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Abstract—We study the cutoff rate and the average-listsize
capacity of discrete memoryless channels (DMCs) with feedback.
We show that feedback can increase the average-listsize capacity
but not the cutoff rate. For DMCs with positive zero-error
capacity, we show that the average-listsize capacity with feedback
is equal to the cutoff rate. For all other DMCs, we derive a lower
bound on the average-listsize capacity with feedback. The bound
is asymptotically tight for low-noise channels. We also show that
a multi-letter version of Forney’s lower bound on the average-
listsize capacity of DMCs without feedback is asymptotically tight.

I. INTRODUCTION

Consider a discrete memoryless channel (DMC) with tran-
sition law W and finite input and output alphabets X and Y .
The average-listsize capacity Ca-l [1] (a.k.a. zero-error list
capacity [2]) is defined as the supremum of all rates R that
are achievable in the following sense: there exists a sequence
of rate-R blocklength-n encoders

fn :
{
1, . . . , 2nR

}
→ Xn, n = 1, 2, . . . (1)

such that

lim
n→∞

1

2nR

2nR∑
m=1

∑
y

L(y)Wn
(
y|fn(m)

)
= 1, (2)

where

Wn(y|x) =
∏

1≤j≤n

W (yj |xj), x ∈ Xn, y ∈ Yn, (3)

and where L(y) denotes the number of messages that cannot
be ruled out by the receiver after observing y

L(y) =
∣∣{m :Wn

(
y
∣∣fn(m)

)
> 0
}∣∣. (4)

The cutoff rate Rcutoff is defined similarly with L(y) in (2)
replaced with

L(y,m) =
∣∣{m′ :Wn

(
y
∣∣fn(m′)) ≥Wn

(
y
∣∣fn(m)

)}∣∣, (5)

i.e., with the number of messages that are at least as likely
as the transmitted message given that y is received. It can be
expressed in closed-form as [3]

Rcutoff = max
Q

E0(1, Q), (6)

where E0 is Gallager’s exponent function [4]

E0(ρ,Q) = − log
∑
y

[∑
x

Q(x)W (y|x)
1

1+ρ

]1+ρ
. (7)

The definitions of the zero-undetected-error capac-
ity C0-u [2], [5] (a.k.a. erasures-only capacity [6] and zero-
error erasure capacity [1]) and the (ordinary) capacity C are
obtained by replacing L(y) on the LHS of (2) with the indi-
cator function of the events {L(y) ≥ 2} and {L(y,m) ≥ 2},
respectively, and by replacing 1 on the RHS of (2) with 0.

For DMCs with feedback we denote the quantities
above Ca-l,fb, Rcutoff,fb, C0-u,fb, Cfb, and we replace fn with

f (j)n :
{
1, . . . , 2nR

}
× Yj−1 → X , j = 1, . . . , n (8)

and Wn(y|fn(m)) with∏
1≤j≤n

W
(
yj |f (j)n (m, yj−1)

)
. (9)

It is clear from the definition that

Ca-l ≤ Rcutoff (10)

and
Ca-l,fb ≤ Rcutoff,fb. (11)

Observe that equality holds in (10) whenever there exist
positive functions A and B such that

W (y|x) = A(x)B(y), whenever W (y|x) > 0. (12)

Indeed, in this case L(y) and L(y,m) coincide whenever
Wn(y|fn(m)) > 0 and constant composition codes (see [7])
are used. (It was shown in [6] that C0-u = C when (12)
holds). This observation includes as a special case the result
that equality holds in (10) whenever the bipartite channel graph
is acyclic [2]. In general, however, Rcutoff and Ca-l behave very
differently. For example, compare the conditions for positivity:
while Rcutoff > 0 if, and only if, (iff) C > 0 [4], we have
Ca-l > 0 iff there exists a triple (x, x′, y) such that W (y|x) > 0
and W (y|x′) = 0 [2]. In fact, determining Ca-l for arbitrary
DMCs, in particular those not satisfying (12), is an open
problem.

