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Abstract—A sequence produced by a memoryless source is to
be described using a fixed number of bits that is proportional to
its length. Based on the description, a list that is guaranteed to
contain the sequence must be produced. The trade-off between
the description length and the moments of the listsize is studied
when the sequence’s length tends to infinity. It is characterized
by the source’s Rényi entropy. Extensions to scenarios with side
information are also studied, where the key is conditional Rényi
entropy. The lossy case where at least one of the elements of the
list must be within a specified distortion from the source sequence
is also solved.

I. INTRODUCTION

Consider a discrete memoryless source (DMS) emitting IID
symbols X1, X2, . . . from a finite alphabet X with distribu-
tion P . A rate-R blocklength-n list code for this source is a
pair of encoder/decoder mappings

f : Xn → {1, . . . , enR}, ϕ : {1, . . . , enR} → 2X
n

, (1)

where 2X
n

denotes the power set of Xn, i.e., the collection
of all subsets of Xn. We refer to ϕ(f(x)) as the list produced
by the decoder when the source emits the sequence x. We say
that the code is lossless if the list produced by the decoder
always contains the sequence emitted by the source, i.e., if

x ∈ ϕ(f(x)), x ∈ Xn. (2)

The “listsize”, i.e., the cardinality of the list produced by the
decoder, is a nonnegative integer-valued random variable (RV).
For a lossless code, this RV is at least one, and if the rate R
is below the entropy H(P ), then the probability that it is one
tends to zero as the blocklength tends to infinity. We refer to
its ρ-th moment as the ρ-th moment of the list.

In this paper we study the trade-off between the rate and
the ρ-th moment of the list. Specifically, for a given ρ > 0 we
find the smallest rate of lossless list codes for which the ρ-th
moment of the list tends to one as the blocklength tends to
infinity. In Section IV we show that this rate equals the Rényi
entropy of the source of order 1/(1 + ρ)

H 1
1+ρ

(P ) ,
1

ρ
log

[∑
x∈X

P (x)
1

1+ρ

]1+ρ
. (3)

This gives a new operational characterization of Rényi entropy
of all orders smaller than one.1

In Section V we generalize our result to a setting where
side-information is available to the encoder and decoder. In
this case the answer is given by a conditional version of Rényi
entropy, a version that was proposed by Arimoto [2].

1For other operational characterizations of Rényi entropy see [1] and
references therein.

We also consider a lossy version of the problem: Suppose
we are given a finite reconstruction alphabet X̂ and a distor-
tion function d : X × X̂ → [0,∞) that extends to length-n
sequences in the usual way:

d(x, x̂) =
1

n

n∑
j=1

d(xj , x̂j), (x, x̂) ∈ Xn × X̂n. (4)

We assume that for every x ∈ X there is at least one x̂ ∈ X̂
such that d(x, x̂) = 0. A rate-R blocklength-n distortion-D
list code is a pair of encoder/decoder mappings

f : Xn → {1, . . . , enR}, ϕ : {1, . . . , enR} → 2X̂
n

, (5)

having the property that for every x ∈ Xn there is at least
one x̂ ∈ ϕ(f(x)) satisfying d(x, x̂) ≤ D. We characterize the
smallest rate of distortion-D codes for which the ρ-th moment
of the list approaches one as the blocklength tends to infinity.
In Section VI we show that this rate equals Rρ(D), where

Rρ(D) , max
Q

{
R(Q,D)− ρ−1D(Q||P )

}
, ρ > 0, (6)

and where R(Q,D) is the rate-distortion function (see, e.g.,
[3, Chapter 7]) evaluated at the distortion level D for the
source Q and the distortion function d. The function Rρ(D)
has previously appeared in [4] in the context of guessing.

The rest of this paper is organized as follows. Section II
introduces some notation; Section III contains a lemma that is
key to all the converse proofs in this paper; and Sections IV
through VI contain the main results and their proofs. We
conclude with some remarks in Section VII.

II. PRELIMINARIES AND NOTATION

The cardinality of a finite set X is denoted by |X |. If P is
a PMF on X , then Pn denotes the product PMF on Xn

Pn(x) =

n∏
j=1

P (xj), x ∈ Xn. (7)

The support of P is denoted by supp(P ), so

supp(P ) =
{
x ∈ X : P (x) > 0

}
. (8)

If V (·|x) is a PMF on Y for every x ∈ X , then P ◦V denotes
the induced joint PMF

(P ◦ V )(x, y) = P (x)V (y|x), (x, y) ∈ X × Y. (9)

The ceiling of a real number ξ, i.e., the smallest integer no
smaller than ξ, is denoted by dξe. The collection of all PMFs
on X is denoted by P(X ). The set of types of sequences
in Xn, i.e., the set of rational PMFs with denominator n, is



denoted by Pn(X ). For information theoretic quantities, we
adopt the notation in [3]. We frequently use basic results from
the Method of Types [3, Chapter 2]. All logarithms are natural
logarithms.

