
Computing the Capacity of Rewritable Memories
Christoph Bunte and Amos Lapidoth

Signal and Information Processing Laboratory
ETH Zurich

Email: {bunte, lapidoth}@isi.ee.ethz.ch

Abstract—We propose an algorithm for computing the capacity
of discrete rewritable storage devices subject to a constraint on
the maximal number of rewrite operations. The linchpin is that—
although the number of writing strategies is exponential in the
maximal number of allowed rewrites—linear functionals of the
probabilities they induce on the output space can be efficiently
maximized using Dynamic Programming.

I. INTRODUCTION

We address the numerical computation of the capacity of
rewritable memory cells subject to a constraint on the max-
imal number of allowed rewrites. For a general information
theoretic model for rewritable memories see the recent work
by Lastras-Montaño et al. [1]. And for a study of the capacity
of rewritable memory cells with continuous alphabets see [1]–
[6]. For some related results on discrete write channels see [7].

A (noisy) memory cell is modeled as a discrete memoryless
channel (DMC) with input alphabet X = {1, . . . , |X |}, output
alphabet Y = {1, . . . , |Y|}, transition law W (y|x), and a max-
imal number of rewrites L, where L is a nonnegative integer.
The process of using a rewritable memory cell is specified
by a sequence of inputs x0, . . . , xL from X and a sequence
of target sets T0, . . . , TL ⊆ Y with TL = Y . In the initial
write iteration the cell is fed x0 and produces Y0 according
to the law W (·|x0). If Y0 is in T0, the storer halts. Otherwise
it feeds x1. In general, the storer halts after feeding the k-th
input symbol xk if, and only if, Yk is in Tk, where Yk is the
output of the channel induced by xk. Otherwise, it feeds xk+1.
Here k = 0, . . . ,L because the condition TL = Y guarantees
that the storer will halt after at most L rewrite iterations.

After the storage process is complete, the reader ob-
serves YN , where N = min{k ≥ 0 : Yk ∈ Tk}; it does not
observe Y0, . . . , YN−1. We refer to the pair x0, . . . , xL and
T0, . . . , TL as a “strategy.”

More generally, we could allow for randomization in the
storage process, but we shall not because this does not
increase the storage capacity. Also, one could allow (xk, Tk)
to depend on Y0, . . . , Yk−1, but this too does not increase
the storage capacity. We thus only consider strategies that are
characterized by an (L + 1)-tuple

s =
(
(x0, T0), . . . , (xL, TL)

)
,

with TL = Y . We denote the set of all such strategies by S.
Every s ∈ S induces a distribution of YN . This specifies a
memoryless channel with input alphabet S, output alphabet Y ,
and capacity

CL = max
S

I(S;YN), L = 0, 1, . . . ,

where the maximization is over the space of distributions on S.
Computing CL for increasing values of L is challenging

because the cardinality of S grows exponentially with L. This
renders the computation of CL using algorithms that optimize
over the space of input distributions (e.g., the Blahut-Arimoto
algorithm [8], [9]) intractable.1 The algorithm we propose
works primarily on the space of output distributions, which
is relatively small and does not depend on L.

For every strategy s ∈ S let w(s) denote the induced
distribution of YN . Taking the convex hull of the set

W , {w(s) : s ∈ S}, (1)

of all such distributions yields a convex polytope

P , conv
(
W). (2)

To achieve capacity, only strategies corresponding to the
extreme points (vertices) of P are required. This can be seen
from the Kuhn-Tucker conditions [11, Theorem 4.5.1] and
the convexity of relative entropy. Since the vertices of P
are in general difficult to determine, a promising approach
is to approximate P by simpler convex polytopes whose
vertices are readily computable. This is a common approach
for concave minimization problems [12]. The key is to find
suitable “cutting hyperplanes” to separate points from the
feasible set. We show how to derive such hyperplanes using
the Kuhn-Tucker conditions and properties of relative entropy.

The rest of this paper is organized as follows. In Section II
we introduce our notation; in section III we show that one
can restrict attention to strategies with certain properties, and
we upper-bound the number of vertices of P; in Section IV
we develop the algorithm and prove its convergence. Finally,
in Section V, we briefly discuss the implementation and
performance of the algorithm.

II. NOTATION

We use uppercase letters for random variables and lower-
case letters for their realizations. We use boldface letters for
(deterministic) vectors. The i-th component of the vector p
is denoted by p(i). The notation log p

q is to be understood
componentwise:

log
p

q
,

(
log

p(1)

q(1)
, . . . , log

p(n)

q(n)

)T

.