It is known since Shannon that Cfb = C. In Section II we
show that Rcutoff,fb = Rcutoff. In view of (11) this implies

Ca-l,fb ≤ Rcutoff. (13)

In Section III we show that equality holds in (13) whenever
the zero-error capacity (see, e.g., [7]) is positive. By providing
an example where Ca-l < Ca-l,fb = Rcutoff, we show that



feedback enlarges the set of channels for which the average-
listsize capacity is equal to the cutoff rate. For DMCs whose
zero-error capacity is zero, we derive a lower bound on Ca-l,fb
(Section IV). The bound is asymptotically tight for a class of
low-noise channels (Section V). Section VI contains a proof
that a multi-letter version of Forney’s [8] lower bound on Ca-l
is asymptotically tight. We concluded in Section VII with some
remarks about the relationship between the different notions of
capacity appearing in this paper.

II. FEEDBACK DOES NOT INCREASE THE CUTOFF RATE

Theorem 2.1: For every DMC Rcutoff,fb = Rcutoff.

Proof: The proof uses Arikan’s lower bound [3, Theo-
rem 1] and the Kuhn-Tucker conditions for Gallager’s expo-
nent function [4, Theorem 5.6.5]. Fix a sequence of rate-R
blocklength-n encoders as in (8) and recall the definition of
L(y,m) for channels with feedback (see (5) and subsequent
paragraph). For each y ∈ Yn, list the messages in decreasing
order of their likelihood∏

1≤j≤n

W
(
yj
∣∣f (j)n (m, yj−1)

)
, (14)

(resolving ties arbitrarily) and let G(m|y) denote the position
of the m-th message in this list. Then G(·|y) is one-to-one
and

G(m|y) ≤ L(y,m). (15)

(Equality holds if no message other than m has the same
likelihood as m). Consequently, G(·|·) is a guessing function
in the sense of [3, Theorem 1], and its expectation can thus
be lower bounded as

1

2nR

∑
m

∑
y

G(m|y)
∏

1≤j≤n

W
(
yj
∣∣f (j)n (m, yj−1)

)
≥ 1

1 + nR

∑
y

[∑
m

√
1

2nR

∏
1≤j≤n

W
(
yj
∣∣f (j)n (m, yj−1)

)]2

=
2nR

1 + nR

∑
y

[∑
m

1

2nR

√ ∏
1≤j≤n

W
(
yj
∣∣f (j)n (m, yj−1)

)]2

=
2nR

1 + nR

∑
y

[∑
f

Q̃(f)

√
W̃n(y|f)

]2
, (16)

where W̃n is the channel whose input alphabet is the set of
all n-tuples f = (f (1), . . . , f (n)) of functions of the form
f (j) : Yj−1 → X , whose output alphabet is Yn, and whose
transition law is

W̃n(y|f) =
∏

1≤j≤n

W
(
yj
∣∣f (j)(yj−1)), (17)

and where Q̃ is the PMF on the input alphabet of W̃n induced
by uniform messages and the encoder

Q̃(f) =

∣∣{m :
(
f
(1)
n (m), . . . , f

(n)
n (m, ·)

)
= f
}∣∣

2nR
. (18)

The proof is completed once we establish that∑
y

[∑
f

Q̃(f)

√
W̃n(y|f)

]2
≥ 2−nRcutoff , (19)

because it will then follow using (15) and (16) that the
expectation of L(y,m) cannot tend to one unless R ≤ Rcutoff.
To establish (19), let Q? be a PMF on X that minimizes∑

y

[∑
x

Q(x)
√
W (y|x)

]2
(20)

and thus achieves the cutoff rate of the channel W . From the
Kuhn-Tucker conditions it follows that Q? must satisfy∑

y

√
W (y|x)α(y,Q?) ≥

∑
y

[
α(y,Q?)

]2
, x ∈ X , (21)

where

α(y,Q) =
∑
x

Q(x)
√
W (y|x), y ∈ Y, (22)

and where equality must hold in (21) whenever Q?(x) > 0.
We now use the Kuhn-Tucker conditions to show that

Q̃?(f) =

{∏n
j=1Q

?(xj) f (1) ≡ x1, . . . , f (n) ≡ xn,
0 otherwise,

(23)

minimizes the LHS of (19) over all PMFs on the input alphabet
of W̃n. (The notation f (j) ≡ xj means that f (j)(yj−1) = xj
for all yj−1 ∈ Yj−1.) To this end, observe that∑

y

√
W̃n(y|f)

∑
f ′

Q̃?(f ′)

√
W̃n(y|f ′)

=
∑
y

√
W̃n(y|f)

∑
x

(Q?)n(x)
√
Wn(y|x)

=
∑
y1

√
W (y1|f (1))α(y1, Q?)

