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Abstract— We show that the zero-undetected-error capacity
(a.k.a. erasures-only capacity and zero-error erasure capacity)
of a discrete memoryless channel with feedback is equal to its
ordinary capacity whenever its zero-undetected-error capacity
without feedback is positive, i.e., whenever it has an output
that is reachable from some but not all inputs, and that
otherwise its zero-undetected-error capacity is zero. We then
show that feedback can increase the zero-undetected-error
capacity. Finally, the result is extended to multiple-access and
broadcast channels.

I. INTRODUCTION

In typical communication schemes a decoding error is

defined as the event that the receiver does not produce the

message selected by the transmitter. This may happen in one

of two ways: the receiver may produce a message different

from the one selected by the transmitter, or it may refuse

to decode altogether. In the former case we say that an

undetected error has occurred, while in the latter case we say

that an erasure has occurred. In classical channel coding one

does not usually distinguish between the two types of errors.

This is not always appropriate, in particular in situations

where undetected errors may have grave consequences.

In a 1968 paper [1] Forney noticed that if a discrete

memoryless channel (DMC) has an output that is reachable

from some but not all of its inputs, then positive rates are

achievable with arbitrarily small probability of erasure and

zero probability of undetected errors. The largest such rate is

called the zero-undetected-error capacity [2], or the erasures-

only capacity [3], or the zero-error erasure capacity [4].

Determining the zero-undetected-error capacity for arbi-

trary DMCs is still an open problem. However, a number

of contributions have been made over the years [1]–[7], the

main results of which are summarized below. But first some

notation and definitions.

We use W to denote the transition law (or channel

matrix) of a generic DMC with finite input alphabet X and

finite output alphabet Y . The corresponding n-fold product

channel Wn is defined by

Wn(y|x) =
n
∏

j=1

W (yj |xj), x ∈ Xn,y ∈ Yn, (1)

where xj and yj denote the j-th components of x and y.

A zero-undetected-error code of blocklength n comprises

a message set M and an encoding function

f : M → Xn.

Upon receiving y ∈ Yn the decoder declares an erasure if

the list of messages that cannot be ruled out

L(y) =
{

m ∈ M : Wn
(

y|f(m)
)

> 0
}

contains more than one message; otherwise it produces the

only message on the list. The maximal erasure probability is

max
m∈M

Pr
[

|L(Y)| > 1
∣

∣M = m
]

,

and the average erasure probability is

1

|M|

∑

m∈M

Pr
[

|L(Y)| > 1
∣

∣M = m
]

.

The rate of the code is n−1 log|M|. The zero-undetected-

error capacity C0u is defined as the largest number R such

that there exists a sequence of zero-undetected-error codes

with erasure probability tending to zero and rate approach-

ing R as the blocklength tends to infinity.

For channels with feedback we replace the encoding

function f by a finite sequence of functions

fj : M×Yj−1 → X , j = 1, . . . , n

and the list of messages that cannot be ruled out by

Lf(y) =

{

m ∈ M :

n
∏

j=1

W
(

yj|fj(m, yj−1
1 )

)

> 0

}

, (2)

where yj−1
1 is shorthand for y1, . . . , yj−1. The zero-

undetected-error capacity for channels with feedback is de-

noted C0uf.

The definition of C0u and C0uf does not depend on whether

we use an average or maximal erasure probability criterion.

Indeed, by discarding the worst half of the messages of each

code in a sequence of codes approaching rate R with average

erasure probability tending to zero, we obtain a sequence of

codes approaching rate R with maximal erasure probability

tending to zero.

Using a random coding argument with letter-by-letter IID

codebooks Forney [1] showed that

C0u ≥ max
Q

∑

y∈Y

(QW )(y) log
1

∑

x∈X :W (y|x)>0Q(x)
, (3)

where the maximization is over all distributions Q on X and

where QW denotes the output distribution induced by Q,
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i.e.,

(QW )(y) =
∑

x∈X

W (y|x)Q(x), y ∈ Y.