III. A KEY LEMMA

The following lemma is the key to all converse proofs in
this paper. It is inspired by [5, Theorem 1].

Lemma III.1. Let P be a PMF on a nonempty finite set X ,
and let L1, . . . ,LM be a partition of X into M lists, i.e.,
Lm ∩ Lm′ = ∅ if m 6= m′ and

⋃M
m=1 Lm = X . For every

x ∈ X let L(x) denote the cardinality of the list containing x.
Then∑
x∈X

P (x)Lρ(x) ≥ 1

Mρ

[∑
x∈X

P (x)
1

1+ρ

]1+ρ
, ρ ≥ 0. (10)

Proof: The crucial observation is that∑
x∈X

1

L(x)
=M. (11)

Otherwise the proof follows similar steps as the proof of [5,
Theorem 1] with L(x) taking the role of the “guessing func-
tion” G(x).

IV. LOSSLESS SOURCE CODING WITH LISTS

For any ρ > 0, we say that a rate R is ρ-achievable
with lossless list source coding if there exists a sequence
(fn, ϕn)n≥1 of lossless rate-R blocklength-n list codes (see
Section I) such that

lim
n→∞

∑
x∈Xn

Pn(x)
∣∣ϕn(fn(x))∣∣ρ = 1. (12)

Theorem IV.1. For a DMS P , the infimum of all rates that
are ρ-achievable with lossless list source coding is the Rényi
entropy of P of order 1/(1 + ρ) (see (3)).

Theorem IV.1 reveals many of the known properties of
Rényi entropy. For example, H 1

1+ρ
(P ) is nondecreasing in ρ

because any ρ-achievable rate is also ρ′-achievable for all ρ′ <
ρ. Also, as we next show,

H(P ) ≤ H 1
1+ρ

(P ) ≤ log|supp(P )|. (13)

Indeed, if R < H(P ), then the probability that the listsize is
at least 2 tends to one as n→∞, and any R > log|supp(P )|
is ρ-achievable for all ρ > 0. The limit

lim
ρ→∞

H 1
1+ρ

(P ) = log|supp(P )| (14)

can be explained as follows. If R < log|supp(P )|, then there
must exist some x0 ∈ supp(P )n for which |ϕn(fn(x0))| ≥
en(log|supp(P )|−R). Since Pn(x0) ≥ pnmin, where pmin denotes
the smallest nonzero probability of any source symbol,∑

x

Pn(x)|ϕn(fn(x))|ρ ≥ enρ(log|supp(P )|−R− 1
ρ log 1

pmin
)
.

The RHS tends to infinity when ρ is sufficiently large, and
thus for such ρ the rate R cannot be ρ-achievable. As to the
limit when ρ approaches zero, note that if R > H(P ), then the

probability of the listsize exceeding one can be driven to zero
exponentially fast. And since |ϕn(fn(x))|ρ is upper-bounded
by enρ log|X |, the ρ-th moment of the list will tend to one if ρ
is sufficiently small so as to guarantee that the product of the
exponents decay to zero. Thus,

lim
ρ→0

H 1
1+ρ

(P ) = H(P ). (15)

Proof of Theorem IV.1: Direct Part. The encoder first
describes the type Q of the sequence emitted by the source.
Since the number of types |Pn(X )| is a polynomial in n, this
requires an asymptotically negligible amount of rate. Since the
set of sequences of type Q has cardinality at most enH(Q), we
may partition it into enR lists of lengths at most⌈

en(H(Q)−R)
⌉
. (16)

Using Lemma A.1 (in the Appendix) to upper-bound the ρ-th
power of (16) (to account for the ceiling), and using the fact
that the probability of the source emitting a sequence of type Q
is at most e−nD(Q||P ), we can upper-bound the ρ-th moment
of the length of the list containing the source sequence by

1+2ρ
∑

Q∈Pn(X )

exp
(
−nρ

(
R+ρ−1D(Q||P )−H(Q)

))
. (17)