×
∑
y2

√
W
(
y2
∣∣f (2)(y1))α(y2, Q?)

× · · ·

×
∑
yn

√
W
(
yn
∣∣f (n)(yn−1))α(yn, Q?). (24)

Applying (21) to the innermost of the nested sums on the RHS
of (24) (the sum over yn), then to the second innermost (the
sum over yn−1), and so on, we obtain∑

y

√
W̃n(y|f)

∑
f ′

Q̃?(f ′)

√
W̃n(y|f ′)

≥

[∑
y

[∑
x

Q?(x)
√
W (y|x)

]2]n

=
∑
y

[∑
x

(Q?)n(x)
√
Wn(y|x)

]2

=
∑
y

[∑
f ′

Q̃?(f ′)

√
W̃n(y|f ′)

]2
, (25)

with equality if f (1) ≡ x1, . . . , f
(n) ≡ xn and Q?(xj) > 0

for all j ∈ {1, . . . , n}, i.e., with equality if Q̃?(f) > 0.
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(b) A DMC with 0 < Ca-l,fb <
Rcutoff

Fig. 1. Two instructive examples. We always assume 0 < ε, δ < 1.

The PMF Q̃? thus satisfies the Kuhn-Tucker conditions for
minimizing the LHS of (19); the value of this minimum is[∑

y

[∑
x

Q?(x)
√
W (y|x)

]2]n
= 2−nRcutoff , (26)

where the equality follows from the assumption that Q?

achieves the cutoff rate of W .

III. THE FEEDBACK AVERAGE-LISTSIZE CAPACITY OF
DMCS WITH POSITIVE ZERO-ERROR CAPACITY

Let C0 denote the zero-error capacity.

Theorem 3.1: If C0 is positive, then Ca-l,fb = Rcutoff.

We can use Theorem 3.1 to prove:

Proposition 3.2: Feedback can increase the average-
listsize capacity.

Proof: The channel in Figure 1(a) has positive zero-error
capacity and its cutoff rate approaches log 3 as ε tends to zero.
On the other hand, Ca-l = 1 for every ε ∈ (0, 1). Indeed, for
the purpose of producing a list of all messages with positive
likelihood given a particular output sequence, we may combine
Outputs 0 and 1 into a single output, and clearly Ca-l ≤ 1 for
channels with binary outputs.

Proof of Theorem 3.1: It follows from (11) and The-
orem 2.1 that Ca-l,fb cannot exceed Rcutoff. It thus remains
to show that Ca-l,fb ≥ Rcutoff. We propose a 3-phase coding
scheme. (We need some basic results about types, which can
be found in [7, Chapter 2].) In the first phase, we send one
of 2nR messages using the length-n codewords (xm)1≤m≤2nR .
In the second phase, after observing y ∈ Yn through the
feedback link, we use a zero-error code of rate 1 to describe
the type P of the codeword and the conditional type V of y
given the codeword.1 Since the total number of types and
conditional types is polynomial in n, this requires at most o(n)
additional channel uses. Let M(y, P, V ) ⊆ {1, . . . , 2nR}
denote the set of all messages whose codeword is of type P
and given which y has conditional type V . We fix some α >
0 and partition M(y, P, V ) into 2nα lists of lengths at
most d2−nα|M(y, P, V )|e. In the third phase, we send the
index of the list containing the correct message using a zero-
error code (of rate 1). This requires at most dnαe additional

1If the zero-error capacity of a DMC is positive, then it is at least 1.

channel uses. Using the inequality dξe < 1 + ξ and the fact
that

Wn(y|x) = 2−n(D(V ||W |P )+H(V |P )), x ∈M(y, P, V ),

we can bound the average listsize of the coding scheme by

1 +

∑
y

∑
P,V 2−n(D(V ||W |P )+H(V |P ))|M(y, P, V )|2

2n(R+α)

