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Smoothed-NUV Priors for Imaging

Boxiao Ma, Nour Zalmai, and Hans-Andrea Loeliger

Abstract—Variations of L1-regularization including, in parti-
cular, total variation regularization, have hugely improved com-
putational imaging. However, sharper edges and fewer staircase
artifacts can be achieved with convex-concave regularizers. We
present a new class of such regularizers using normal priors with
unknown variance (NUV), which include smoothed versions of
the logarithm function and smoothed versions of Lp norms with
p<1l

All NUV priors allow variational representations that lead
to efficient algorithms for image reconstruction by iterative
reweighted descent. A preferred such algorithm is iterative
reweighted coordinate descent, which has no parameters (in
particular, no step size to control) and is empirically robust and
efficient.

The proposed priors and algorithms are demonstrated with
applications to tomography. We also note that the proposed priors
come with built-in edge detection, which is demonstrated by an
application to image segmentation.

Index Terms—Image reconstruction, NUYV, sparsity, iterative
reweighted descent, expectation maximization, tomography, edge
detection, image segmentation.

I. INTRODUCTION

Many problems in imaging, such as tomographic reconstruc-
tion, denoising, deblurring and so on, boil down to guessing an
image from imperfect measurements. Such problems are often
formulated in a statistical setting as follows. A grayscale image
is represented by a vector X = (X1,..., X1)" € R of pixel
values. This image and the available observations Y € RY
are related by

Y =AX+7Z, (1)

with A € RV*L and where Z is white Gaussian noise, i.e.,
Z ~ N(0,0%1). In this paper, the matrix A is assumed to be
known. From a specific observation Y =y, an estimate x of
X has to be formed. This estimate is generally of the form

X = argmin (||y — Ax|* + QU%H(X)), 2)

with a regularization term 20%r(x). In statistical terms, the
function
p(x) = e 3)

may be viewed as a (possibly improper) prior on X, in which
case (2) is a maximum-a-posteriori (MAP) estimate.

The most popular priors/regularizers, including, in particu-
lar, total-variation (TV) regularization, are based on the L1
norm [1], [2] (or equivalently, on a Laplace prior), which
preserves convexity in (2) while promoting sparsity (in some
domain) of the solution. Many efficient algorithms have been
proposed to solve the resulting minimization problem (2), cf.
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[3], [4]. In consequence, the standard TV regularization and
some of its variations have hugely improved computational
imaging.

However, TV regularization is not perfect: it favors piece-
wise constant images (“under-smoothing”) and produces stair-
case artifacts. In addition, it introduces bias on estimates of
large coefficients.

Numerous methods have been proposed to improve TV
regularization in different ways. For example, total generalized
variation (TGV) [5], [6] uses higher-order derivatives to en-
courage piecewise linear (instead of piecewise constant) image
reconstrations. Structure tensor total variation (STV) penalizes
the image variation at each point (pixel) by taking into account
the information in some local neighborhood. A combination
of L2 and TV regularization is proposed in [7] to reconstruct
piecewise smooth signals. More direct modifications of TV
regularizations are proposed in [8], [9].

Giving up convexity opens additional options: nonconvex
regularizers can reduce the bias on large coefficients and yield
sparser solutions than TV regularization, thereby enabling re-
construction from fewer measurements [10]. Such nonconvex
regularizers include the log-sum penalty [11], [12], capped L1
[13], minimax concave penalties (MCP) [14], Lp norms with
0<p<1[15]-[17], and others [18]-[21].

However, as pointed out in [22], many nonconvex regular-
izers on image gradients actually promote staircase artifacts.
This problem can be largely avoided by amending a concave
regularizer with a convex patch around the origin (cf. Fig. 4)
[23]-[29].

In fact, we will confirm what has been noted before, that the
best results are obtained with regularizers comprising a convex
part (for small pixel differences) with a concave part (for
large pixel difference) [22], [26], [30]. Such convex-concave
regularizers (as exemplified by Fig. 4) promote smooth areas
with crisp edges: the convex part takes care of the smooth
areas while the concave part encourages sharp edges.

With nonconvex priors, the minimization in (2) is nontrivial.
However, it is generally not necessary to find the global min-
imum of (2): a “good” local minimum may do. Proposed al-
gorithmic approaches include graduated nonconvexity (GNC)
[22], [31]-[33], half quadratic minimization [30], [34]-[37],
Convex-ConCave optimization [38], the alternating direction
method of multipliers (ADMM) [39], split Bregman iteration
(SBI) [40], General Iterative Shrinkage and Thresholding
(GIST) [41], and others.

In this paper, we consider a class of priors based on mod-
eling the difference of neighboring pixels as normal random
variables with individual unknown variances (NUV'). NUV
priors are a key idea of sparse Bayesian learning [42]-[44], but
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they are also closely related to variational representations of
regularizers as detailed in [43], [45]-[47]. The explicit use of
convex-concave smoothed NUV (SNUV?) priors for imaging
was apparently introduced in [48] and has since been used in
[49], [50].

The primary such prior is the plain-SNUV prior of [48]—
[50]. Other versions of such priors include Lp-based regular-
izers with p <1 with a quadratic patch around the origin; for
p=1, we thus obtain the convex Huber function [47].

We will compare all these priors and find plain SNUV to
be on a par with the best other convex-concave regularizers,
and to outperform all other low-level® regularizers. However,
the smoothed Lp norm with p < 0.5 performs nearly as well.
Moreover, the Huber function performs best among the convex
regularizers.

We will also propose a new generalization of these SNUV
priors for images with vector-valued pixels such as color
images. In addition, we note that all SNUV priors come with
built-in edge detection based on the sparsity of the unknown
variances.

Moreover, all SNUV priors have variational representations
that make it easy to derive practical iterative algorithms
for image reconstruction. Such algorithms include iterative
reweighted least squares [51]-[54], iterative reweighted gra-
dient descent (IRGD), and iterative reweighted coordinate
descent (IRCD) [47]. These algorithms are similar in spirit
to half quadratic minimization as in [30], [34]-[37].

