV) regularization [19], cf. Fig. 8. Detailed results will be
reported elsewhere.

IV. ON ALGORITHMS
We now briefly address algorithms. For the sake of con-
creteness, we focus on the example of Section III-A.
A. Iteratively Reweighted Coordinate Descent

An easy and safe algorithm for the minimization of (30)
consists of alternating between



1) minimizing (30) with fixed sx and s¢, first over
x1 (with fixed xo,...,2g), then over xo (with fixed
ri,xs3,...,TK), etc., and

2) parallel updates of sy (with fixed x) and of s¢ (with
fixed { = y — Ax) according to (22) or (27).

In Step 1, x1,...,xx are updated according to

o™ = gp (y — k) 32)
with
G =A@, 2k, 0,209, a9, (33)
s Wisc)A k
2 ; 34
= T A AT WegA, Y
and

W(se) 2 diag((rg D R (s 537N)*1). (35)

Note that (33) can be updated (rather than recomputed) for
each k.

This algorithm has no parameters and is guaranteed to
converge to a local minimum (or a saddle point) of (30). For
convex cost functions such as (24), the algorithm is guaranteed
to converge to the global minimum. Range constraints on Xy
are easily accomodated.

The computational cost per execution of Step 1 is roughly
the same as the cost of computing AT A, ie., the cost of
computing the gradient (with fixed variances). This algorithm
is often quite efficient, especially if A is sparse.

B. On Other Algorithms

Replacing Step 1 of the above algorithm by minimization
over the whole vector x yields a reweighted-L2 algorithm
(cf. [4], [5]), which normally requires fewer iterations than
the algorithm above. However, for large sparse matrices, the
overall complexity is higher.

Steepest descent can be applied directly to the cost function
(30). Alternatively, Step 1 of the Algorithm in Section IV-A
can be replaced by a single steepest-descent step over x (with
fixed variances). This latter version makes step size control
easier, especially for nonconvex cost functions such as (29)
with small 7.

AMP as in [1], [2] works well for certain large random
matrices A; otherwise, it often fails to converge. Vector AMP
as in [3] requires the singular-value decomposition of A, which
may be infeasible for large matrices.

A completely different approach (from sparse Bayesian
learning [6]-[9]) is to first estimate the variances by expecta-
tion maximization, and then to estimate the Gaussian vector X,
cf. the pertinent remarks in Section L.

V. CONCLUSION

Variational representations of sparsifying cost functions are
naturally expressed in factor graphs. This applies, in particular,
to sparse least squares problems, which are naturally repre-
sented by linear Gaussian factor graphs with NUV (normal

with unknown variance) factors. Variations include approx-
imate sparsity, outliers, and nonconvex cost functions. The
underlying math is basically well known, but the specific
smoothed-NUV representations of Section II appear to be
new. We also point out a nonconvex prior for imaging which
improves upon the state of the art.

Pertinent natural algorithms iterate between a Gaussian
ascent (or least-squares descent) step and closed-form scalar
maximizations over the unknown variances. An obvious ver-
sion of the former is coordinate ascent (or descent), which has
no parameters and is guaranteed to converge.
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