≤ 1 +

∑
y

[∑
P,V 2−

n
2 (D(V ||W |P )+H(V |P ))|M(y, P, V )|

]2
2n(R+α)

= 1 + 2−n(R+α)
∑
y

[∑
m

√
Wn(y|xm)

]2
, (27)

where we used the inequality∑
i

a2i ≤
[∑
i

ai

]2
, ai ≥ 0. (28)

Averaging the sum on the RHS of (27) over codebooks of
size 2nR drawn IID from a PMF Q on X , we obtain∑

x1,...,x2nR

[∏
m

Qn(xm)
]∑

y

[∑
m′

√
Wn(y|xm′)

]2
= 2nR + 2nR(2nR − 1)

∑
y

[∑
x

Qn(x)
√
Wn(y|x)

]2
= 2nR + 2nR(2nR − 1)2−nE0(1,Q), (29)

where we arrived at the second line by expanding the square[∑
m

√
Wn(y|xm)

]2
=
∑
m

Wn(y|xm) +
∑
m 6=m′

√
Wn(y|xm)

√
Wn(y|xm′).

Combining (27) and (29), we see that the average listsize, av-
eraged over all realizations of the codebook, is upper bounded
by

1 + 2−nα + 2−n(E0(1,Q)+α−R), (30)

and this tends to 1 provided that R < E0(1, Q) + α. Observe
that the rate of the coding scheme approaches R/(1+α) as n
tends to infinity. By letting α → 0, we thus see that all rates
below E0(1, Q) are achievable. The proof is completed by
choosing a Q that achieves the cutoff rate.

IV. A LOWER BOUND ON Ca-l,fb

If C0 = 0, then we cannot use Theorem 3.1. In such cases
we propose the following lower bound.

Theorem 4.1: If C0 = 0 and Ca-l > 0, then

Ca-l,fb ≥
R?

1 + R?

log 1
1−q?

, (31)

where
R? = sup

ρ≥0
max
Q

E0(ρ,Q)

1 + ρ
, (32)

and where q? is the maximum of W (E|x1) taken over all
x1 ∈ X and over the subsets E ⊂ Y for which there exists
some x0 ∈ X with W (E|x0) = 0.



Before we give a proof, some remarks are in order.

(i) If Ca-l = 0, then also Ca-l,fb = 0. Indeed, if Ca-l = 0, then
every output that can be reached from some input can be
reached from every input (see Section I). Consequently,
no message can be ruled out based on the output sequence
even when feedback is used.

(ii) Using the fact that E0(ρ,Q) is nondecreasing in ρ and
E0(ρ,Q)/ρ is nonincreasing in ρ [4], we obtain

E0(ρ,Q)

1 + ρ
≤ E0(1 + ρ,Q)

1 + ρ
≤ E0(1, Q), ρ ≥ 0. (33)

Consequently, R? ≤ Rcutoff. Moreover, C0 = 0 implies
q? < 1, whereas Ca-l > 0 implies q? > 0. Thus, the lower
bound in (31) is always strictly smaller than the cutoff
rate and is interesting only when (12) does not hold.

(iii) We could have included the case C0 > 0 with the
resulting lower bound being R?, but this is not interesting
in view of Theorem 3.1.

(iv) To see that Theorem 4.1 is useful, consider the channel
in Figure 1(b). Using an argument similar to that given
in Section III for the channel in Figure 1(a), we see that
Ca-l ≤ 1. Since the zero-error capacity of the channel
is zero, Theorem 3.1 does not apply. But if ε → 0 and
δ → 1, then q? → 1 and maxQE0(ρ,Q) → ρ log 3, so
from Theorem 4.1 we obtain that Ca-l,fb → log 3. We will
generalize this observation in Section V.