Using (3) it is not difficult to show that C0u > 0 if, and only

if, there exists a triple (x, x′, y) ∈ X × X × Y such that

W (y|x) = 0 and W (y|x′) > 0, i.e., there exists an output

that is reachable from some but not all inputs.1 Moreover,

Forney’s bound and Shannon’s expression for the zero-error

capacity of DMCs with feedback [8] establish the relation

C0 ≤ C0f ≤ C0u ≤ C0uf ≤ C, (4)

where C0f and C0 denote the zero-error capacity with and

without feedback, respectively, and C denotes the (ordinary)

capacity (see, e.g., [9] for these concepts). Indeed, Shannon

proved that

C0f =

{

ρ if C0 > 0,

0 otherwise,
(5)

where

ρ = max
Q

min
y∈Y

log
1

∑

x∈X :W (y|x)>0Q(x)
, (6)

and the maximization is over all distributions Q on X .

Comparing (3) and (6) we see that C0f ≤ C0u. The remaining

inequalities in (4) are clear.

Forney’s bound is in general not tight. A better lower

bound can be obtained by random coding over codes of

constant composition [2], [4], [6], [10]:

C0u ≥ max
Q

min
V≪W

QV =QW

I(Q, V ), (7)

where the maximization is over all distributions Q on X
and where the minimization is over all auxiliary channels V
such that V (y|x) = 0 whenever W (y|x) = 0 and such

that V induces the same output distribution under Q as

the true channel W . Although (7) is better than (3), it is

not always tight [4], [6]. One can obtain tighter non-single-

letter bounds by applying (3) or (7) to the n-fold product

channel (1) and normalizing the result by n. In fact, it can

be shown that both bounds become tight in the limit as n
tends to infinity [3], [4]. Although this characterizes C0u in

terms of information theoretic quantities, it does not solve

the problem of computing C0u numerically. It is also worth

mentioning that, in general, neither the maximization in (3)

nor the maximization in (7) is a concave problem, which

diminishes the practical usefulness of these bounds.

Computing C0u becomes trivial in cases where it is known

that C0u equals C. Pinsker and Sheverdyaev [5] proved that

equality holds if the bipartite channel graph is acyclic.2 This

is not a necessary condition. In fact, the class of DMCs for

which equality is known to hold was extended by Telatar

1If we assume that every output is reachable from some input, this is
equivalent to the channel matrix containing a zero.

2This graph is formed by introducing edges between all input-output pairs
that have positive transition probability. Thus, an equivalent way of stating
that the graph is acyclic is to say that there does not exist ℓ ≥ 2, distinct
inputs x1, . . . , xℓ and distinct outputs y1, . . . , yℓ such that W (yj |xj) > 0,
W (yj |xj+1) > 0 for j = 1, . . . , ℓ and xℓ+1 = x1.

and Gallager [6] and further by Csiszár and Narayan [3]: It

now includes all channels W such that, for some positive

functions A(·) and B(·), and some capacity-achieving input

distribution Q⋆, the relation W (y|x) = A(x)B(y) holds

whenever Q⋆(x)W (y|x) > 0. It was conjectured in [3] that

this condition is also necessary for equality.

While no single-letter expression for C0u is known, the

contribution of this paper is in exhibiting one for C0uf.

More specifically, we use a simple two-phase coding scheme,

inspired by Burnashev [11], to show that C0uf coincides

with C whenever C0u is positive, and that otherwise C0uf

is zero; a proof is provided in Section II. In Section III,

we use this result to show that feedback can increase the

zero-undetected-error capacity. In Sections IV and V we give

an extension to multiple-access and broadcast channels. We

conclude the paper in Section VI with a brief discussion of

the results.

II. MAIN RESULT

Theorem 1: For every DMC

C0uf =

{

C if C0u > 0,

0 otherwise.
(8)

Remark 1: As pointed out in Section I, C0u is positive if,

and only if, there is a triple (xe, xc, yc) ∈ X × X × Y such

that W (yc|xe) = 0 and W (yc|xc) > 0.

Proof: Without loss of generality we may assume that

every output is reachable from some input, i.e., for every

y ∈ Y there is some x ∈ X such that W (y|x) > 0.

Consequently, if C0u is zero, then W (y|x) must be positive

for all pairs (x, y) ∈ X × Y by Remark 1. Thus, no matter

which sequence of output letters is received, no message can

be ruled out, i.e., Lf(y) = M for every y ∈ Yn. It follows

that the erasure probability is 1 for all zero-undetected-error

feedback codes having more than one message, so C0uf must

be zero.