A second group of reconstruction algorithms does not
attempt to carry out the minimization in (2), but estimates the
unknown variances of the NUV prior using traditional estima-
tion techniques [55] such as expectation maximization [42],
[56] or some approximation thereof. This second approach
was used in [48]—[50]. In this paper, however, we find IRCD
to be more reliable.

Related prior work also includes using approximate message
passing (AMP) for imaging problems [57], [58]. However,
AMP may fail to converge [59], especially when the matrix
A in (1) has near-identical columns, which is typical for
high-resolution imaging problems. The convergence problem
of AMP is resolved by vector AMP as in [60], but vector
AMP requires the singular-value decomposition of the matrix
A to be computed, which is infeasible in many applications.
An interesting new development is conjugate-gradient based
AMP [61], the viability of which for high-resolution imaging
remains to be assessed.

A first set of experimental results with the priors and
algorithms of this paper is given in Figures 1 and 2, which
show an example from computed tomography. All images in
Fig. 1 are grayscale (from O to 1) with 256 x 256 (= 65536)
pixels. The actual object (the ground truth, shown in Fig. 1.a)
is a modified version of the Shepp-Logan phantom [62].
(The unmodified Shepp—Logan phantom is piecewise constant;
the modification consists of adding a smooth gradient to the
gray areas.) All reconstructions in Fig. 1 are based on 12
simulated projections onto a line detector with 450 individual

2SNUV stands for Smoothed NUV.
3This paper is not concerned with neural-network priors.

pixels/detectors, amounting to 5400 scalar observations in
total. More details will be given in Section V-A.

The first four rows in Fig. 1 show reconstructions with
priors from the literature; the bottom row in Fig. 1 shows
reconstructions with SNUV priors. For each reconstruction
in Fig. 1, the root-mean-squared error (RMSE) is reported.
Fig. 1.b results from filtered back projection (FBP); Fig. 1.c
and Fig. 1.d result from L2 regularization on pixel values and
neighboring pixel differences, respectively.

Fig. 1.e results from standard TV regularization [3]. Fig. 1.f
results from L1 regularization on neighboring pixel differences
(anisotropic TV). Figs. 1.g and 1.h are two versions of STV
regularization (structure tensor total variation) as in [63]. Figs.
1.i—1.t all penalize the magnitude of neighboring pixel differ-
ences: in Fig. 1.1 with the minimax concave penalty (MCP)
from [14], in Fig. 1.j with the log-sum penalty, in Fig. 1.k
with the L0.5-norm. Fig. 1.1 results from the Mumford-
Shah functional [29], which can be viewed as a truncated
L2 regularizer applied to pixel differences and is therefore
convex-concave. Figs. 1.m—1.p result from penalty functions
from [26]. Figs. 1.g—1.t are obtained using the SNUV priors
described in this paper.

The regularizers in Figs. 1.c—1.h and in Figs. 1.m and 1.q are
convex; the other regularizers are not convex. The regularizers
in Figs. 1.I-1.t are convex-concave, which clearly produce
better reconstructions in this example.

Some more details of these same examples are shown in
Fig. 2, which zooms into a small area inside the image.

It is obvious in this example that the plain-SNUV prior
yields sharper edges and less staircase artifacts than most other
priors, on a par with the prior in Fig. 1.p, which has nearly the
same functional form. Moreover, IRCD marginally improves
over approximate expectation maximization (EM).

In summary, in this paper, we describe, demonstrate, and
discuss SNUV representations of priors for imaging and
pertinent reconstruction algorithms in much more detail than
in [48]-[50]. The explicit SNUV representation of smoothed
Lp norms appears to be new, and so is the vector version
of the SNUV priors. We also reconfirm the superiority of
convex-concave priors over L1-based priors, and we point out
that SNUV priors form a natural bridge between these two
approaches.

Due to space constraints, we will not, in this paper, elab-
orate on the multi-resolution reconstruction proposed in [50].
Finally, we mention here that the plain-SNUV prior has
successfully been used for blind image deblurring [64], [65].

The paper is structured as follows. The SNUV priors are
introduced in Section II and further discussed in Section III.
The minimization of the total cost function (2) is addressed in
Section IV. Additional details on Fig. 1 and further examples
from computed tomography are given in Section V. The
generalization of the SNUV priors to color images and other
vector-valued images is addressed in Section VI. SNUV priors
come with built-in edge detection, which is used in Section VII
for color image segmentation.



(a) Original object (b) Filtered back projection, (c) L2 reg. on pixel values, (d) L2 reg. on neighboring pixel
RMSE = 0.322 RMSE = 0.0826 differences, RMSE = 0.0837

(e) Isotropic TV, (f) Anisotropic TV, (g) STV, spectral, (h) STV, Frobenius,
RMSE = 0.0481 RMSE = 0.0385 RMSE = 0.0559 RMSE = 0.0540
(i) Minimax concave penalty, (j) Log-sum penalty, (k) L0.5 norm, RMSE = 0.0298 (1) Mumford-Shah functional,
RMSE = 0.0587 RMSE = 0.0403 RMSE = 0.0086
(m) k(u) = /1 +u2/5% -1, () k(u) =1 — exp(—u?/262), (0) x(u) = u?/(26% + u? ) x(u) = log(1 + u?/§2),
RMSE = 0.0261 RMSE = 0.0070 RMSE = 0.0039 RMSE = 0.0027
(q) Huber function, (r) Smoothed L0.5 norm, IRCD, (s) Plain SNUV with EM, (t) Plain SNUV with IRCD,

RMSE = 0.0143 RMSE = 0.003321 RMSE = 0.0050 RMSE = 0.0025

Fig. 1. Tomographic reconstruction with different priors, using a modified Shepp—Logan phantom (a). The smoothed-NUV priors are in the bottom row.



Original Isotropic TV,
RMSE = 0.0261

STV, Frobenius, MCP
RMSE = 0.0352 RMSE = 0.0254

L0.5 norm, Mumford-Shah
RMSE = 0.0209 RMSE = 0.0249

1 — exp(—u?/262) u? /(262 + u?)
RMSE = 0.0154 RMSE = 0.0085

Huber function, Smoothed L0.5 norm
RMSE = 0.0121 RMSE = 0.0054

Fig. 2. Zooming into a central part of Fig. 1.