The standard inner product between p and q is denoted 〈p,q〉.
1This includes algorithms that are optimized for large input alphabets, e.g.,

[10], because the exponential growth of the cardinality of S in L makes it
infeasible to compute all the entries of the transition matrix.

2011 IEEE International Symposium on Information Theory Proceedings

978-1-4577-0595-3/11/$26.00 ©2011 IEEE 2512

III. ON CAPACITY-ACHIEVING STRATEGIES AND THE
NUMBER OF EXTREME POINTS OF P

The following result is presented without proof.

Proposition 1. Let S0 denote the subset of strategies that
satisfy all of the following conditions.

1) Nondecreasing target sets: T0 ⊆ T1 ⊆ · · · ⊆ TL;
2) nontrivial target sets: T0 6= ∅ and Tk 6= Y for k < L;
3) nondecreasing probability of stopping:

Pr(Yk+1 ∈ Tk+1) ≥ Pr(Yk ∈ Tk);

4) non-cycling pairs (xk, Tk): (xk+1, Tk+1) 6= (xk, Tk)
implies (xk′ , Tk′) 6= (xk, Tk) for all k′ > k.

Then the vertices of P form a subset of {w(s) : s ∈ S0}. In
particular, it suffices to take strategies in S0 to achieve the
capacity.

Corollary 1. The number of vertices of P is upper-bounded
by a polynomial in L.

IV. AN ALGORITHM FOR COMPUTING CL

The algorithm presented in this section exploits the follow-
ing fact.

Proposition 2. For every α ∈ R|Y| one can find a w? ∈ W
such that

〈w?,α〉 = max
w∈W

〈w,α〉 ,

with linear complexity in L.

This can be proved by constructing a simple Dynamic
Programming algorithm that carries out the maximization in
linear time. The details are omitted.

To avoid some technical issues related to the discontinuity
of relative entropy, we require that the channel law be positive:

W (y|x) > 0, for all x ∈ X , y ∈ Y. (3)

This guarantees that W is included in the relative interior of
the probability simplex in R|Y|.

If L = 0, then CL is equal to the capacity of the channel
W (y|x). Thus, we shall assume throughout that L ≥ 1. In
particular, it can be shown that this implies CL > 0 [7].

Consider the following dual expression for the capacity (see
the comment on page 142 of [13]),

CL = min
r

max
s∈S

D(w(s)||r),

where the minimization is over the space of distributions on Y .
By the convexity of relative entropy, this may be written as

CL = min
r

max
p∈P

D(p||r). (4)

Considering (4), the idea is to generate a decreasing sequence
of convex outer polytopes

P0 ⊃ P1 ⊃ · · · ⊃ Pk ⊇ P,

to obtain a nonincreasing sequence of upper bounds on CL:

uk , min
r

max
p∈Pk

D(p||r), k = 0, 1, . . . (5)

Let Vk denote the set of vertices of Pk. By the convexity of
the mapping p 7→ D(p||r),

uk = min
r

max
v∈Vk

D(v||r), k = 0, 1, . . . (6)

Thus, uk is the capacity of a DMC with |Vk| inputs whose
transition matrix has as columns the elements of Vk. In
practice, uk can be computed using, e.g., the Blahut-Arimoto
or Cutting-Plane algorithm [14].

We now discuss the construction of the polytopes Pk. To
this end, we shall frequently use the following inequality.

Proposition 3. If p,q, r are probability vectors in Rd, then〈
p, log

q

r

〉
≤ D(p||r),

with equality if, and only if, p = q.

Proof: This follows directly from the fact that
D(p||q) ≥ 0, with equality if, and only if, p = q.

We initialize the algorithm with the outer polytope

P0 =

{
p ∈ R|Y| : p(i) ≥ ε ∀i,

|Y|∑
i=1

p(i) = 1

}
, (7)

where ε > 0 is chosen sufficiently small so that W ⊆ P0

(and hence P ⊆ P0). This is possible by (3). Note that if p
and q are in P0, then log p

q is well-defined. Moreover, relative
entropy is continuous on P0 × P0.

Suppose we have computed Pk. Let rk denote the unique
capacity-achieving output distribution for Pk. By [11, Corol-
lary 3, p. 96], there exists a number

mk ∈ {2, . . . , |Y|} (8)

and a distribution qk on mk distinct elements of Vk,

vk,1, . . .vk,mk ,

such that

rk =

mk∑
j=1

q
(j)
k vk,j , (9)

and such that

q
(j)
k > 0, j = 1, . . . ,mk.

