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The Zero-Undetected-Error Capacity Approaches
the Sperner Capacity

Christoph Bunte, Amos Lapidoth, Fellow, IEEE, and Alex Samorodnitsky

Abstract— Ahlswede, Cai, and Zhang proved that, in the noise-
free limit, the zero-undetected-error capacity is lower bounded by
the Sperner capacity of the channel graph, and they conjectured
equality. Here, we derive an upper bound that proves the
conjecture.

Index Terms— Sperner capacity, zero-undetected-error
capacity, directed graphs, discrete memoryless channels.

I. INTRODUCTION

AZERO-undetected-error decoder (z.u.e. decoder) declares
that a message was transmitted only if it is the only

message that could have produced the observed output. If the
output could have been produced by two or more messages, it
declares an erasure. Such a decoder thus never errs: it either
produces the correct message or an erasure.

The zero-undetected-error capacity (z.u.e. capacity) C0-u of
a channel is the supremum of all rates that are achievable with
a z.u.e. decoder in the sense that the probability of erasure
tends to zero as the blocklength tends to infinity [1], [2].
(It does not matter whether we define C0-u using an average
or a maximal erasure probability criterion.) Restricting the
decoding rule cannot help, so C0-u never exceeds the Shannon
capacity C .

Although partial results exist (see Section II), the z.u.e.
capacity of general discrete memoryless channels (DMCs) is
still unknown. The focus of this paper is the z.u.e. capacity
of nearly noise-free channels. More precisely, we focus on
ε-noise channels, that is, DMCs whose input alphabet X is a
subset of their output alphabet Y and whose transition law W
satisfies

W (x |x) ≥ 1 − ε for all x ∈ X . (1)

Here and throughout we assume that 0 ≤ ε < 1. For
ε-noise channels we derive an upper bound on C0-u. We then
apply this result to study the limit of C0-u as ε tends to zero.
Ahlswede, Cai, and Zhang proved that this limit is lower-
bounded by the Sperner capacity of a certain related graph,
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and they conjectured equality [2]. Our upper bound proves
this conjecture.

The Sperner capacity is defined using graph-theoretic lan-
guage in Section IV. Here we give an alternative characteri-
zation in terms of codes (see also [2]). For this we need some
standard notation.

A DMC is specified by its transition law W (y|x), x ∈ X ,
y ∈ Y , where X and Y are finite input and output alphabets.
Feeding a sequence of input symbols x = (x (1), . . . , x (n)) to
a DMC of transition law W produces a random sequence of
output symbols Y = (Y (1), . . . , Y (n)) whose joint probability
mass function (PMF) is

W n(y|x) �
∏

1≤ j≤n

W (y( j )|x ( j )), y ∈ Yn . (2)

The support of W is the set of all pairs (x, y) ∈ X × Y for
which W (y|x) is positive; it is denoted by S(W ). Similarly,
if P is a PMF on X , then S(P) denotes the set of all x ∈ X
for which P(x) is positive. We write PW for the PMF on Y
induced by P and the channel W

(PW )(y) =
∑

x∈X
P(x)W (y|x), y ∈ Y. (3)

If A ⊆ X , then we write P(A) in lieu of
∑

x∈A P(x). The
Cartesian product of two sets A and B is denoted by A × B .
The n-fold Cartesian product of A with itself is denoted by An ,
and the cardinality of A is denoted by |A|. All logarithms are
natural logarithms, and we adopt the convention 0 log 1

0 = 0.
We define a blocklength-n Sperner code for a DMC W with

X ⊆ Y and W (x |x) > 0 for all x ∈ X as a collection of
length-n codewords x1, . . . , xM with the property

W n(xm |xm′) = 0 whenever m �= m′. (4)

The rate of the code is n−1 log M . The largest rate of a Sperner
code is a function of the channel law W and the blocklength n.
In fact, it depends on W only via its support S(W ). The
supremum over n of the largest rate of blocklength-n Sperner
codes is the Sperner capacity CSp of the channel.