Upper-bounding the summand in (17) by its maximum over
all Q ∈ P(X ) and using the identity [5]

H 1
1+ρ

(P ) = max
Q∈P(X )

{
H(Q)− ρ−1D(Q||P )

}
, (18)

we obtain that (17) is upper-bounded by

1 + 2ρ
∑

Q∈Pn(X )

exp
(
−nρ(R−H 1

1+ρ
(P ))

)
. (19)

Since |Pn(X )| is a polynomial in n, we can rewrite (19) as

1 + exp
(
−nρ(R−H 1

1+ρ
(P )− δn)

)
, (20)

where δn → 0 as n → ∞. This completes the direct part
because (20) tends to one as n→∞ provided that

R > H 1
1+ρ

(P ). (21)

Converse. Fix a sequence (fn, ϕn)n≥1 of rate-R blocklength-n
lossless list codes. We may assume that ϕn(m) = f−1n ({m})
for every m ∈ {1, . . . , enR}, i.e., that the list ϕn(m) comprises
the source sequences that are mapped to m by the encoder fn.
Indeed, the lossless property implies that f−1n ({m}) ⊆ ϕn(m),
and replacing ϕn(m) with f−1n ({m}) can only reduce the ρ-th
moment of the list while preserving the lossless property of the
code. With this assumption the lists {ϕn(m)}1≤m≤enR form
a partition of Xn, and we may invoke Lemma III.1 to obtain∑

x

Pn(x)|ϕn(fn(x))|ρ ≥ e−nρR
[∑

x

Pn(x)
1

1+ρ

]1+ρ
= exp

(
−nρ(R−H 1

1+ρ
(P )
)
. (22)

This completes the converse because the RHS of (22) tends to
infinity as n→∞ unless R ≥ H 1

1+ρ
(P ).



V. LOSSLESS SOURCE CODING WITH LISTS AND
SIDE-INFORMATION

Suppose that a DMS emits a sequence of pairs of chance
variables (X1, Y1), (X2, Y2), . . . drawn IID according to a
PMF PX,Y on X ×Y , where X and Y are both finite. We wish
to describe the sequence (X1, . . . , Xn) using the information
provided by the sequence (Y1, . . . , Yn). In this setting, a rate-R
blocklength-n list code comprises an encoder mapping of the
form

f : Xn × Yn → {1, . . . , enR}, (23)

and a decoder mapping of the form

ϕ : {1, . . . , enR} × Yn → 2X
n

. (24)

The code is lossless if x ∈ ϕ(f(x,y),y) for all (x,y) ∈
Xn×Yn. For any ρ > 0, we say that a rate R is ρ-achievable
with lossless list source coding if there exists a sequence
(fn, ϕn)n≥1 of rate-R blocklength-n lossless list codes such
that

lim
n→∞

∑
x∈Xn

∑
y∈Yn

PnX,Y (x,y)
∣∣ϕn(fn(x,y),y)∣∣ρ = 1. (25)

Theorem V.1. In the presence of side-information, the infimum
of all rates that are ρ-achievable with lossless list source
coding is the conditional Rényi entropy of order 1/(1 + ρ)
of X given Y

H 1
1+ρ

(X|Y ) ,
1

ρ
log
∑
y∈Y

[∑
x∈X

PX,Y (x, y)
1

1+ρ

]1+ρ
. (26)

Theorem V.1 provides an information-theoretic proof that
H 1

1+ρ
(X|Y ) ≤ H 1

1+ρ
(X) for all ρ > 0. In fact, equality holds

if, and only if, X and Y are independent [2]. We also note
that H 1

1+ρ
(X|Y ) is nondecreasing in ρ, that

lim
ρ→0

H 1
1+ρ

(X|Y ) = H(X|Y ), (27)

and that

lim
ρ→∞

H 1
1+ρ

(X|Y ) = max
y∈Y

log|supp(PX|Y=y)|. (28)

Proof of Theorem V.1: Direct Part. The encoder first
describes the conditional type V of x given y, which requires
an asymptotically negligible amount of rate. Since the V -shell
of y is of cardinality at most enH(V |Py), where Py denotes
the type of y, it may be partitioned into enR lists of lengths
at most ⌈

en(H(V |Py)−R)
⌉
. (29)

Conditional on Y = y, the probability that X is in the V -shell
of y is at most e−nD(V ||PX|Y |Py). Consequently, we can use
Lemma A.1 to upper-bound the conditional ρ-th moment of
the length of the list containing X by