Thus, qk corresponds to a capacity-achieving input distribution
for Pk with mk mass points, and vk,1, . . . ,vk,mk are the
output distributions induced by the corresponding mk inputs.
By the Kuhn-Tucker conditions,

D(vk,j ||rk) = uk, j = 1, . . . ,mk, (10)

and
D(p||rk) ≤ uk, p ∈ Pk, (11)

so

D(vk,j ||rk) = max
p∈Pk

D(p||rk), j = 1, . . . ,mk. (12)

The following proposition shows that, once rk is computed,
finding a linear functional that is maximized uniquely over Pk
by vk,j is easy.

2513

Proposition 4. Let j ∈ {1, . . . ,mk}. If p ∈ Pk, then〈
p, log

vk,j
rk

〉
≤ D(vk,j ||rk),

with equality if, and only if, p = vk,j .

Proof: For every p ∈ Pk and every j ∈ {1, . . . ,mk},〈
p, log

vk,j
rk

〉
≤ D(p||rk) ≤ uk = D(vk,j ||rk),

where we used Proposition 3 in the first inequality, (11) in the
second inequality, and (10) in the equality. By Proposition 3,
we have equality only if p = vk,j .

A corollary to Proposition 4 provides us with a simple test
to check whether vk,j ∈ P .

Corollary 2. For every j ∈ {1, . . . ,mk},

max
s∈S

〈
w(s), log

vk,j
rk

〉
≤ D(vk,j ||rk), (13)

with equality if, and only if, vk,j ∈ P .

Proof: If vk,j /∈ P , then w(s) 6= vk,j for all s ∈ S.
Since w(s) ∈ P ⊆ Pk, strict inequality in (13) follows from
Proposition 4. If vk,j ∈ P , then vk,j = w(s0) for some s0 ∈
S because vk,j is an extreme point of Pk. Thus,

max
s∈S

〈
w(s), log

vk,j
rk

〉
≥
〈
w(s0), log

vk,j
rk

〉
= D(vk,j ||rk).

But the reverse inequality holds by Proposition 4.
Note that Proposition 2 asserts that the maximization in (13)

can be carried out efficiently. Another corollary to Proposi-
tion 4 is the following geometric observation.

Corollary 3. If vk,j /∈ P , then the supporting hyperplane
of P given by{

p :

〈
p, log

vk,j
rk

〉
= max

s∈S

〈
w(s), log

vk,j
rk

〉}
,

strictly separates vk,j from P .

Testing the vertices vk,1, . . . ,vk,mk for membership in P
using Corollary 2, we obtain a subset of Vk,

V ′k ,
{
vk,j : j ∈ {1, . . . ,mk}, vk,j /∈ P

}
. (14)

If V ′k is empty, the algorithm stops with the assurance that
uk = CL. Indeed, if vk,1, . . . ,vk,mk ∈ P , then

CL = min
r

max
p∈P

D(p||r) ≥ min
r

max
j∈{1,...,mk}

D(vk,j ||r) = uk.

But since uk is an upper bound on CL, equality holds. If V ′k
is nonempty, we construct a new polytope

Pk+1 = Pk ∩ P̃k, (15)

where P̃k is the intersection of the half-spaces corresponding
to the hyperplanes of Corollary 3, i.e.,

P̃k =
⋂

v∈V′
k

{
p :

〈
p, log

v

rk

〉
≤ max

s∈S

〈
w(s), log

v

rk

〉}
.

Going from Pk to Pk+1, we are “cutting off” the points in V ′k
from Pk. The k-th polytope may thus be written as

Pk = P0 ∩
k−1⋂
κ=0

P̃κ.

The body of the main algorithm can now be summarized as
follows.

Initialization: Initialize with P0 as in (7).
Step k: Compute Vk from Pk. From Vk compute uk
and qk and determine the vertices vk,1, . . . ,vk,mk
(using Blahut-Arimoto or otherwise). Test the ver-
tices vk,1, . . . ,vk,mk for membership in P to obtain
V ′k. If V ′k = ∅, declare “CL = uk” and stop.
Otherwise, compute Pk+1 and go to step k + 1.

