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ABSTRACT
A new method for blind image deblurring is proposed that
relies on a smoothed-NUV (normal with unknown variance)
prior for images, which promotes piecewise smooth images
with crisp edges. The proposed method can use multiple
blurred versions of the same image.

The variational representation of the prior allows the joint
estimation of the image and the blurring kernel(s) to be de-
composed into descent steps in reweighted least-squares prob-
lems and nonlinear scalar updates of the individual variances
of the prior. Specifically, we propose an iteratively reweighted
coordinate descent algorithm that has no parameters. Simula-
tion results demonstrate that the proposed approach compares
favorably to state-of-the-art methods.

Index Terms— Blind image deblurring, smoothed NUV,
sparsity, iteratively reweighted coordinate descent.

1. INTRODUCTION

Image deblurring has long been an important task in com-
puter vision, and the ubiquity of hand-held photo devices (in
particular, smart phones) has increased the demand for robust
deblurring. Such devices are in general capable of shooting
multiple images of the same scene within a short time period
but with inevitable corruptions (camera shake, out of focus,
etc.), which result in blurry photographs.

The deblurring problem is usually formulated in a sta-
tistical setting as follows. A color image is represented by
X = (X1, . . . ,XL)T with L color pixels X` ∈ R3, and we
are given a set of observations (i.e., blurred images) Ym =
ym, m ∈ {1, . . . ,M}. The latent image X and these obser-
vations are related by

Ym = Km ∗X + Zm m ∈ {1, . . . ,M}, (1)

where Km is the blur kernel, the symbol “∗” denotes con-
volution and Zm is white Gaussian noise, i.e., Zm ∼
N (0, σ2

Zm
IL). The problem is to produce estimates x̂ and

k̂1, . . . , k̂M of the latent image and the blur kernels, respec-
tively.

A great variety of algorithms for tackling the (multi-)
image blind deblurring problem exists. There are methods

that use priors on natural images, blur kernels, or both [1–7],
methods that model the general motion blur procedure [8, 9],
and methods proposed in recent years using convolutional
neural networks [10–12].

Xu et al. [2] proposed a new regularizer to approximate
the L0 cost in order to recover the latent image and blur ker-
nel. Krishnan et al. [4] used an L1/L2 regularization scheme
which adapts L1 regularization by reweighting the iterations
using the L2 norm of image gradients. Shan et al. [7] incor-
porated spatial parameters and a ringing suppression step to
enforce natural image statistics. In [3], Zhang et al. proposed
a normal prior which couples the latent image, blur kernels
and noise level together. The prior in [3] is similar to the
prior in this paper, but it lacks the smoothing capability of our
prior and it makes additional assumptions on the blur kernels.
Related pertinent work also includes [13] and [14].

Smoothed-NUV priors for images were introduced in [15,
16] and further elaborated in [17]. Using the plain SNUV
prior of [15–17] amounts to penalizing small pixel differences
quadratically and large pixel differences logarithmically; the
former favors smooth areas in the image while the latter fa-
vors crisp edges between such areas. In this prior work, the
linear operator relating the image and the observations was as-
sumed to be known. In the present paper, we explore the use
of the plain SNUV prior for blind image deblurring, where
the operator (i.e., the blurring kernels) needs to be learned.

In the mentioned earlier work [15, 16], the image estima-
tion was carried out by approximative versions of expecta-
tion maximization. However, iteratively reweighted coordi-
nate descent (IRCD) as introduced in [17] has turned out to
be more robust even for the tasks considered in [15, 16]. In
this paper, we therefore use IRCD, which we here extend to
estimating the blurring kernels as well.

The paper is structured as follows. In Section 2, we re-
view the smoothed-NUV prior for images and the resulting
cost function. In Section 3, we describe the IRCD algorithm
for minimizing the cost function and we address a few tech-
nicalities. Some simulation results are presented in Section 4.
Section 5 concludes the paper.
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2. THE ESTIMATION PROBLEM

In this paper, we assume the pixels X = (X1, . . . ,XL) to
be arranged in a 2-dimensional rectangular grid. The set of
neighbors ∆ ⊂ {1, . . . , L}2 is defined by (k, `) ∈ ∆ if and
only if k < ` and the pixels Xk and X` are immediate neigh-
bors in some row or column, i.e., the Manhattan distance be-
tween these pixels equals one.