We emphasize that a Sperner code is not a zero-error code.
Indeed, the definition does not preclude the existence of a
sequence y ∈ Yn such that W n(y|xm) > 0 and W n(y|xm′) > 0
for some m �= m′. What cannot happen with a Sperner code
is that one codeword is corrupted by the channel into another
codeword. In other words, at the output we either receive the
correct codeword or some sequence of output letters that is
not a codeword.
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In the notation above, Ahlswede, Cai, and Zhang proved in
[2, Th. 2] that for ε-noise channels,

lim
ε→0

C0-u ≥ CSp, (5)

and they conjectured equality. Our main result is the following
inequality.

Theorem 1: For every ε-noise channel,

C0-u ≤ log
(
eCSp + ε|X |(|Y| − 1)

)
. (6)

Combining Theorem 1 with (5) proves their conjecture:
Theorem 2: For ε-noise channels,

lim
ε→0

C0-u = CSp, (7)

where the limit is to be understood in a uniform sense with
respect to all ε-noise channels with given S(W ).

A proof of Theorem 1 is given in Section V. Before
providing an outline of this proof, we try to explain why
Theorem 2 is plausible. If we use a Sperner code in con-
junction with a z.u.e. decoder, then an erasure can occur only
if the codeword is corrupted, which happens with probability
at most 1 − (1 − ε)n . This suggests that CSp should be a
lower bound to C0-u when ε is very small (ignoring the issue
that n tends to infinity before ε tends to zero). Conversely,
any code whose maximal probability of erasure under z.u.e.
decoding is smaller than (1 − ε)n must be a Sperner code.
Since for all rates strictly smaller than C0-u the probability of
erasure can be driven to zero exponentially fast (see below),
this suggests that CSp should be an upper bound on C0-u for
small ε (ignoring the issue that the exponent of the erasure
probability may become arbitrarily small as ε becomes small
and the rate approaches C0-u).

As to the outline of the proof of Theorem 1, we first
show that a multi-letter version of Forney’s lower bound on
C0-u is asymptotically tight even when the input distributions
are restricted to be uniform over their support (Section III).
We then upper-bound the multi-letter expression using
Jensen’s inequality followed by algebraic manipulations that
yield a still looser bound. Thanks to the input distribution
being uniform, this looser bound depends only on ε and
the support of W . The final step is to use graph-theoretic
techniques, which are introduced in Section IV, to obtain
the desired upper bound. These techniques include upper-
bounding a sum that depends only on the in-degrees of the
vertices of a graph G by the maximum size of any induced
acyclic subgraph of G. They also include showing that the
Sperner capacity of a graph G can be expressed as the limit as
n tends to infinity of 1/n times the logarithm of the maximum
cardinality of any induced acyclic subgraph of the n-fold
strong product of G with itself.

II. BACKGROUND

To put our result into perspective, we briefly review some
of the literature on the z.u.e. capacity and related concepts.
We begin with Forney’s lower bound

C0-u ≥ max
P

∑

y∈Y
(PW )(y) log

1

P(X (y))
, (8)

where the maximum is over all PMFs on the input alphabet X ,
and where X (y) denotes the set of all x ∈ X for which W (y|x)
is positive [3]. His bound can be derived using standard
random coding where each component of each codeword is
drawn IID from a PMF P . In general, (8) is not tight.1

A tighter lower bound was derived in [2], [4], and [1] using
random coding over constant composition codes

C0-u ≥ max
P

min
V	W :

PV =PW

I (P, V ). (9)

The minimum in (9) is over all auxiliary DMCs V (y|x),
x ∈ X , y ∈ Y such that V (y|x) = 0 whenever W (y|x) = 0
(in short V 	 W ) and such that V induces the same output
distribution under P as the true channel W .