Theorem 1 (Convergence of the Upper Bounds). If the
algorithm terminates after the k-th iteration, i.e., if V ′k = ∅,
then uk = CL. If the algorithm does not terminate after a
finite number of steps, i.e., if V ′k 6= ∅ for all k, then uk ↓ CL

as k →∞.

Proof: The first statement has already been proved. As-
sume therefore that V ′k is nonempty for all k. Since {uk}∞k=0

is nonincreasing and lower bounded by CL, we have uk ↓ u?
for some u? ≥ CL. It remains to show that u? ≤ CL.

Since, by (8), mk ∈ {2, . . . , |Y|} for all k, there exists
m ∈ {2, . . . , |Y|} and a strictly increasing sequence of positive
integers {λk}∞k=0 such that mλk = m for all k. Consider the
sequence of tuples

(vλk,1, . . . ,vλk,m,qλk), k = 0, 1, . . . (16)

and recall from (9) that

rλk =

m∑
j=1

q
(j)
λk

vλk,j .

Since the sequence (16) is from a compact set, there exists a
strictly increasing sequence of positive integers {µk}∞k=0 and
a tuple

(v?,1, . . . ,v?,m,q?),

where q? is a probability vector in Rm, and where v?,j ∈ P0

for j = 1, . . . ,m, such that

(vλµk ,1, . . . ,vλµk ,m,qλµk)→ (v?,1, . . . ,v?,m,q?),

as k →∞. Define

r? ,
m∑
j=1

q
(j)
? v?,j .

Then
rλµk → r?, (k →∞).

For convenience, put νk = λµk . We will show that v?,j ∈ P
for j = 1, . . . ,m. To this end, we prove the inequalities

D(v?,j ||r?) ≤ max
s∈S

〈
w(s), log

v?,j
r?

〉
, (17)

2514

and
D(v?,j ||r?) ≥ max

s∈S
D(w(s)||r?). (18)

To show (17), observe that for all k〈
vνk+1,j , log

vνk,j
rνk

〉
≤ max

s∈S

〈
w(s), log

vνk,j
rνk

〉
. (19)

Indeed, if vνk,j /∈ P , then one of the constraints defin-
ing Pνk+1

is〈
p, log

vνk,j
rνk

〉
≤ max

s∈S

〈
w(s), log

vνk,j
rνk

〉
, for all p,

and since vνk+1,j is in Pνk+1
, (19) holds. If vνk,j ∈ P , then,

by Corollary 2,

D(vνk,j ||rνk) = max
s∈S

〈
w(s), log

vνk,j
rνk

〉
. (20)

But since vνk+1,j ∈ Pνk+1
⊂ Pνk , it follows from Proposi-

tion 4 that 〈
vνk+1,j , log

vνk,j
rνk

〉
≤ D(vνk,j ||rνk). (21)

Combining (20) and (21) we conclude that (19) holds. Taking
k → ∞ on both sides of (19) we obtain (17). To prove (18),
observe that

D(vνk,j ||rνk) = max
p∈Pνk

D(p||rνk)

≥ max
p∈P

D(p||rνk)

= max
s∈S

D(w(s)||rνk),

where we used (12) in the first line, the fact that P ⊆ Pνk in
the second line, and the convexity of relative entropy in the
last line. Letting k →∞ gives (18). Combining (17) and (18)
and using Proposition 3, we obtain

D(v?,j ||r?) ≤ max
s∈S

〈
w(s), log

v?,j
r?

〉
≤ max

s∈S
D(w(s)||r?)

≤ D(v?,j ||r?).

Consequently,

max
s∈S

〈
w(s), log

v?,j
r?

〉
= max

s∈S
D(w(s)||r?),

which, by Proposition 3, implies that v?,j = w(s?j) for some
s?j ∈ S. We conclude that v?,j ∈ P for j = 1, . . . ,m. Thus,

CL ≥ H
(m∑
j=1

q
(j)
? v?,j

)
−

m∑
j=1

q
(j)
? H(v?,j)

= lim
k→∞

(
H(rνk)−

m∑
j=1

q(j)νk H(vνk,j)

)
= lim
k→∞

uνk

= u?,

where, in the second line, we used the continuity of entropy
(see [13, p. 33, Lemma 2.7]).

We now extend the main algorithm so that it produce an
additional monotonic sequence {lk}∞k=0 of lower bounds. This
sequence will be shown to converge to CL after at most a finite
number of steps.