Now assume that C0u is positive and let the

triple (xe, xc, yc) be as in Remark 1. Take a capacity-

achieving sequence of codes {Cn}
∞
n=1 and let {Mn}

∞
n=1

be the corresponding sequence of message sets. More

precisely, let {Cn}
∞
n=1 be a sequence of codes whose

maximal probability of error tends to zero and whose rate

approaches C as the blocklength n tends to infinity. Choose

a sequence {νn}
∞
n=1 of positive integers such that νn → ∞

and νn/n → 0 as n → ∞ (e.g., νn = ⌈log(n + 1)⌉). We

construct for each n a zero-undetected-error feedback code

of blocklength n + νn and message set Mn as follows.

Suppose we wish to transmit the message m ∈ Mn.

In the first n channel uses we send the codeword of Cn
corresponding to m. After having received the first n output

letters the receiver uses the decoder for the code Cn to form

an estimate m̂ of the message. Thanks to the feedback link,

the transmitter can do the same. Thus, m̂ is available at

both the transmitter and the receiver, and the transmitter can

compare this estimate to the true message m. If the estimate

is correct, i.e., if m̂ is equal to m, then the transmitter uses

the remaining νn channel uses to convey this fact to the
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Fig. 1. A DMC with C0u < C0uf

receiver by sending νn times the letter xc. If the estimate

is incorrect, i.e., if m̂ 6= m, then the transmitter sends νn
times the letter xe to trigger an erasure. Accordingly, if

the receiver observes the letter yc in at least one of the

last νn positions, it knows with certainty that the estimate

is correct and produces m̂; if the letter yc does not appear

in the last νn positions, the receiver declares an erasure.

Observe that the probability of an undetected error of this

coding scheme is zero. Indeed, the transmitter knows when

the estimate is wrong, and its mechanism for triggering

an erasure by sending the letter xe (νn times) is reliable

in the sense that the probability of the receiver observing

the letter yc in any of the last νn positions is zero when

m̂ 6= m. On the other hand, the probability of an erasure

conditional on the transmitted message being m is upper

bounded by the sum of the probability that the decoder

for the code Cn errs and the probability that none of the

last νn received output letters equals yc conditional on the

last νn input letters being equal to xc. The first of these two

probabilities tends to zero by the choice of {Cn}
∞
n=1, while

the second probability is
(

1−W (yc|xc)
)νn

,

which tends to zero as n → ∞ because W (yc|xc) is positive

and νn → ∞. We thus conclude that the maximal erasure

probability tends to zero. The proof is completed by noting

that the rate of the constructed code is

log|Mn|

n+ νn
=

1

1 + νn
n

log |Mn|

n
→ C, n → ∞.

III. FEEDBACK CAN INCREASE THE

ZERO-UNDETECTED-ERROR CAPACITY

Consider the channel in Figure 1 for some 0 < ǫ < 1/2.

The capacity of this channel is

C = log
(

1 + exp
(

log 2−Hb(ǫ)
)

)

,

where Hb(·) denotes the binary entropy function

Hb(ǫ) = −ǫ log ǫ− (1− ǫ) log(1− ǫ).

By Theorem 1, C0uf is equal to C for this channel and thus

C0uf > log 2.

We claim that C0u = log 2. Indeed, C0u ≥ log 2 because

we can transmit 1 bit per channel use with zero probability

of erasure and zero probability of error by using only the

inputs a and c. To show that C0u ≤ log 2, note that for code-

words of blocklength n there are 2n distinct patterns of c’s
so any code with more than 2n messages will have a pair

of distinct messages m and m′ such that the corresponding

codewords f(m) and f(m′) have the same pattern of c’s.

(That is, the j-th component of f(m) is c if, and only if,

the j-th component of f(m′) is c.) But this implies that m
and m′ have the same sequences of output letters that they

can induce with positive probability so transmitting m or m′

results in an erasure with probability 1. Consequently, no

zero-undetected-error code of blocklength n and maximal

erasure probability less than 1 can have more than 2n

messages, establishing that C0u ≤ log 2.