Since any code for the product channel W n is also a code
for the channel W of n times the blocklength and 1/n times
the rate, it follows that the bounds (8) and (9) can be improved
by applying them to W n and normalizing the result by 1/n.
For example, the n-letter version of (8) is

C0-u ≥ 1

n
max

P

∑

y∈Yn

(PW n)(y) log
1

P(X n(y))
, (10)

where the maximum is over all PMFs P on X n , and where
X n(y) denotes the set of all x ∈ X n for which W n(y|x) > 0.
A numerical evaluation in [2] of the single-letter and two-letter
versions of (9) for a particular channel suggests that a strict
improvement is possible and hence that (9) is not always tight.

The n-letter version of (9) becomes tight as n tends to
infinity [1], [2]. Since the proof of (9) shows that for all rates
less than the RHS of (9) the probability of erasure can be
driven to zero exponentially fast, it follows that this is also
true for all rates less than the n-letter version of the bound,
and hence for all rates less than C0-u.

In Section III we prove that also the n-letter version of the
weaker bound (8) is asymptotically tight, and that this is true
even when the maximization is restricted to PMFs that are
uniform over their support. This result will be crucial in the
proof of Theorem 1.

We have already pointed out that the Shannon capacity C
is an upper bound to C0-u. In fact, this bound is often tight.
Indeed, Pinsker and Sheverdyaev [5] proved that C0-u = C
whenever the bipartite channel graph is acyclic. The bipartite
channel graph is the undirected bipartite graph whose two
independent sets of vertices are the input and output alphabets
of the channel, and where there is an edge between an input x
and an output y if W (y|x) > 0 (it is customary to draw the
inputs on the left and the outputs on the right and to label the
edges with the transition probabilities). Acyclic means that
we cannot find an integer n ≥ 2, distinct inputs x1, . . . , xn

and distinct outputs y1, . . . , yn such that W (y j |x j ) > 0 and
W (y j |x j+1) > 0 for all j ∈ {1, . . . , n} where xn+1 = x1.
Important examples of channels with acyclic bipartite channel
graphs are the binary erasure channel and the Z-channel.

Csiszár and Narayan [1] proved that C0-u = C whenever
there exist positive functions A and B such that

W (y|x) = A(x)B(y), whenever W (y|x) > 0. (11)

1An example where it is not tight is the Z-channel [4].
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Fig. 1. The graph contains a cycle but the channel law factorizes.

They also proved that in this case (9) is tight. Their result is
stronger than Pinsker-Sheverdyaev because every DMC with
an acyclic bipartite channel graph possesses a factorization of
its channel law in the sense of (11), but the converse is not true.
For example, the graph shown in Figure 1 contains a cycle, yet
the channel law factorizes with the choice A = B = 1/

√
2.

In fact, they conjecture that a necessary condition for C0-u = C
is that (11) hold on some capacity-achieving subset of inputs
(which is clearly also sufficient).

The fact that C0-u = C for the Z-channel can be used
to characterize channels with positive z.u.e. capacity. Indeed,
suppose there exist two input symbols x and x ′ and an
output symbol y such that W (y|x) > 0 and W (y|x ′) = 0.
By combining all output symbols other than y into a single
distinct output symbol, and by using only the inputs x and
x ′, we can reduce the channel to a Z-channel with crossover
probability 1−W (y|x). For this channel C > 0, and hence also
C0-u > 0. Conversely, if W (y|x) > 0 implies that W (y|x ′) > 0
for all x ′ ∈ X , then any received sequence of output symbols
can be produced by every codeword and the decoder must
always erase, so C0-u must be zero.

We also mention that z.u.e. capacity is a special case of
d-capacity [1], and the lower bound (9) is a special case
of a lower bound on d-capacity [1], [6], [7]. It was proved
in [8] that this lower bound on d-capacity is tight for binary-
input channels. The proof is complicated and is, in fact,
not needed when one is interested only in z.u.e. capacity.
Indeed, the binary-input case is easily solved using the
Pinsker-Sheverdyaev result and the following proposition,
which can also be used to improve on (6) when |Y| is larger
than |X | + 2|X | − 1 (see Section VI).