Anisotropic TV (L1),
RMSE = 0.0202

Log Sum penalty,
RMSE = 0.0247

V14+u2/62 -1
RMSE = 0.0149

log(1 + u?/§2)
RMSE = 0.0041

Plain SNUYV, IRCD,
RMSE = 0.0040

II. THE REGULARIZERS / PRIORS

Throughout this paper, we assume the pixels or voxels X =
(X1,...,Xr) to be arranged in a rectangular grid (in two
or more dimensions), but the indices 1,...,L need not be
systematically related to this geometric arrangement. All we
need of the geometry is the set A C {1,..., L}? of neighbors:
(k,¢) € A if and only if k < ¢ and the pixels (or voxels) X},
and X, are immediate neighbors in some row or column. i.e.,
the Manhattan distance between these pixels (or voxels) equals
one.

A. General Form

In this paper, the function x(x) in (2) has the form*

K(x)= Y k(wk—x0), )

(k,L)eA

or, equivalently, the prior in (3) has the form*

px) = [I plax—=0). ©)

(k,0)EA

In the special case where k(z; — x¢) = |z — ¢|, we thus
obtain anisotropic TV regularization [66].

In this paper, we consider functions  (with scalar argument)
of the special form

2
Ug.e

#(uk,e) = mi —Ing(oo, on,0) (6)

n ——
Uk,gZO 2(0'(2) + (7]% f)
with uge = =z, — x4, with parameter oy, and §(og, oy ¢)
as discussed below. Equivalently, the prior p (with scalar
argument) in (5) can be written as

_ui,e
exp 2(0‘3—}-0‘21@)

p(uke) = max g(oo,oke) |, (D)
ok, 020 2m (02 + O’,%’Z)
where
9(00,0k.0) = §(00,0k,0)1/27(08 + 07 ;) ®)

may be viewed as a prior—often an improper prior—on oy, ;.

The function in the big parentheses in (7) is illustrated by
the factor graph in Fig. 3 (cf. [47], [67], [68]). The dashed box
in Fig. 3 represents the smoothed-NUV (SNUV) function’

! exp —u%j
2 2
27 (o + 0,%72) 2(05 + Uk,f)
_g2 o 2
oo exp 2:2'“’[ exp +(u’°’§;“k’l)
- kot 2. L diige, (9)
—oo  V2mOoky V2mog ”

which is the sum of two zero-mean Gaussians with fixed
variance o3 and unknown variance o} ,, respectively. The first

“In (4) and henceforth, with a slight abuse of notation, we use the same
symbol  both for the function k(x) (with a vector argument) and for the
function k(ug,¢) = k(xp —xp) (With a scalar argument). Likewise, we use p
in (5) and henceforth both with a vector argument and with a scalar argument.

5The qualifier “smoothed” refers to the effect of 0(2) > 0 on the cost
function around zero, as discussed later in this section.



Fig. 3. Factor graph of SNUV regularization. The dashed box represents the
SNUV function (9). N'(m,o?) denotes a normal distribution with mean m
and variance o2. The variable U, ke = X — Xy is the difference between two
neighboring pixels or voxels X} and X,. Maximization over o, ¢ yields (7).
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Fig. 4. Plain SNUYV cost function (13). Dashed red: og = 1. Dashed orange:
03 = 1/4. Dashed blue: 67 = 1/16.

Gaussian accounts for the smooth parts of the image while the
second Gaussian accounts for the edges, as will become clear
later on.

With specific choices of g(og,0%¢) (and G(og,0ke) by
(8)), we obtain the plain-SNUV function (Fig. 4), the Huber
function (Fig. 5), and smoothed versions of Lp norms (Fig. 6),
as will be detailed below. The former yields the best empirical
results, as exemplified by Figures 1 and 2.

However, there is more to (6) and (7): the specific form of
these regularizers (or priors) is the key to the algorithms that
will be discussed in Section IV. Moreover, these priors lead
to sparse estimates of the parameters oy, ¢, which can be used
for edge detection and more, as will be discussed in Sections
III-B and VII.

B. The Plain SNUV Cost Function

The plain SNUV cost function (13) results from choosing
g(00, 0%,¢) to be some constant, i.e., using (7) without a prior
on oy, ¢. In order for (13) to look nice, we choose this constant
to be

g(00,00) = V2. (10)
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Fig. 5. Solid and dashed blue: Huber function (17) for 5 = 1 and 0% =1.
Dotted: absolute-value function.
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Fig. 6. Smoothed Lp norm (21): black: p = 0.8, crg =
LB = (1/2)Y7.

red: p = 0.5, 0(2] = B =1, blue: p = 0.25, a% =

The minimizing oy ¢ in (6) (= the maximizing oy, ¢ in (7)) is
easily determined to be

2
u 1
~2 . k4 2 2
07 y=argmin | ————+ = In(ci + o 11
k.0 % e 2(08 n ‘71% e) 9 (o u) (11)
B u%ye—og, if u%’g >08 (12)
0, otherwise,
resulting in
1n2|ukyg\ +1, if “%,e > o}
K(uge) = u . 13
(ur.e) kf +1In|og|, otherwise. (13)
20§

For 02 # 0, the function (13) is continuous and everywhere
differentiable (even at the points uy, = =oyp), cf. Fig. 4.
Note that the two cases in (13) correspond to the concave
and convex parts of k.



C. The Huber Function

A SNUV representation of the Huber function (17) with
parameters o3 and 3 > 0 is obtained by choosing

_p2.2

g
— B (14

2 (of + o, ) exp 5

9(00,0k,0) =
(For o9 = 0, this happens to be a Rayleigh distribution in
ok, > 0, up to a scale factor. However, the function g does
not seem to have a natural interpretation or justification other
than its producing a useful function x.) The minimizing oy, ¢
in (6) is easily determined to be

2 )

0}, ¢ = argmin 2 p Tkt
ke =

O'i P 2(08 + UI%,Z) 2

_ [ lukel/B =08,
0,

5)

if |ug o] > Bo?

otherwise, (16)

resulting in

ﬂ|2uk7g - %ﬂ203, if |'U,k7g| > ﬂ(f%,
K(Uge) =4 Uk . (17
S otherwise,
204

which is the Huber function of robust statistics [69]. In the
special case o% =0 and 8 =1, (17) reduces to the absolute-
value function. For 02 # 0, (17) is strictly convex and
everywhere differentiable. The two cases in (17) correspond
to the linear and quadratic parts of .