Proof of Theorem 4.1: Fix a positive integer L0 and
let x0, x1, E achieve q?. We propose a 3-phase coding scheme.
In the first phase, we use a rate-R blocklength-n encoder (as
in (1)) paired with a decoder that produces a list of the L0

most likely messages given the received sequence y1, . . . , yn
(resolving ties arbitrarily). As shown in [4, Exercise 5.20],
for every PMF Q on X we can find a sequence of rate-R
blocklength-n encoders for which the probability of the correct
message not being on the list is at most 2−n(E0(ρ,Q)−ρR) for
every 0 ≤ ρ ≤ L0. Thanks to the feedback, the transmitter
knows which messages are on the decoder’s list, and if the
correct message is among them, then it tries to convey this
fact to the receiver in the second phase by sending n′ times
the symbol x1; otherwise it sends n′ times the symbol x0.
Accordingly, if at least one symbol in E is observed at the
output during the second phase, then the receiver knows with
certainty that the correct message is on the list (because
W (E|x0) = 0); otherwise it ignores the third phase and
produces a list of all 2nR messages. If the first two phases
are successful, i.e., if the list contains the correct message
and the receiver is aware of it, then the third phase is used
to transmit the position of the correct message in the list. To
this end, we construct L0 auxiliary codewords x1, . . . ,xL0

of length kL0, where k is a positive integer, as follows. The
components (j−1)k+1, . . . , jk of xj equal x1 and all its other
components equal x0. The receiver can identify the correct
auxiliary codeword, and thus produce the correct message, if
at least one symbol in E is observed at the output during the
third phase (because W (E|x0) = 0 and the x1 patterns are
disjoint); otherwise it produces the list of size L0. If the first
or the second phase is unsuccessful, then it does not matter
what the transmitter does in the third phase; for concreteness,
it sends kL0 times the symbol x0.

To analyze the average listsize of this coding scheme, we
define the events

E1 = {correct message not on the list after 1st phase},
E2 = {no symbol in E is observed in 2nd phase},
E3 = {no symbol in E is observed in 3rd phase}.

The average listsize can then be bounded as

E[L] ≤ 1 + E[L|E1] Pr(E1) + E[L|Ec
1 ∩ E2] Pr(E

c
1 ∩ E2)

+ E[L|Ec
1 ∩ Ec

2 ∩ E3] Pr(E
c
1 ∩ Ec

2 ∩ E3). (34)

We bound the RHS of (34) term by term, beginning with

E[L|E1] Pr(E1) ≤ 2nR2−n(E0(ρ,Q)−ρR)

= 2−n(1+ρ)
(
E0(ρ,Q)

1+ρ −R
)
, 0 ≤ ρ ≤ L0.

The RHS approaches zero as n → ∞ provided that R <
R? and L0 is large enough so that we can pick a ρ in
the interval [0, L0] and a PMF Q that achieve a value of
E0(ρ,Q)/(1 + ρ) close enough to the supremum in the
definition of R?. The next term on the RHS of (34) can be
bounded as

E[L|Ec
1 ∩ E2] Pr(E

c
1 ∩ E2) ≤ 2nR(1− q?)n

′

= 2nR2−n
′ log 1

1−q? . (35)

The RHS of (35) approaches zero as n→∞ if we choose

n′ = n(1 + δ)
R

log 1
1−q?

(36)

for an arbitrarily small δ > 0. Finally,

E[L|Ec
1 ∩ Ec

2 ∩ E3] Pr(E
c
1 ∩ Ec

2 ∩ E3) ≤ L0(1− q?)k, (37)

and the RHS can be made arbitrarily small by choosing k
sufficiently large. Observe that the rate of the scheme is

R

1 + n′

n + kL0

n

. (38)

Choosing first L0 sufficiently large, then R close to R?, then n′
as in (36) with δ sufficiently small, then k sufficiently large,
and finally n sufficiently large shows that that all rates strictly
less than the RHS of (31) are achievable.

V. LOW-NOISE CHANNELS

For 0 < ε < 1 let Wε(X ) denote the class of DMCs
with input and output alphabet equal to X and transition law
satisfying the low-noise condition

W (x|x) ≥ 1− ε, x ∈ X . (39)

For a similar class of channels, Ahlswede et al. showed
that Ca-l approaches the Sperner capacity of the channel graph
as ε tends to zero [1]. With feedback we can do better:

Theorem 5.1: If Wε ∈ Wε(X ) and Ca-l(Wε) > 0, then

lim
ε→0

Ca-l,fb(Wε) = log|X |. (40)

Proof: If Wε ∈ Wε(X ) and Ca-l(Wε) > 0, then, in the
notation of Theorem 4.1, q? ≥ 1− ε. The result now follows
from Theorem 4.1 by noting that limε→0 maxQE0(ρ,Q) =
ρ log|X | for all channels in Wε(X ).