The measurement model in (1) defines a Gaussian like-
lihood p(y1, . . . ,yM |x,k1, . . . ,kM ). Our joint estimate of
the image and the kernel(s) is of the form

argmin
x;k1,...,kM

(
M∑
m=1

‖ym − km ∗ x‖2
2σ2

Zm

+ κ̃(x)

)
, (2)

with a regularization term κ̃(x) as described below in Section
2.1. In statistical terms, the function ρ(x)

4
= e−κ̃(x) may be

viewed as a (possibly improper) prior on X, in which case (2)
is a joint maximum-a-posteriori (MAP) estimate of the image
and the kernel(s).

The minimization in (2) is not a convex optimization
problem. In consequence, there may be multiple local min-
ima, one of which will be chosen by the algorithm (to be
described) and its initialization. Empirically, this does not
seem to be a problem.

For the sake of clarity, we restrict ourselves for the mo-
ment to a single observation y of a grayscale image X =
(X1, . . . , XL)T (with X` ∈ R) and the corresponding blur
kernel k = (k1, . . . , kJ). The extension to color images and
to multiple observations is straightforward and described in
Section 3.4.

2.1. The Plain SNUV Prior [17]

In this paper, the function κ̃(x) in (2) has the form

κ̃(x) =
∑

(k,`)∈∆

κ(xk − x`) (3)

with

κ(uk,`)
4
= min
σk,`≥0

(
u2
k,`

2(σ2
0 + σ2

k,`)
+

1

2
log(σ2

0 + σ2
k,`)

)
(4)

and uk,`
4
= xk − x`. As shown in [17], the corresponding

prior ρ(uk,`)
4
= e−κ(uk,`) is the sum of two zero-mean Gaus-

sians, one with fixed variance σ2
0 and the other with unknown

variance σ2
k,`, as illustrated in Fig. 1. Following [17], this

prior is called plain smoothed NUV, where “smoothed” refers
to σ2

0 > 0 and “plain” refers to the absence of an extra prior
on σ2

k,`.
The variational representation (4) is the key to the algo-

rithm that will be discussed in Section 3.
The minimizing σk,` in (4) is easily determined to be

σ̂2
k,` =

{
u2
k,` − σ2

0 , if u2
k,` > σ2

0

0, otherwise,
(5)

N (0, 1)

×
σk,`

Ŭk,`

+

N (0, σ2
0)

Uk,`
X`

+
Xk

SNUV

Fig. 1. Factor graph of the plain SNUV prior. N (m,σ2)
denotes a normal distribution with mean m and variance σ2.
The variable Uk,` = Xk −X` is the difference between two
neighboring pixels Xk and X`.
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Fig. 2. Plain SNUV cost function (6). Dashed red: σ2
0 = 1.

Dashed orange: σ2
0 = 1/4. Dashed blue: σ2

0 = 1/16.

resulting in

κ(uk,`) =


log |uk,`|+ 1

2 , if u2
k,` > σ2

0

u2
k,`

2σ2
0

+ log |σ0|, otherwise.
(6)

For σ2
0 6= 0, the function (6) is continuous and everywhere

differentiable (even at the points uk,` = ±σ0), cf. Fig. 2.
The convex (quadratic) part of (6) smoothes small pixel

differences while the concave (logarithmic) part encourages
sharp edges.

2.2. The Cost Function

Using (3) and (4), the estimation problem (2) can now be writ-
ten as

(x̂, k̂) = argmin
x,k

‖y − k ∗ x‖2
2σ2

Z

+
∑

(k,`)∈∆

κ(xk − x`)

 (7)



= argmin
x,k

min
σ
f(x,k,σ), (8)

where σ ∈ R|∆| is the vector of all σk,` with (k, `) ∈ ∆ (in
some arbitrary order) and

f(x,k,σ)
4
=
‖y − k ∗ x‖2

2σ2
Z

+
∑

(k,`)∈∆

(xk − x`)2

2(σ2
0 + σ2

k,`)

+
1

2

∑
(k,`)∈∆

log(σ2
0 + σ2

k,`). (9)

3. MINIMIZING THE COST FUNCTION

We now extend the IRCD algorithm of [17] to cope with the
minimization of (9).