IV. EXTENSION TO MULTIPLE-ACCESS CHANNELS

In this section we use W to denote the transition law

of a generic discrete memoryless multiple-access channel

(DM-MAC) with finite input alphabets X1,X2 and finite

output alphabet Y . The definition of a zero-undetected-error

code for the DM-MAC is a straightforward extension of the

definition for DMCs. We use RMAC
f and RMAC

0uf to denote the

capacity region (average error probability criterion) and zero-

undetected-error capacity region (average erasure probability

criterion) when feedback is available at both transmitters.3

Theorem 2: Let W1 denote the set of all DM-MACs

for which there is a quadruple (x1,e, x1,c, x2,h, y1,c) ∈
X1 × X1 × X2 × Y such that W (y1,c|x1,e, x2,h) = 0
and W (y1,c|x1,c, x2,h) > 0. Similarly, let W2 denote

the set of all DM-MACs for which there is a quadruple

(x1,h, x2,e, x2,c, y2,c) ∈ X1 × X2 × X2 × Y such that

W (y2,c|x1,h, x2,e) = 0 and W (y2,c|x1,h, x2,c) > 0. Then,

RMAC
0uf =



















RMAC
f if W ∈ W1 ∩W2,

[0, R1,max]× {0} if W ∈ W1 ∩Wc
2,

{0} × [0, R2,max] if W ∈ Wc
1 ∩W2,

{(0, 0)} if W ∈ Wc
1 ∩Wc

2,

where

R1,max = max
QX1

,x2∈X2

I(X1;Y |X2 = x2),

and

R2,max = max
QX2

,x1∈X1

I(X2;Y |X1 = x1).

Proof: For the converse we show that if W ∈ Wc
2,

then no zero-undetected-error feedback code with average

erasure probability less than 1 and more than one message

for Transmitter 2 exists. (The case W ∈ Wc
1 is similar.)

Consider the list of message pairs that the receiver cannot

3Theorem 2 remains true if both RMAC
f

and RMAC
0uf

are defined with
a maximal instead of an average error and erasure probability criterion,
respectively.
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rule out

LMAC
f (y) =

{

(m1,m2) ∈ M1 ×M2 :

n
∏

j=1

W
(

yj |f1,j(m1, y
j−1
1 ), f2,j(m2, y

j−1
1 )

)

> 0

}

,

(9)

where

f1,j : M1 × Yj−1 → X1, j = 1, . . . , n,

and

f2,j : M2 × Yj−1 → X2, j = 1, . . . , n,

are the encoding functions of Transmitters 1 and 2. Now

if W ∈ Wc
2, then the condition W (y|x1, x2) > 0 implies

that W (y|x1, x
′
2) > 0 for all x′

2 ∈ X2. Thus, from (9) we

see that if (m1,m2) ∈ LMAC
f (y), then (m1,m

′
2) ∈ LMAC

f (y)
for every m′

2 ∈ M2, so the average erasure probability is 1

whenever |M2| > 1.

The direct part is a straightforward extension of the

direct part of Theorem 1 and we present only the case

W ∈ W1 ∩W2: Let {ηn}
∞
n=1 be a sequence of positive even

numbers such that ηn → ∞ and ηn/n → 0 as n → ∞.

We construct a code of blocklength n + ηn as follows. In

the first n channel uses Transmitter 1 and Transmitter 2

use the n-th code CMAC
f,n in a sequence of codes achieving

the rate pair (R1, R2) ∈ RMAC
f . The receiver observes the

first n channel outputs and, using the decoder for CMAC
f,n ,

forms the message estimates m̂1 and m̂2. The feedback

allows Transmitter 1 to compare the estimate m̂1 to the

true message m1, and likewise for Transmitter 2. In the

next ηn/2 channel uses Transmitter 2 helps Transmitter 1

by sending ηn/2 times the letter x2,h, while Transmitter 1

sends either ηn/2 times the letter x1,e (if m̂1 6= m1), or ηn/2
times the letter x1,c (if m̂1 = m1). In the remaining ηn/2
channel uses the roles of Transmitter 1 and Transmitter 2 are

reversed. If the receiver observes the letter y1,c at least once

in the sequence yn+1, . . . , yn+ηn/2 and the letter y2,c at least

once in the sequence yn+ηn/2+1, . . . , yn+ηn
, it produces the

pair (m̂1, m̂2); otherwise it erases both messages. As in the

proof of Theorem 1, the probability of an undetected error

of this code is zero; the average erasure probability tends

to zero; and the sequence of rate pairs tends to (R1, R2)
as n → ∞.