1 + 2ρ
∑
V

e−nD(V ||PX|Y |Py)enρ(H(V |Py)−R), (30)

where the sum extends over all V such that the V -shell of y
is nonempty. Since the cardinality of the V -shell of y depends
on y only via its type, it follows that (30) depends on y only
via Py. Noting that the probability that Y is of type Q is at

most e−nD(Q||PY ), we can thus upper-bound the unconditional
ρ-th moment of the length of the list containing X by

1+2ρ
∑
Q,V

e−nD(Q||PY )e−nD(V ||PX|Y |Q)enρ(H(V |Q)−R), (31)

where the sum extends over all types Q ∈ Pn(Y) and all V
such that the V -shell of a sequence of type Q is nonempty. In
the Appendix we prove the identity

H 1
1+ρ

(X|Y )

= max
QX,Y

{
H(QX|Y |QY )− ρ−1D(QX,Y ||PX,Y )

}
, (32)

where H(QX|Y |QY ) denotes the conditional entropy of X
given Y when the pair (X,Y ) has distribution QX,Y . Us-
ing (32), the identity

D(Q ◦ V ||PX,Y ) = D(Q||PY ) +D(V ||PX|Y |Q), (33)

and the fact that the number of types and conditional types is
at most a polynomial in n, we can upper-bound (31) by

1 + exp
(
−nρ

(
R−H 1

1+ρ
(X|Y )− δn

))
, (34)

where δn → 0 as n → ∞. This completes the direct part
because (34) tends to one if R > H 1

1+ρ
(X|Y ).

Converse. Fix a sequence (fn, ϕn)n≥1 of rate-R
blocklength-n lossless list codes. As in the proof of The-
orem IV.1, we may assume that for every m and y the
list ϕn(m,y) is the inverse image of {m} under x 7→ fn(x,y).
For every y these inverse images partition Xn so Lemma III.1
implies that∑

x∈Xn
PnX|Y (x|y)

∣∣ϕn(fn(x,y),y)∣∣ρ
≥ e−nρR

[ ∑
x∈Xn

PnX|Y (x|y)
1

1+ρ

]1+ρ
, y ∈ Yn. (35)

Multiplying both sides of (35) by PnY (y) and summing over
all y ∈ Yn yields∑

x∈Xn

∑
y∈Yn

PnX,Y (x,y)
∣∣ϕn(fn(x,y),y)∣∣ρ

≥ e−nρR
∑
y∈Yn

[ ∑
x∈Xn

PnX,Y (x,y)
1

1+ρ

]1+ρ
= exp

(
−nρ

(
R−H 1

1+ρ
(X|Y )

))
. (36)

This completes the converse because the RHS of (36) tends to
infinity as n→∞ unless R ≥ H 1

1+ρ
(X|Y ).

VI. SOURCE CODING WITH LISTS UNDER A FIDELITY
CRITERION

For any positive ρ, we say that a rate R is ρ-achievable
with list source coding and maximal distortion D if there exists
a sequence (fn, ϕn)n≥1 of rate-R blocklength-n distortion-D
list codes (see Section I) such that

lim
n→∞

∑
x∈Xn

Pn(x)
∣∣ϕn(fn(x))∣∣ρ = 1. (37)
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Fig. 1. Rρ(D) in bits for Bernoulli-(1/4) source and Hamming distortion

Theorem VI.1. The infimum of all rates that are ρ-achievable
with list source coding and maximal distortion D is Rρ(D)
as defined in (6).

Listed below are some properties of Rρ(D). See [4] for a
more comprehensive list and proofs.

i) Rρ(D) is nonnegative.
ii) Rρ(D) is nondecreasing in ρ > 0.

iii) Rρ(D) is nonincreasing, continuous and convex in D ≥ 0.
iv) Rρ(0) = H 1

1+ρ
(P ).

v) limρ→0Rρ(D) = R(P,D).
vi) limρ→∞Rρ(D) = maxQR(Q,D).

In view of iv, Theorem IV.1 can be recovered from Theo-
rem VI.1 by considering the case where X̂ = X and d is
the Hamming distortion (which is zero if x̂ = x and is one
otherwise).

It was noted in [4] that Rρ(D) can be expressed in closed
form for binary sources and Hamming distortion:

Proposition VI.2. If X = X̂ = {0, 1}, d is the Hamming
distortion function, and P (0) = p, then

Rρ(D) =

{
H 1

1+ρ
(p)− h(D) if 0 ≤ D < h−1(H 1

1+ρ
(p)),

0 if D ≥ h−1(H 1
1+ρ

(p)),

where h−1(·) denotes the inverse of the binary entropy func-
tion h(·) on the interval [0, 1/2].