As it turns out, the parameter ( is often redundant. In-
deed, using the extended notation r(uy. ¢, o3, 3) for the func-
tion (17), we have

H(Uk,e,agvﬂ) = Bﬁ(uk,fvﬂag7 1)

Therefore, the effect of the parameter 8 on (2) is like a scale
factor in 0%. In consequence, we can set 3 = 1 without loss
of generality.

(18)

D. Smoothed Lp Norms

Eq. (14)—(17) can be generalized to smoothed Lp norms for
all p with 0 < p < 2 by choosing

2m (02 + oﬁj)

—B2(2 —p)(0f + 0} )77
2p

Q(Uoﬂk,e) =

- exp (19)

The minimizing oy ¢ in (6) is given by

T
&2, = max {o, g’f - o—g} , (20)
resulting in
2 P _
Uk, ¢ o | uke 2
— =, if | =% >0
wng) =) 7 B g 0
k, - 2
Uke | 22— D/ o325 :
: otherwise.
20(2) + ﬂ 2}7 (UO) ’ W
2n

For 02 # 0, the function (21) is continuous and everywhere
differentiable. For p = 1, we obtain the Huber function of

pixel index

Fig. 7. One-dimensional interpolation between fixed x1 and fixed x, as
discussed in Section III-A. A strictly convex cost function yields a regular
staircase (solid gray) while a strictly concave cost function yields a single
step at an arbitrary position (dotted). The absolute-value cost function assigns
the same cost to every monotonous staircase (dashed). A convex-concave cost
functions such as the plain SNUV yields a regular staircase (solid gray) if
|z, — x1] is small; otherwise, it yields a single large step flanked by flat
regular ramps (solid blue).

Section II-C, except for a constant offset between (21) and
(17). (Of course, shifting the offset between the two cases
in (21) does not change the regularization properties.) In
generalization of (18), we have

K/(uk,fvo-gvﬁ) = 52_p/€(uk,bﬂ2_po—?)a ]-)

For f =1 and in the limit p — 0, k(ug) as in (21) has
the same derivative as (13). In consequence, the effect of the
regularizer is virtually identical.

(22)

III. DISCUSSION AND EXTENSIONS

In the following, we assume all cost functions x(ug.¢) to be
monotonically increasing in |ug ¢|. A strictly convex cost func-
tion such as x(uy¢) = |uk,e|P with p > 1 encourages smooth
transitions, discourages sharp edges, and does not promote
sparsity. By contrast, a strictly concave cost function such as
K(uk,e) = |ug¢|P with 0 < p < 1 promotes sparsity and sharp
edges, but creates staircase artifacts in smoothly varying areas.
Convex-concave regularizers such as the plain SNUV or a
smoothed Lp norm with p < 1 combine the advantages of
convex and concave regularizers: smoothly varying areas of
the image are addressed by the convex part while the concave
part promotes sharp edges. The Huber function stands out as
the only convex such regularizer, but the best empirical results
are obtained with plain SNUV or smoothed Lp norms with
p <1

A. Analytical 1D Interpolation

These general effects are illustrated in Fig. 7, where
we consider interpolation in a one-dimensional pixel array
Xq,..., Xy with fixed X; =2, and fixed Xy = xy, and
Zo,...,xp_1 to be interpolated by minimizing (4) with A =
{(k,k+1) : k =1,...,L — 1}. Any strictly convex cost
function yields the (unique) straight-line interpolation with
U2 = U3 = ... = ur_1,r. Any strictly concave cost
function yields a single-step interpolation with wuy, 31 = 0 for
all k except one, at an arbitrary position. The absolute-value



cost function® is minimized by all monotonous interpolations,
most of which are irregular multi-step staircases.

By contrast, a convex-concave cost function such as the
plain SNUV yields a straight line (i.e., a regular staircase)
if |z — 21| is small, or else it yields a single big step
flanked by flat regular ramps. For most imaging applications,
the combination of these two modes is more satisfactory than
either of them individually. The transition between these two
modes is worth analyzing in detail.

Theorem. Using the plain SNUV prior’ for interpolation with
L > 3 (as defined above), the total cost (4) can have one or
two local minima: the straight-line solution with u; 2 = ... =
ur—1,r, is a local (or global) minimum if and only if
|J)L—JJ1| SO’()(L—l). (23)
The second local (or global) minimum exists if and only if

|.TL —1‘1‘ Z 20’0\/L—2,

and it results in a single big step of size

|z, — 1] o3
== |1 L—-2)———
|tk k1| B + —4( )|90L PNE

(24)

(25)
for some arbitrary (but single) k. (]
The proof is given in Appendix A. Clearly, for

|xp — 1] > 200V L — 2, (26)

the single step (25) takes almost all of |z — x1]|. The inter-
section between (23) and (24) is never empty, and it may be
large. Within this intersection, we do not bother to determine
the global minimum since all algorithms considered in this
paper will normally just converge to some local minimum.

B. Sparsity and Edge Detection

No matter what algorithm is used for the minimization in
(27) the final estimates (12) or (16) or (20) of the variances
O'k ¢ are normally sparse, with ak ¢ = 0 indicating a smooth
transition between X and X, and ak ¢ > 0 indicating an
edge. The threshold between these two cases is the transition
point between the quadratic part and the concave part of the
regularizer.

In other words, SNUYV priors come with edge detection built
in. An exemplary application will be described in Section VII.