For mk as in (8) and j = 1, . . . ,mk let s?k,j ∈ S be a
solution of the maximization

max
s∈S

〈
w(s), log

vk,j
rk

〉
, (22)

which is carried out by the main algorithm to determine
membership of vk,j in P (see Corollary 2). Define the sets

Wk ,
k⋃
κ=0

mκ⋃
j=1

{
w(s?κ,j)

}
, k = 0, 1, . . .

Since Wk ⊆ W , running a capacity algorithm on Wk yields
a lower bound lk on CL:

lk , min
r

max
w∈Wk

D(w||r), k = 0, 1, . . .

The lk’s are nondecreasing because Wk ⊆ Wk+1. Note that
the convex hull of Wk is an inner approximation of P .

Theorem 2 (Convergence of the Lower Bounds). If the
algorithm stops after the k-th iteration, i.e., if V ′k = ∅, then
lk = CL. If the algorithm does not stop after a finite number of
steps, i.e., if V ′k 6= ∅ for all k, then lk = CL for all sufficiently
large k.

Proof: If V ′k = ∅, then for all j ∈ {1, . . . ,mk} we have
vk,j = w(sj) for some sj ∈ S. It suffices to show that
w(sj) ∈ Wk for all j ∈ {1, . . . ,mk}. If w(s) 6= w(sj),
then 〈

w(s), log
vk,j
rk

〉
=

〈
w(s), log

w(sj)

rk

〉
< D(w(s)||rk)

≤ uk
= D(vk,j ||rk)

=

〈
w(sj), log

vk,j
rk

〉
, (23)

where we used Proposition 3 in the second line, (11) and the
fact that P ⊆ Pk in the third line, (10) in the fourth line, and
the fact that vk,j = w(sj) in the last line. Since the inequality
is strict, it follows that w(s?k,j) = w(sj), and we conclude that
w(sj) ∈ Wk for all j ∈ {1, . . . ,mk}.

If the algorithm does not terminate after a finite number of
steps, consider for every j ∈ {1, . . . ,m} the limit v?,j of the
subsequence {vνk,j}∞k=0 as in the proof of Theorem 1. We
show that v?,j ∈ Wk for all sufficiently large k. From the
proof of Theorem 1 we know that for all j ∈ {1, . . . ,m} we
have v?,j = w(s?j) for some s?j ∈ S. Thus, for every s ∈ S
such that w(s) 6= w(s?j),〈

w(s), log
v?,j
r?

〉
=

〈
w(s), log

w(s?j)

r?

〉
< D(w(s)||r?), (24)

2515

by Proposition 3. Moreover, for every k,

D(w(s)||rνk) ≤ uνk ,

by (11) and the fact that P ⊆ Pνk . Taking k →∞, we obtain

D(w(s)||r?) ≤ u?. (25)

We further have

D(v?,j ||r?) = lim
k→∞

D(vνk,j ||rνk)

= lim
k→∞

uνk

= u?. (26)

where we used (10) in the second line. Combining (24), (25),
and (26) gives〈

w(s), log
v?,j
r?

〉
< D(v?,j ||r?), w(s) 6= w(s?j).

Thus, for every s ∈ S satisfying w(s) 6= w(s?j), we have that

ε(s) , D(v?,j ||r?)−
〈
w(s), log

v?,j
r?

〉
(27)

is positive. By continuity, for every s ∈ S, there is ∆(k, s) ≥ 0
such that〈

w(s?j), log
vνk,j
rνk

〉
−
〈
w(s), log

vνk,j
rνk

〉
≥
〈
w(s?j), log

v?,j
r?

〉
−
〈
w(s), log

v?,j
r?

〉
−∆(k, s), (28)

where ∆(k, s)→ 0 as k →∞. Combining (27), (28), and the
fact that v?,j = w(s?j), we obtain for every s ∈ S such that
w(s) 6= w(s?j),〈

w(s?j), log
vνk,j
rνk

〉
−
〈
w(s), log

vνk,j
rνk

〉
≥ ε(s)−∆(k, s)

≥ min
s′∈S:

w(s′)6=w(s?j)

(
ε(s′)−∆(k, s′)

)
> 0,

for all large enough k. It follows that for every j ∈ {1, . . . ,m}
there exists k(j) such that w(s?νk(j),j) = w(s?j). We conclude
that {v?,1, . . . ,v?,m} ⊆ Wk, and hence lk = CL, for all
sufficiently large k.