For a proof of Proposition VI.2 see [4, Thereom 3] and
subsequent remarks. A plot of Rρ(D) for p = 1/4 and
different values of ρ is shown in Figure 1.

Proof of Theorem VI.1: Direct Part. The encoder first
describes the type Q of the source sequence x. This requires
an asymptotically negligible amount of rate. Fix some δ > 0.
According to the Type Covering Lemma [3, Lemma 9.1], if
n ≥ n0(δ), then for every type Q ∈ Pn(X ) we can find a set
BQ ⊂ X̂n of cardinality at most en(R(Q,D)+δ) that covers all
source sequences of type Q in the sense that for every x of
type Q there is at least one x̂ ∈ BQ for which d(x, x̂) ≤ D.

Assume therefore that n ≥ n0(δ). We partition BQ into enR

lists of lengths at most⌈
en(R(Q,D)+δ−R)

⌉
. (38)

Using Lemma A.1 and the fact that the probability of the
source emitting a sequence of type Q is at most e−nD(Q||P ),
we can upper-bound the ρ-th moment of the list by

1 + 2ρ
∑

Q∈Pn(X )

e−nD(Q||P )enρ(R(Q,D)+δ−R). (39)

Using the definition of Rρ(D) (6) and the fact that the
number of different types is a polynomial in n, we can upper-
bound (39) by

1 + e−nρ(R−Rρ(D)−δ−δn), (40)

where δn → 0 as n → ∞. The direct part is completed by
noting that if R > Rρ(D), then we can choose δ small enough
so that (40) will tend to one as n→∞.

Converse. Fix a sequence (fn, ϕn)n≥1 of rate-R
blocklength-n distortion-D list codes. We may assume that

ϕn(m) ∩ ϕn(m′) = ∅ whenever m 6= m′. (41)

Indeed, if m 6= m′ and x̂ ∈ ϕn(m) ∩ ϕn(m′), then we can
delete x̂ from the larger of the two lists, say ϕn(m), and map
to m′ all the source sequences x that where mapped to m
by fn and that satisfy d(x, x̂) ≤ D. This could only reduce
the ρ-th moment of the list while preserving the distortion-D
property of the code.

Define the set

Zn =
⋃

1≤m≤enR
ϕn(m). (42)

Assumption (41) implies that the union on the RHS of (42)
is disjoint. Consequently, we may define m(x̂) for every x̂ ∈
Zn as the unique element of {1, . . . , enR} for which x̂ ∈
ϕn(m(x̂)). Moreover, the distortion-D property guarantees the
existence of a mapping gn : Xn → Zn (not necessarily unique)
such that, for all x ∈ Xn,

gn(x) ∈ ϕn(fn(x)) and d(x, gn(x)) ≤ D. (43)

With these definition of m(x̂) and gn, we have∑
x

Pn(x)
∣∣ϕn(fn(x))∣∣ρ = ∑

x̂∈Zn

Pn
(
g−1n ({x̂})

)∣∣ϕn(m(x̂))
∣∣ρ

=
∑
x̂∈Zn

P̃n(x̂)
∣∣ϕn(m(x̂))

∣∣ρ, (44)

where we defined the PMF

P̃n(x̂) = Pn
(
g−1n ({x̂})

)
, x̂ ∈ Zn. (45)

Since the lists {ϕn(m)}1≤m≤enR partition the set Zn, we may
apply Lemma III.1 to the RHS of (44) to obtain∑

x

Pn(x)
∣∣ϕn(fn(x))∣∣ρ ≥ e−nρR[ ∑

x̂∈Zn

P̃n(x̂)
1

1+ρ

]1+ρ
= exp

(
ρ
(
H 1

1+ρ
(P̃n)− nR

))
. (46)



The converse will follow from (46) once we show that

H 1
1+ρ

(P̃n) ≥ nRρ(D). (47)

It follows from (18) that, for every PMF Q on Zn,

H 1
1+ρ

(P̃n) ≥ H(Q)− ρ−1D(Q||P̃n). (48)

The PMF P̃n can be written as

P̃n = PnW̃n, (49)

where W̃n is the deterministic channel from Xn to X̂n induced
by gn:

W̃n(x̂|x) =
{
1 if x̂ = gn(x),

0 otherwise.
(50)

Let Q? be a PMF on X that achieves the maximum in the
definition of Rρ(D), i.e.,

Rρ(D) = R(Q?, D)− ρ−1D(Q?||P ). (51)

Substituting Qn?W̃n for Q in (48) and using (49),

H 1
1+ρ

(P̃n) ≥ H(Qn?W̃n)− ρ−1D(Qn?W̃n||PnW̃n)

≥ H(Qn?W̃n)− ρ−1D(Qn? ||Pn)
= H(Qn?W̃n)− nρ−1D(Q?||P ), (52)

where the inequality in the second line follows from the
Data Processing Inequality [3, Lemma 3.11]. Let X̃ =
(X̃1, . . . , X̃n) be produced by the DMS Q?, and set X̂ =
gn(X̃). Then

H(Qn?W̃n) = H(X̂)

= I(X̃ ∧ X̂). (53)

In view of (43), we have

E[d(X̃, X̂)] ≤ D, (54)

so applying [6, Theorem 9.2.1] (which is the main ingredient
in the classical Rate-Distortion converse) to the pair (X̃, X̂)
yields

I(X̃ ∧ X̂) ≥ nR
(
Q?,E[d(X̃, X̂)]

)
≥ nR(Q?, D), (55)

where we used the monotonicity of the rate-distortion function
in the second line. Combining (55), (53), (52), and (51)
establishes (47).

VII. FINAL REMARKS

1) The converse proofs in this paper show that for all
rates strictly below H 1

1+ρ
(P ), H 1

1+ρ
(X|Y ), and Rρ(D),

respectively, the ρ-th moment of the list must grow to
infinity exponentially fast in the blocklength. In fact,
since the exponents in the achievability and converse
parts of the proofs match, we can characterize the best
exponents possible: they are given by ρ(H 1

1+ρ
(P )− R),

ρ(H 1
1+ρ

(X|Y )−R), and ρ(Rρ(D)−R), respectively.
2) The fact that Rρ(D) is a continuous function of D [4]

allows us to strengthen the converse statement in The-
orem VI.1 as follows. If (fn, ϕn)n≥1 is a sequence
of rate-R blocklength-n distortion-Dn codes, where

limn→∞Dn ≤ D and R < Rρ(D), then the ρ-th moment
of the list grows to infinity exponentially fast in n. Indeed,
continuity implies that R < Rρ(D + ε) for some ε > 0,
and limn→∞Dn ≤ D implies that Dn ≤ D + ε for
all sufficiently large n. The claim thus follows from the
converse part of the proof of Theorem VI.1.

APPENDIX

Lemma A.1. For every α ∈ R and ρ > 0,

denαeρ < 1 + 2ρenρα, n = 1, 2, . . . (56)

Proof: If α > 0, then denαe < 1 + enα < 2enα. If
α ≤ 0, then denαe = 1. Thus, denαeρ ≤ max{1, 2ρenρα} <
1 + 2ρenρα.

Proof of (32): Observe that for any PMF QX,Y on X×Y ,

H(QX|Y |QY )− ρ−1D(QX,Y ||PX,Y )

=
1 + ρ

ρ

∑
y

QY (y)
∑
x

QX|Y (x|y) log
PX|Y (x|y)

1
1+ρ

QX|Y (x|y)

− 1

ρ

∑
y

QY (y) log
QY (y)

PY (y)

≤ 1 + ρ

ρ

∑
y

QY (y) log
∑
x

PX|Y (x|y)
1

1+ρ

− 1

ρ

∑
y

QY (y) log
QY (y)

PY (y)

=
1

ρ

∑
y

QY (y) log
PY (y)

[∑
x PX|Y (x|y)

1
1+ρ
]1+ρ

QY (y)

≤ 1

ρ
log
∑
y

PY (y)

[∑
x

PX|Y (x|y)
1

1+ρ

]1+ρ
= H 1

1+ρ
(X|Y ),

where the inequalities follow from Jensen’s Inequality. Equal-
ity is attained in both inequalities by the choice

QY (y) =
PY (y)

[∑
x PX|Y (x|y)

1
1+ρ
]1+ρ∑

y′ PY (y
′)
[∑

x PX|Y (x|y′)
1

1+ρ
]1+ρ ,

and QX|Y (x|y) = PX|Y (x|y)
1

1+ρ /
∑
x′ PX|Y (x

′|y)
1

1+ρ .
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