IV. MINIMIZING THE TOTAL COST

With regularizers as in (4) and (6), the estimate (2) can be
written as

argrmn 27

Ax|]?

by AP Sy
z (k,0)eA

(23)

= argmin min f(x, o),
x o

6In one-dimensional “images”, TV regularization amounts to an L1 penalty
on the difference between neighboring pixels.
"The theorem does not apply to estimation by EM as in [48]-[50]

where o € RI2! is the vector of all o with (k,£) € A (in
some arbitrary order), and

Ax|? —
f(X,O') o ||y XH + Z .Tk .ﬁ(
207 (k€A 205 + o)
- Z In g(oo, ok,¢)- (29)
(k,0)eA
In the special case where both 09 = 0 and oy, = O,

k(zx — x¢) enforces the constraint x;, = x4, see also Fig. 3.
However, in this paper, we henceforth assume oy > 0.

We also note that both 02 and o3 are effectively parameters
of the proposed method. In this paper, these parameters are set
(and optimized) manually, cf. Table III.

A. Iterative Reweighted Descent

The double minimization in (28) suggests to compute X by
algorithms® that iterate the following two steps:

1) A descent step in x with fixed o = (=1,
2) Minimization over o with fixed x = x(®);

o™ = argmin f(x"), o). (30)

o
Beginning with initial values x(°) and o(?), such an algorithm
computes a sequence x(1), (M, x(?) &2 with the idea
that x(*) converges to % as in (28). Both steps are easy, as we
are now going to discuss.
Concerning Step 2, it is obvious from (29) that (30) decom-
poses into scalar minimizations

) _ e (@) =)
2

0, ) = argmin
k.l (‘70 + Uk,e)

0k,020
which in turn have the closed-form solutions (12), (16), (20)
with uy ¢ = :L',(:) — xéy)
Concerning Step 1, we first note that, with o fixed, f(x, o)

is a quadratic form in x. In other words, computing

lng(obvo—k,f)) 3 (31)

argmin f(x, 1) (32)
is a least-squares problem, and using (32) in Step 1 results
in an iterative reweighted least-squares algorithm in the style
of [51]-[53]. However, computing the actual minimum (32)
in Step 1 may be inefficient: making a “reasonable” step
x=1 s x() towards (32) is enough. For example, imple-
menting Step 1 by a steepest-descent step will do, resulting
in an iterative reweighted gradient descent (IRGD) algorithm
[47].

An especially simple such method is coordinate descent,
resulting in iterative reweighted coordinate descent (IRCD) as
described below. This algorithm has no parameters and (in our
experience) works well in practice.

Concerning the convergence of these algorithms, we note
that f(x, o) achieves its minimum at finite arguments and is
continuous and continuously differentiable in all arguments.
In consequence, the sequence f(x*), o), v = 1,2,...,

8The basic idea of this algorithm is far from new. For example, it includes
half quadratic minimization as in [30], [34]-[37].



is guaranteed to converge. Moreover, both IRGD (with any
reasonable step size control) and IRCD will neither escape
to infinity nor get stuck except at a stationary point. While
this does not suffice to actually prove convergence of the
sequence x*), v = 1,2,..., it leaves nonconvergence only
as a theoretical possibility under very special conditions. In
practice, we have never observed any convergence problems.

B. Iterative Reweighted Coordinate Descent (IRCD)

In this algorithm, Step 1 of Iterative Reweighted Descent
is implemented by a round of coordinate descent as follows.
The first component of x(*) is

( (v=1)

v) .
xy = argmmf((xl, ) ey
@

172”_1))70.(1171>)a (33)

the second component of x(*) is

xé") = argminf((xgy), Za, xgyfl),.
T2

“,m(Lyfl)%o,(u—l))’

(34
and so on. Each of these scalar minimizations is a least-squares
problem with closed-form solution

v _ _ . Ty
x’(f ) _ Vi 1 <022Aik(y - Yk) + Z 2+2> 35)

where A ; denotes column k of A, { ~ Fk denotes the
condition (k,£) € Aor (¢, k) € A, a%z = th,k for k > ¢, and
with the definitions

9} v v v v i
yk- é A(Ig )"_'71';@_)170’272_,’_11),---,352 1)) ] (36)
wEoAALP+ Y (e +oi)Th (D)

L: bk
and
(v) ;
N x, ifl <k

5 A 38
¢ { 2> 9

A proof of (35) is given in Appendix B.
Note that (36) need not be computed from scratch for every
k, but can be updated according to

(v=1)
k

Vh=Vr1+A sz — A (39)

for k > 1.
In summary, IRCD repeats the following two steps, for v =
1,2, ... until convergence:

1) Compute (35) for k= 1,..., L using (39).
2) Update o) for all (k,£) € A using (12) or (16) (with

Uk g = .735: — xéy)).

One round of IRCD requires about the same number of
computations as computing the gradient in IRGD. We find
IRCD to work very well in practice (but many iterations may
be needed). In particular, we find IRCD to be at least as fast
as IRGD and to give marginally better results, cf. also the
remarks in Section V-D.

C. Orthogonal Columns and IRCD with Parallel Updates

The observation matrix A in (1) does not normally have
orthogonal columns. In fact, in most high-resolution imaging
problems, any two columns of A belonging to neighboring
pixels (or voxels) are nearly identical. Nonetheless, there may
be situations where A has orthogonal columns; for example,
in Section VII below, A is an identity matrix.

If the columns of A are orthogonal, then it is easily seen
from (36) that (35) simplifies to

v _ - —2AT Ty
Ty, —7k1<UZ ARy + Z og + o7 )

Note that the update rule (40) can be executed in parallel for
any nonneighboring pixels/voxels.

In the special case where A is an identity matrix (cf.
Section VII), (40) becomes

(v) -1 ( Yk
= =+
L, Vi (a%

(40)

>

Ty
- | » (41)
0 b~k og + Ugl)

where y;, is component k of y and

=0+ Y (05 +or) "
L: b~k

(42)

We conjecture that parallel updates of (35) (for nonneigh-
boring pixels/voxels) work practically also if the pertinent
columns of A are only approximately orthogonal, but we have
not explored this systematically.

V. APPLICATION EXAMPLE I: COMPUTED TOMOGRAPHY

In tomography, the observations y in (2) are a collection
of many noisy projections of the object, from many different
angles, onto some detector array [70], as illustrated in Fig. 8.
In two-dimensional (2D) tomography, the aim is to image
a planar slice of the object from projections through the
corresponding plane; in 3D tomography, the aim is to image
an object in three dimensions. The projection matrix A may
be obtained by methods such as the distance-driven projection
[71]. Empty space is (traditionally and naturally) rendered as
black (zero) while fully absorbing material is rendered white
(one), as exemplified in Fig. 1.