V. IMPLEMENTATION AND PERFORMANCE

We have not yet addressed the question of how to compute
the vertices of the polytopes Pk. There is extensive literature
on the subject, and a number of approaches can be found in
[12, Chapter II, Sec. 4.2]. A typical implementation is based
on “pivot operations”, as used in the Simplex method [15].
It should be noted that it is not necessary to compute all
the vertices of Pk in every iteration. Indeed, since Pk is the
intersection of Pk−1 with a number of half-spaces, one has to
compute only the new vertices generated at the intersections

of Pk−1 with the hyperplanes corresponding to the half-spaces,
and discard all vertices of Pk−1 that have been “cut off”.

Another important question is how the algorithm scales
with the problem size. Unfortunately, we do not have a
complexity analysis. Our simulations suggest, however, that
the performance depends heavily on |Y|, and only mildly
on |X | and L. For example, for |Y| = 4 we were able to
compute CL to within 10−5 of the exact value in a few
seconds. For |Y| = 7 this took several hours. We therefore
predict that the usefulness of the algorithm is limited to small
values of |Y|.

We noticed that most of the computation time goes into
computing lk, uk and qk; in this setting, it seems that
the Cutting-Plane algorithm outperforms the Blahut-Arimoto
algorithm. We also noticed that the lower bounds lk typically
give a good approximation of CL after just a few iterations.

ACKNOWLEDGMENT

The authors would like to thank Ligong Wang for helpful
discussions.

REFERENCES

[1] L. Lastras-Montano, M. Franceschini, T. Mittelholzer, and M. Sharma,
“Rewritable storage channels,” Proc. ISITA 2008, pp. 7–10.

[2] T. Mittelholzer, M. Franceschini, L. Lastras-Montano, I. Elfadel, and
M. Sharma, “Rewritable channels with data-dependent noise,” in 2009
International Conference on Communications, 2009, pp. 1–6.

[3] M. Franceschini, L. Lastras-Montano, T. Mittelholzer, and M. Sharma,
“The role of feedback in rewritable storage channels [Lecture Notes,”
IEEE Signal Processing Magazine, vol. 26, pp. 190–194, 2009.

[4] L. Lastras-Montano, T. Mittelholzer, and M. Franceschini, “Super-
position coding in rewritable channels,” in Information Theory and
Applications workshop (ITA2010).

[5] L. Lastras-Montano, M. Franceschini, and T. Mittelholzer, “The capacity
of the uniform noise rewritable channel with average cost,” in Informa-
tion Theory Proceedings (ISIT), 2010 IEEE International Symposium
on. IEEE, 2010, pp. 201–205.

[6] T. Mittelholzer, L. Lastras-Montano, M. Sharma, and M. Franceschini,
“Rewritable storage channels with limited number of rewrite iterations,”
in Information Theory Proceedings (ISIT), 2010 IEEE International
Symposium on. IEEE, 2010, pp. 973–977.

[7] C. Bunte and A. Lapidoth, “On the storage capacity of rewritable
memories,” in Electrical and Electronics Engineers in Israel (IEEEI),
2010 IEEE 26th Convention of. IEEE, pp. 402–405.

[8] R. Blahut, “Computation of channel capacity and rate-distortion func-
tions,” Information Theory, IEEE Transactions on, vol. 18, no. 4, pp.
460–473, 2002.

[9] S. Arimoto, “An algorithm for computing the capacity of arbitrary
discrete memoryless channels,” Information Theory, IEEE Transactions
on, vol. 18, no. 1, pp. 14–20, 2002.

[10] X. Liang, “A fast algorithm for computing the capacity of discrete
memoryless channels,” in Information Sciences and Systems (CISS),
2010 44th Annual Conference on. IEEE, pp. 1–6.

[11] R. Gallager, Information theory and reliable communication. John
Wiley & Sons, Inc. New York, NY, USA, 1968.

[12] R. Horst and H. Tuy, Global optimization: Deterministic approaches.
Springer Verlag, 1996.

[13] I. Csiszár and J. Körner, Information theory: coding theorems for
discrete memoryless systems. Academic Press, Inc. Orlando, FL, USA,
1982.

[14] J. Huang and S. Meyn, “Characterization and computation of optimal
distributions for channel coding,” Information Theory, IEEE Transac-
tions on, vol. 51, no. 7, pp. 2336–2351, 2005.

[15] D. Bertsimas and J. Tsitsiklis, Introduction to linear optimization.
Athena Scientific Belmont, MA, 1997.

2516