3.1. Iteratively Reweighted Coordinate Descent (IRCD)

The minimization (i.e., finding a local minimum) of (9) can
be carried out by iterating the following three steps:

1. A descent step in x with fixed k = k(ν−1), and σ =
σ(ν−1).

2. A descent step in k with fixed x = x(ν), and σ =
σ(ν−1).

3. Minimization over σ with fixed x = x(ν), k = k(ν).

Beginning with initial values x(0), k(0) and σ(0), such an
algorithm computes a sequence x(1), k(1), σ(1), x(2), k(2),
σ(2), . . . that normally converges to a local minimum of (9).
(We have no proof of convergence, but we have never ob-
served nonconvergence in practice.)

It is obvious from (9) that Step 3 splits into scalar min-
imizations which have the closed-form solution (5) with
uk,` = x

(ν)
k − x

(ν)
` .

Both Steps 1 and 2 are descent steps in a quadratic cost
function, cf. [17]. In this paper (as in [17]), we implement
each of these steps by a round of coordinate descent as fol-
lows. For Step 1, for ` = 1 . . . L,

x
(ν)
` = argmin

x`

f
(
x̃

(ν)
` ,k(ν−1),σ(ν−1)

)
, (10)

with x̃
(ν)
` =

(
x

(ν)
1 , . . . , x

(ν)
`−1, x`, x

(ν−1)
`+1 , . . . , x

(ν−1)
L

)
. Like-

wise for Step 2, for j = 1 . . . J ,

k
(ν)
j = argmin

kj

f
(
x(ν), k̃j

(ν)
σ(ν−1)

)
, (11)

with k̃
(ν)
j =

(
k

(ν)
1 , . . . , k

(ν)
j−1, kj , k

(ν−1)
j+1 , . . . , k

(ν−1)
J

)
. Each

of these scalar minimizations is a simple least-squares prob-
lem with a closed-form solution.

One round of this IRCD algorithm requires about the
same number of computations as computing the gradient in a
steepest-descent algorithm. We find IRCD to work very well
in practice (but many iterations may be needed).

3.2. Rescaling the Estimates

Another preferable property of this algorithm is scale invari-
ance, which many other models do not possess. It means
that if x̂ and k̂ are the estimates obtained with the initial-
ization x(0), k(0), σ(0), σ0, then αx̂ and α−1k̂ are the op-
timal solutions with the scaled initialization αx(0), α−1k(0),
ασ(0), ασ0.

To see why this is important, we notice that the scaling
of the solution αx̂ and α−1k̂ affects only the second term in
(8). Thus the algorithm always produces some scaled solution
which exaggerates the blur kernel k and contracts the image
x.

To address this issue, we incorporate the constraint∑M
j=1 kj = 1 into the minimization problem (8) as fol-

lows. After each IRCD iteration, the corresponding quan-
tities are scaled as x(ν) = α(ν)x(ν), k(ν) = (α(ν))−1k(ν),
σ(ν) = α(ν)σ(ν), σ0 = α(ν)σ0, with α(ν) =

∑M
j=1 k

(ν)
j .

3.3. Finding σ0

As we can see from (9), the main parameters of this algorithm
are σ0 and σZ . We now propose an empirical method for
choosing σ0.

The parameter σ2
0 relates to the variation in the smooth

regions of the image. Therefore, σ0 should only depend on
the image. However, since the clean image is absent, we ap-
proximate the clean image with the measurement y. With this
idea, we proposed the following way to choose σ0.

1. For i = 1, . . . , L, we calculate the variance of pixel
values in a N ×N patch Pi(N) centered around yi

σ2
i =

1

N2

∑
yn∈Pi(N)

(yn − µi)2, (12)

where µi = 1
N2

∑
yn∈Pi(N) yn is the mean of all pixels

in the patch Pi(N).