A. 2D Modified Shepp—Logan Phantom (Fig. 1)

A first series of experimental results is shown in Figures 1
and 2, which were discussed in Section I. We now complete
the discussion of Fig. 1 with a number of pertinent details.
The setting is as in Fig. 8 with numerical values as in Table I,
and with a line detector with 450 sensor pixels. The number of
image pixels vs. the number of measurements is summarized
in Table II.

The results in Fig. 1 used up to 8000 iterations of IRCD for
the SNUV priors. For the other methods and regularizations
in Fig. 1, every method is run until convergence and we
optimized their parameters to get the best (in terms of RMSE)
reconstruction possible.

The main parameters of plain SNUV with IRCD are o3
and 0%. An idea of the sensitivity to these parameters may be
obtained from Table III.



detector

\ /] N/

n X N
source SR |

Fig. 8. Tomography with a point source. For the different projections, the
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object is rotated about the pivot (marked by “x”) at its center.

distance from source to detector 800 units
distance from source to object center (pivot) 400 units
detector size 500 units
image size 200 x 200 units

TABLE I
DETAILS OF 2D EXAMPLES IN FIG. 1 AND FIG. 10.

L N N/L  RMSE

Fig. 1 256 x 256 12 x 450 82%  0.0025

Fig. 11 128x128x128  10x120x120 6.9%  0.0027
TABLE II

NUMBER OF RECONSTRUCTED PIXELS (OR VOXELS) L. AND NUMBER OF
MEASUREMENTS N IN THE EXPERIMENTS OF FIG. 1 AND FIG. 11.

0% oh

2-107° 5-107° 1-107%* 2-107* 4.107%
1-10—4 0.1113 0.0893 0.0720 0.0532 0.0569
2.10~4 0.1065 0.0942 0.0056 0.0082 0.0158
5-10% 0.1178 0.0863 0.0025 0.0028 0.0040
1-10-3 0.1312 0.0989 0.0026 0.0028 0.0037
2.1073 0.1400 0.1050 0.0104 0.0086 0.0054

TABLE 111

RMSE OF THE PLAIN-SNUV RECONSTRUCTION AS IN FIG. 1.T FOR
DIFFERENT VALUES OF THE PARAMETERS a% AND ag. THE BEST RESULT
IS DISPLAYED IN BOLD TYPE.

number of detector pixels 120 x 120
distance from source to detector 800 units
distance from source to object center (pivot) 400 units

450 x 450 units
200 x 200 x 200 units

detector size
object size

TABLE IV
DETAILS OF 3D EXAMPLE IN FIG. 11.

Since plain SNUYV is not convex, initialization might matter.
However, somewhat surprisingly, the initializations of the pixel
values and the unknown variances do not seem to matter
much. In our experiments, all pixels z, are initialized to
some constant value (usually 0.5), and all variances oﬁ’ o are
initialized to some constant value between 10~° and 1073.

B. Squares (Fig. 10)

Another series of experiments, using the phantom of Fig. 9,
is summarized in Fig. 10. All images in Figures 9 and 10 have
128 x 128 pixels, and the smallest white squares in Fig. 9

Fig. 9. 2D phantom for the experiments in Fig. 10.

consist of a single pixel. The reconstructions are based on
P simulated projections onto a line detector with 115 sensor
pixels (amounting to 115P scalar observations in total). The
number P of projections is varied from 18 to 36.

The results in Fig. 10 used up to 8000 iterations of IRCD
for the SNUV priors and up to 10’000 iterations of ASDPOCS
for TV/L1 [3].

Again, it is obvious that plain SNUV beats the Huber func-
tion, which in turn beats the standard TV/L1 regularization.

C. 3D Modified Shepp—Logan Phantom (Fig. 11)

3D tomographic reconstruction with plain-SNUV regular-
ization and IRCD is demonstrated in Fig. 11. Note that, in
this case, (k,¢) € A if and only if k& < ¢ and the voxels Xy,
and X, are immedate neighbors in any of the three coordinate
directions.

The setting is as in Fig. 8 with numerical values as in Ta-
ble IV. The parameters for the reconstruction are o3 = 3-10~4
and a% =3.107%, and up to 10’000 iterations were used.
The number of voxels vs. the number of measurements is
summarized in Table II.

D. Notes on the Algorithms

For the examples in this section (and similar examples
not reported here), we have experimented with IRCD, IRGD,
approximate EM and ASDPOCS (for standard TV). The
experience with these different algorithms can be summarized
as follows:

e IRCD is not slower than IRGD or approximate EM.

o IRGD is not slower than ASDPOCS.

o For plain SNUV regularization, IRCD yields marginally
better results than IRGD and approximate EM.

+ We normally used IRCD with a fixed (row by row) update
order. Randomizing the update order does not signifi-
cantly speed up the convergence and causes fluctuations
in the quality of the results.

« IRCD requires o > 0. For concave (unsmoothed) Lp
regularizers, IRGD can be used.

In summary, the simplicity, robustness, and efficiency of IRCD
make it attractive for smoothed-NUV imaging.

Finally, we note here that the computational burden and

the memory requirements may be reduced by adopting the
multiresolution approach described in [50].
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18 projections 24 projections 30 projections 36 projections

Huber with IRCD Plain SNUV with IRCD

TV with ASDPOCS

(i) RMSE=0.1540 (j) RMSE=0.1393 (k) RMSE=0.1184 (1) RMSE=0.0743

Fig. 10. Tomographic reconstructions of the phantom in Fig. 9 with different priors and different numbers of projections. Top row: plain SNUV with IRCD.
Middle row: Huber function with IRCD. Bottom row: standard TV with ASDPOCS [3].

Slices of the original.

Slices of the reconstruction from 10 projections, RMSE = 0.0027.

Fig. 11. 3D tomographic reconstruction using a modified Shepp—Logan phantom and plain SNUV prior with IRCD.