V. EXTENSION TO BROADCAST CHANNELS

In this section we use W to denote the transition law of

a generic discrete memoryless broadcast channel (DM-BC)

with finite input alphabet X and finite output alphabets Y1

and Y2. The transition laws of the marginal channels to

Receiver 1 and Receiver 2 are denoted W1 and W2, i.e.,

W1(y1|x) =
∑

y2∈Y2

W (y1, y2|x), x ∈ X , y1 ∈ Y1,

and

W2(y2|x) =
∑

y1∈Y1

W (y1, y2|x), x ∈ X , y2 ∈ Y2.

To simplify the presentation, we focus on the case where

the transmitter wants to convey a message m1 ∈ M1 to

Receiver 1 and a message m2 ∈ M2 to Receiver 2 (no

common message). The definition of a zero-undetected-error

code for the DM-BC is a straightforward extension of the

definition for DMCs. We use RBC
f and RBC

0uf to denote the

capacity region (average error probability criterion) and zero-

undetected-error capacity region (average erasure probability

criterion) when feedback from both receivers is available at

the transmitter.4

Theorem 3: Let V1 denote the set of DM-BCs for which

there is a triple (x1,e, x1,c, y1,c) ∈ X × X × Y1 such

that W1(y1,c|x1,e) = 0 and W1(y1,c|x1,c) > 0. Similarly,

let V2 denote the set of DM-BCs for which there is a triple

(x2,e, x2,c, y2,c) ∈ X × X × Y2 such that W2(y2,c|x2,e) = 0
and W2(y2,c|x2,c) > 0. Then,

RBC
0uf =



















RBC
f if W ∈ V1 ∩ V2,

[0, C1]× {0} if W ∈ V1 ∩ Vc
2,

{0} × [0, C2] if W ∈ Vc
1 ∩ V2,

{(0, 0)} if W ∈ Vc
1 ∩ Vc

2,

where C1 and C2 denote the (ordinary) capacities of the

marginal channels W1 and W2.

Proof: The direct part is similar to the direct parts of

Theorems 1 and 2 and is omitted. For the converse consider

the list of messages that cannot be ruled out by Receiver 2

LBC
f,2(y2) =

{

m2 ∈ M2 : ∃m1 ∈ M1, y1 ∈ Yn
1 s.t.

n
∏

j=1

W
(

y1,j, y2,j |fj(m1,m2, y
j−1
1,1 , yj−1

2,1 )
)

> 0

}

, (10)

where

fj : M1 ×M2 × Yj−1
1 × Yj−1

2 → X , j = 1, . . . , n,

are the encoding functions. If W ∈ Vc
2, then W2(y2|x) > 0

implies W2(y2|x
′) > 0 for all x′ ∈ X . Consequently, if

m2 ∈ LBC
f,2(y2), we see from (10) that W2(y2,j |x) > 0

for all x ∈ X and all j ∈ {1, . . . , n}, and therefore

that for every x ∈ X and every j ∈ {1, . . . , n} there is

y1,j ∈ Y1 such that W (y1,j , y2,j|x) > 0. Thus, for every

pair (m1,m
′
2) ∈ M1 × M2 we can find y1,1 ∈ Y1 such

that W (y1,1, y2,1|f1(m1,m
′
2)) > 0, then find y1,2 ∈ Y1 such

that W (y1,2, y2,2|f2(m1,m
′
2, y1,1, y2,1)) > 0, and so on.

Proceeding in this fashion we obtain a sequence y1 ∈ Yn
1

such that
∏n

j=1 W (y1,j , y2,j|fj(m1,m
′
2, y

j−1
1,1 , yj−1

2,1 )) > 0,

which shows that m′
2 ∈ LBC

f,2(y2). Thus, no message for

Receiver 2 can be ruled out and we must have |M2| = 1
for all zero-undetected-error codes with average erasure

probability less than 1. The case W ∈ Vc
1 is similar.

4Theorem 3 remains true if both RBC
f

and RBC
0uf

are defined with a
maximal instead of an average error and erasure probability criterion,
respectively.
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VI. CONCLUDING REMARKS

The observations in Sections II and III show that the

zero-undetected-error capacity has a number of features in

common with the zero-error capacity: while both are still

unknown in general, both admit a single-letter expression

in the presence of, and can be increased by, feedback.

Moreover, formulas (5) and (8) exhibit a similar zero-nonzero

dichotomy.
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