2. The estimate of σ2
0 is formed as

σ̂2
0 =

1

L

L∑
j=i

σ2
i . (13)

The common choice for the patch size is N ≈
√
L/100. This

method is purely empirical, but based on our experiences, it
works well in practice.

3.4. Extension to Multiple Color Measurements

For color measurements, the three color channels are treated
independently except that they share the same parameters σ0

and σZ .
Extending the estimation algorithm to M > 1 measure-

ments (i.e., multiple blurred images) is straightforward.



Fig. 3. Deblurring results of a grayscale image of a camera-
man. Left: blurred image; right: deblurred image.

Step 1 in Section 3.1 remains essentially unchanged (since all
the blur kernels k1 = k

(ν−1)
1 , . . . ,kM = k

(ν−1)
M are fixed).

Step 2 turns into M separate descent steps in k1, . . . ,kM ,
with all other variables fixed. Step 3 remains unchanged. The
additional scaling step described in Section 3.2 needs to be
adapted as well: in this case, instead of scaling the image x
and σ2

0 , we scale the measurements ym and σ2
Zm

with the

corresponding kernel sum α
(ν)
m .

4. RESULTS

In this section we present some experimental results using two
test images: a 256×256 grayscale image of a cameraman and
a 384× 512 color image of peppers.

Fig. 3 shows the deblurring results of the camera image
using only a single measurement (partly shown in the left part
of Fig. 3). The image on the left side is blurred with a 5 × 5
Gaussian blur kernel (with the original kernel shown at the
upper left corner). The right side image is the deblurred im-
age (with the estimated kernel shown at the upper left cor-
ner). The root mean square error (RMSE) of the deblurred
image and the estimated kernel are RMSEI = 0.0043 and
RMSEK = 0.0005. The algorithm was run with the follow-
ing parameters σ2

0 = 2.1 × 10−3, σ2
Z = 1 × 10−7 for 8000

iterations, and the parameter σ2
0 was determined using the

method in Section 3.3. The algorithm is able to reconstruct
the sharp image and the blur kernel well.

While Fig. 3 is rather a simple example, Fig. 4 shows the
deblurring results of the peppers image using two synthetic
measurements corrupted by two 13 × 13 blur kernels. The
two blurry measurements with corresponding blur kernels are
partly shown in Fig. 4 (a). Fig. 4 (b)–(e) are the deblurred
results using the methods of Šroubek et al. [1], Tao et al. [11],
Pan et al. [5] and Kupyn et al. [12] which are obtained using
their own software. Since the approach of [5, 11, 12] cannot
deal with multiple measurements, we run their software for
each measurement separately and show both results (partly),
and the RMSE is obtained by averaging two deblurred im-
ages. Our result was obtained with the following parameters:
σ2

0 = 9.1× 10−4, σ2
Z = 4× 10−5 using 12000 iterations.

The result produced by our method is both visually and
quantitatively better than the other methods in Fig. 4. The
method of Šroubrek et al. [1] gives a good deblurring result
and a good kernel estimate, but it produces some line artifacts
at the bottom of the image. The software provided by Tao et

(a) Blurred images and kernels (b) Šroubek et al. [1], RMSEI = 0.0275

(c) Tao et al. [11], RMSEI = 0.0851 (d) Pan et al. [5], RMSEI = 0.0198

(e) Kupyn et al. [12], RMSEI = 0.0847 (f) Our Results, RMSEI = 0.0085

Fig. 4. Deblurring results of a color image of peppers using
different methods.

al. [11] and Kupyn et al. [12] do not work well with the image
blurred with the second kernel. While Pan et al.’s method [5]
produces a good deblurred image, the estimated kernel is not
quite satisfactory.

5. CONCLUSION

We proposed a new approach to blind image deblurring that
relies on the smoothed-NUV prior from [15, 16]. The varia-
tional representation of the prior from [17] allows the joint es-
timation of the image and the blurring kernel(s) to be decom-
posed into descent steps in reweighted least-squares problems
and nonlinear scalar updates of the individual variances of
the prior. Accordingly, we proposed an iteratively reweighted
coordinate descent algorithm, which is parameter free and
works well in practice. The proposed approach is shown by
simulations to compare favorably with four state-of-the-art
methods.
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