VI. EXTENSION TO MULTI-CHANNEL IMAGES

So far in this paper, we have only considered grayscale
images. We now address the extension of the SNUV priors to
color images with pixel values z; € R? or other images with
pixel values x; € R".

For color images, it is advantageous not to use the standard
RGB representation, but the CIELAB color space [72], which
is designed to match human visual perception with Euclidean
distance. An example will be given in Section VII.

For pixel differences uy o € R™, (6) is replaced by

K([luell) =

min M—IHE(UO Okt) (43)
o1r,e>0 \ 2( Y

o5 +0k0)

with ||ug ¢|| being the standard Euclidean norm. Note that o
and oy, ¢ are still scalar. Correspondingly, the prior p in (7) is
now

exp (z(aﬂgﬂl—c’ofél‘,z» L
(27 (02 + U,%’e))”/2

pllunell) = max (00,0k,) |,

0,020
(44)
with

h(co,01e) = Moo, ope) (21 (02 + 0’]%’@))”/2. (45)

The choice of h(ao, 0% ) and the minimizing &7 , are very
similar to the scalar case discussed in Section II.

A. Vector Plain SNUV
Choosing h as

/2

h(oo,0k) = (2m)"2(03 +070)"" (46)

the minimizing o ¢ in (43) (= the maximizing oy ¢ in (44))
is easily determined to be

[7,%,€ = argmin (

2
it

Y S e
2002 +02,) 2 ’

N ™

0, otherwise

with v £ n — p > 0. This gives

v In ] + YAZY) f (a2 > vo2
K(||luk.ell) = HL“g + v1In|ool, otherwise.
20¢

(49)
Note that i (and thus v) can be chosen freely, subject to v > 0.
For =0 and n = v = 1, (48) and (49) reduce to (12) and
(13), respectively.

B. Smoothed Powers of the Euclidean Norm
The generalization of the SNUV representation of scalar Lp
norms is as follows. With

n/2
h(oo,0k) = (2m(0f + 0% 4)) /

_32(9 _ 2 2 Vo5
~exp< B(2 —p)(og + 0} y) >, (50)

2p

the minimizing oy ¢ in (43) is given by

, el |77
O,e = max 4 0, ’ —% (> D
) B
resulting in
» _
8 [llusl bl 777 2
p| B
n(um) = Hu ”2 2—p P
k¢ 24— 2)2=7  otherwise
207 +5 2 (05)*", :
(52)

For n = 1, (52) reduces to the scalar smoothed Lp norm
(21).

VII. APPLICATION EXAMPLE II: COLOR IMAGE
SEGMENTATION BY ITERATIVE EDGE CUTTING

Image segmentation is the process of partitioning an image
into non-overlapping segments so that pixels belonging to
the same segment share certain properties. A great variety
of segmentation algorithms exists, based on techniques such
as thresholding, clustering, non-linear transformations, edge
detection, and many others [73]-[77]. In addition, neural-
networks have been very successful for segmentation tasks
[78], [79], but such networks need to be trained with large
numbers of correctly segmented images, and the results may
be biased by the database used for training.

We here discuss a segmentation method, first proposed in
[49], that is based on edge detection as in Sections III-B
or VI. If the image is already given, we choose A = I
(an identity matrix) and y is the given image. However, the
method can also be integrated into any imaging problem of the
form (1), including tomography as in Section V. The preferred
prior/regularizer is vector plain SNUV with py =0and v =n
as described in Section VI-A.

The algorithm iterates the following two steps:

1) Run a few iterations of Iterative Reweighted Descent as

in Section IV-A.

2) Cut all detected edges.

In Step 2, an edge is detected as in Section III-B. Cutting an
edge (k,¢) means to remove (k,¢) from A or, equivalently,
to fix oy ¢ = oo for all subsequent iterations. The algorithm
terminates when no new edges are detected and thus is
guaranteed to terminate.

It turns out that this algorithm works quite well; in partic-
ular, it yields satisfactory closed segments.

The original algorithm proposed in [49] used approximate
expectation maximization rather than IRCD in Step 1. In this
paper, we report (new) results with IRCD, which works rather
better and requires only few rounds of edge cutting. Moreover,
we now use the vector plain SNUV from Section VI (instead
of detecting edges in each color channel separately as in [49]).

Figures 12 and 13 show some experimental results using
two test images from the Berkeley Segmentation Dataset
(BSDS300) [80]. (These same examples were also used in
[49], but with approximate EM instead of IRCD.) Note that,
in these examples, the proposed method creates some single-
pixel segments (which, of course, can easily be removed, if
desired).



Normalized cuts method [82]

Fig. 12. A segmentation example. Left column: segment boundaries. Right
column: segments colored with intrasegment average color, boundaries marked
in purple.

The proposed algorithm was run with the following param-
eters (for both images): A =1, 62 = 1073, and 0% = 1071,
and 5 iterations of IRCD were used between subsequent
rounds of edge cutting.

For comparison, Figures 12 and 13 show also the results
of two other segmentation methods: mean shift [81] and
normalized cuts [82]. Concerning the mean shift algorithm,
note the crack in the sky behind the church, and the merging
of the red parts of the horizontal ribbons with the background
in the second image.

We also experimented with other standard algorithms in-
cluding K-means [83] and the watershed transformation [84],
but the results of these methods are inferior to all the methods
in Figures 12 and 13. From these figures and from many other
examples (not reported here), we conclude that the proposed
algorithm is not inferior to, and arguably better than, the mean
shift algorithm, and clearly outperforms the other methods.
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Normalized cuts method [82]

Fig. 13. Another segmentation example. Left column: segment boundaries.
Right column: segments colored with intrasegment average color.

VIII. CONCLUSION

While TV regularization prefers piecewise constant images,
a preference for piecewise smooth images with crisp edges
can be expressed by convex-concave regularizers/priors. We
described and discussed a new class of such priors using
normal priors with unknown variance (NUV).

Smoothed-NUV (SNUYV) priors include smoothed versions
of Lp norms with p < 1. However, the best empirical results
are obtained with the plain SNUV prior, which performs on
a par with the best prior convex-concave regularizers and
outperforms all other low-level regularizers.