VI. A MULTI-LETTER CHARACTERIZATION OF Ca-l
BASED ON FORNEY’S LOWER BOUND

Forney derived the lower bound [8]

Ca-l ≥ max
Q

log
1∑

y(QW )(y)Q
(
X (y)

) , (41)

where we use the notation

(QW )(y) =
∑
x

Q(x)W (y|x) (42)

and
Q(X (y)) =

∑
x:W (y|x)>0

Q(x). (43)

The bound can be strengthened by applying it to Wn and
normalizing the result by 1/n. The next result shows that the
strengthened bound is asymptotically tight:

Theorem 6.1: For any DMC,

Ca-l = lim
n→∞

1

n
max
Q

log
1∑

y(QW
n)(y)Q(Xn(y))

, (44)

where the maximum can be restricted to PMFs that are uniform
over subsets of Xn.

A different multi-letter characterization of Ca-l was given
in [1], [2].

Proof of Theorem 6.1: That the upper limit of the
sequence on the RHS of (44) is a lower bound to Ca-l follows
from (41). To prove a converse, fix a sequence (fn)n≥1 of
rate-R blocklength-n encoders with average listsize tending to
one. For simplicity assume that each fn is one-to-one.2 Let Qn
be the uniform PMF on the range of fn. Then

Qn(Xn(y)) = 2−nRL(y), (45)

where L(y) is defined as in (4). For the logarithm of the
average listsize we then have

log
1

2nR

∑
m

∑
y

L(y)Wn
(
y
∣∣fn(m)

)
= nR+ log

∑
y

(QnW
n)(y)Qn

(
Xn(y)

)
. (46)

Since the average listsize tends to one, it follows from (46)
upon dividing by n and letting n→∞ that

R = lim
n→∞

1

n
log

1∑
y(QnW

n)(y)Qn(Xn(y))
, (47)

and the RHS of (47) is upper bounded by the lower limit of
the sequence on the RHS of (44).

VII. FINAL REMARKS

It is interesting to note that the relationship between Ca-l
and Rcutoff is analogous to the relationship between C0-u and C,
and the relationship between Ca-l and C0-u is analogous to the
relationship between Rcutoff and C:

(i) Ca-l > 0 iff C0-u > 0, and Rcutoff > 0 iff C > 0.

2The result remains true without this assumption.

(ii) Ca-l ≤ Rcutoff and C0-u ≤ C. Both hold with equality
whenever (12) holds.

(iii) Ca-l ≤ C0-u and Rcutoff ≤ C.
(iv) C0-u,fb > 0 only if C0-u > 0, and Ca-l,fb > 0 only if

Ca-l > 0.
(v) Feedback increases neither C nor Rcutoff, but it can

increase C0-u [5] and Ca-l.
(vi) There are single-letter expressions for C and Rcutoff, but

none are currently known for C0-u and Ca-l.

It was shown in [5], [9] that C0-u,fb equals C whenever
C0-u > 0. One might thus be tempted to conjecture that Ca-l,fb
equals Rcutoff whenever Ca-l > 0. This, however, is not true.
The assumption that C0 > 0 in Theorem 3.1 cannot be re-
placed with Ca-l > 0:

Proposition 7.1: A positive value of Ca-l does not guaran-
tee that Ca-l,fb = Rcutoff.

Proof: A counterexample is the channel in Figure 1(b). It
has Ca-l > 0, and for small ε the cutoff rate is at least close
to 1. If the received sequence contains only the symbols 0
and 1, then the decoder cannot rule out any of the messages
and produces a list of length 2nR. But regardless of the choice
of the encoder, the probability of observing only the symbols 0
and 1 at the output is at least (1− δ)n. Thus, the expected
listsize is at least 2n(R+log(1−δ)), and log(1 − δ) is close to
zero for small δ > 0.

As a final remark, many of the results in this paper can be
generalized to the ρ-th moment cutoff rate and the ρ-th moment
listsize capacity, whose definitions are analogous to those of
the cutoff rate and the average-listsize capacity except that
L(y) and L(y,m) are replaced with L(y)ρ and L(y,m)ρ for
some positive number ρ [10].
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