All SNUV priors have variational representations that al-
low practical iterative algorithms for image reconstruction.
One such algorithm is iterative reweighted coordinate descent
(IRCD), which has no parameters (in particular, no step size
to control) and is more reliable than approximate expectation
maximization (EM) that was used in prior work.

We also described a new generalization of the SNUV priors
for images with vector-valued pixels such as color images.
Moreover, SNUV priors come with built-in edge detection



based on the sparsity of the unknown variances.

The proposed priors and algorithms were demonstrated with
applications to tomography and to color image segmentation
based on built-in edge detection.

APPENDIX A
PROOF OF THE THEOREM IN SECTION III-A

Recall the notation uy ;41 = Tkp+1 — Tk. The total cost
function (4) is

~
|

1

K (Uk k1)
1

r(x) = (53)

>
Il

with k(ug k+1) as in (13). Instead of minimizing (53) over x,
we can equivalently minimize over uq s, ...,ur—1,1, subject
to the constraint

L1
> g =L — a1 (54)
k=1

Recall that (13) is convex for u , ., < o and concave for
ui’k 41 = 0. It follows that, at any local minimum of (53),

u 41 > og for at most one index k. Let ¢ be that single
index. We thus have

u%,k—i—l < 03 for k # £. (55)
By concavity, we further have
U2 =...=uUr_1,;, except for ug i1 (56)

at any local minimum of (53).
We can thus reduce the minimization of (53) to a scalar
minimization over ug ¢4+ according to the following lemma.

Lemma. The local minima of (53) are given by the local
minima of the function

(93L — 1 — U£,£+1)2

Rluge1) = mluger) + 3L —2)07 57
0
together with
Uk,k—i—l — w for k ;A g (58)
L—-2 0

Proof of the Lemma. Using (55), the local minima of (53)
coincide with the local minima of

up k41

> ML ool | (59)

203

ke{l,..,.L—1}\{¢}

From (56) and (54), we have

Tp — 1 — Ug 41
L—2

Inserting (60) into (59) yields (57), up to an irrelevant constant.

O

K(ueet1) +

Uk pt1 = for k # 4. (60)

From now on, we will use the shorthand u, = Ug+1. The
derivative of (57) is
1 Ty —T1 — Uy .
— == " ifu? > o
d . g (L —2)o? =70
g U Tp — T — W
2 (L2l

(61)
if u? < od.

Note that (61) is continuous even at |ug| = og. Since (57) is
continuous and grows to infinity for |us| — oo, there must be
at least one local minimum, and all extrema of (57) can be
found by setting (61) to zero.

For u% < 03 , the derivative (61) is zero if and only if

T — 1

ue= "7 (62)
which yields the straight-line solution
U172 =... :uL_LL. (63)

This solution exists if and only if u? < 03, i.e., if and only if

lzr — 1]

L _1 S g0, (64)
which is (23).
For uf > 02, the derivative (61) is zero if and only if
ug(xy, — 1 —ug) — (L — 2)os = 0. (65)

This is a quadratic equation in u, with solutions

ug = E <JJL —x1 £ \/(TL —x1)? —4(L - 2)U(2)> (66)

2
xrp — 11 4L - 2)o?
=—([1x4/1———7—]. 67
2 ( (.’EL — 331)2 ( )
These solutions exist if
|xL—x1|2200 L—-2 (68)

which is (24). Of the two solutions (67), the one closer to the
origin is either a local maximum or it fails to satisfy u? > o2.

The other solution
A(L — 2)o2
14 )1= A= 2)op )"g (69)
(xr — 1)

rrL — 1

Uy = B

is always a local minimum and satisfies
— $1|
2

since L > 3. By (68), we then conclude that (69) is consistent
with the condition uj > 0.

2L

|Ug‘ > (70

APPENDIX B
DERIVATION OF (35) BY GAUSSIAN MESSAGE PASSING

The solution (35) of the least-squares problems (33), (34),
etc., can be derived by many standard methods. However,
if the reader is familiar with factor graphs as in [67], [68],
he may prefer to derive (35) by message passing in the
factor graph of Fig. 14. In this factor graph, the pixel X}, is
assumed to have the four neighbors Xy, ,..., X,,. Note that
this factor graph represents a Gaussian distribution with linear
constraints that is equivalent to the least-squares problem at
hand. Note also that this factor graph has no cycles, so that
the exact (MAP/MMSE/LMMSE) solution can be determined
by Gaussian message passing.

The momentarily fixed pixel values will be denoted by
as in (38). Likewise, the momentarily fixed variances will be
denoted by oy, ¢.



Fig. 14. Factor graph for the update of zj in IRCD. The small filled
boxes denote variables that are fixed and known (at this stage of the IRCD
algorithm). The neighbor pixels of X, are denoted Xy,,...,Xy,, with
present values Zy, , ..., Zg,, respectively. The boxes labeled “S” are SNUV
factors as in Fig. 3. The blue arrows indicate the messages ﬁxk and ﬁxk‘

Using the computation tables for Gaussian messages in [44],
all the following quantities can easily be read from Fig. 14.
First, the backward message fix, along the edge X}, (i.e., the
likelihood function) is a scalar Gaussian density, up to a scale
factor, with precision

Wx, =072 (A x)TA (1)
=o°l|A k| (72)
and mean iny, determined by
Wxnx, =0,2(A R |y— >, AuE| (73
e{1,...,LY\{k}
=02 (A1) (y - Vi) (74)

with y as in (36).
Second, the forward message 7ix, along the edge X (i.e.,
the prior) is a scalar density Gaussian with precision

Ux, = > (05 +067,)" (75)
£: b~k
and mean 771y, determined by
- = i’l
Wx, My, = — (76)
T 2 e,
(In Fig. 14, the sums in (75) and (76) run over {1,...,404.)

Finally, the (posterior) marginal distribution of X} is the
product of 7ix, and Jix,, up to a scale factor, which is
Gaussian with inverse variance given by

wx, = Wx, + Wx, (77)
=Yk (78)

with v as in (37), and with mean my, given by
wx, My = Wx, Mx, + Wx,nx, (79)

which is (35).
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