Proposition 1: Suppose that the output symbols y, y ′ ∈ Y
are such that for every x ∈ X ,

W (y|x) > 0 ⇐⇒ W (y ′|x) > 0. (12)

Then the z.u.e. capacity is unaltered when we combine y and
y ′ into a single output symbol distinct from all other output
symbols.

Proof: The set of messages that cannot be ruled out when
y is observed at the output is unchanged when any occurrence
of y in y is replaced with y ′ or vice versa. �

Using Proposition 1 we can reduce the output alphabet
of a given DMC W with input alphabet X to at most

2|X | − 1 symbols without changing the z.u.e. capacity (there
are 2|X | − 1 possible combinations of inputs that can connect
to a given output). In particular, when the input alphabet is
binary, we can reduce the channel to an asymmetric binary
erasure channel (possibly with some transition probabilities
equal to zero). Since this channel has an acyclic bipartite
channel graph, computing the z.u.e. capacity of a binary-
input channel can thus be reduced to computing the Shannon
capacity of an asymmetric binary erasure channel.

Unlike the Shannon capacity, the z.u.e. capacity can be
increased by feedback [9]. In fact, with feedback the z.u.e.
capacity C0-u,fb is [9], [10]

C0-u,fb =
{

C if C0-u > 0,

0 if C0-u = 0.
(13)

A concept closely related to the z.u.e. capacity is the listsize
capacity [2], [11]: Suppose that instead of erasing when more
than one message could have produced the observed output,
the decoder instead produces a list of all messages that it
cannot rule out. The listsize capacity is the supremum of all
rates that are achievable in the sense that the ρ-th moment of
the size of the list produced by the decoder tends to one as the
blocklength tends to infinity; it is denoted by Cl(ρ). Here ρ
can be any positive number; the case ρ = 1 has been called
average-listsize capacity [2]. It is not difficult to show that
Cl(ρ) never exceeds C0-u and that Cl(ρ) > 0 if, and only if,
C0-u > 0 [11], [12]. Lower bounds on Cl(ρ) analogous to (8)
and (9) can be found in [2], [3], [11], and [12]. Results for
channels with feedback can be found in [13] and [12], where,
in particular, it is shown that feedback can increase the listsize
capacity.

It was proved in [2] that Theorem 2 is true when C0-u is
replaced with Cl(1)

lim
ε→0

Cl(ρ)
∣∣∣
ρ=1

= CSp. (14)

This, in fact, holds for all ρ > 0. Indeed, Theorem 1 and the
fact that Cl(ρ) is upper-bounded by C0-u for all ρ > 0 imply
that

lim
ε→0

Cl(ρ) ≤ CSp. (15)

The reverse inequality for 0 < ρ < 1 follows from (14) and
the fact that Cl(ρ) is nonincreasing in ρ. The case ρ ≥ 1 is
not difficult to obtain from a generalization to all ρ > 0 of
Forney’s lower bound on Cl(1) [3], [12].

It is shown in [12] that if the channel law factorizes in the
sense of (11), then

Cl(ρ) = max
P

E0(ρ, P)

ρ
, (16)

where E0(ρ, P) is Gallager’s function (see [14]). The RHS
of (16) is also known as the cutoff rate [15]. In fact, the listsize
capacity relates to the cutoff rate in much the same way that
the z.u.e. capacity relates to the Shannon capacity [12], [13].

III. A MULTI-LETTER FORMULA FOR C0-u

In this section we show that (10) is asymptotically tight
even when the input PMFs are restricted to be uniform over
their support.
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Theorem 3: For any DMC,

C0-u = lim
n→∞

1

n
max
P∈Un

∑

y∈Yn

(PW n)(y) log
1

P(X n(y))
, (17)

where Un denotes the collection of PMFs on X n that are
uniform over their support. Moreover, the limit is equal to the
supremum.

Proof: It is straightforward to verify that the sequence
on the RHS of (17) without the 1/n factor is superadditive,
which implies that the limit is equal to the supremum.2 Let
us denote this limit by λ. Achievability, i.e., C0-u ≥ λ,
follows because (10) holds for every n. As to the converse, let
x1, . . . , xM be a codebook of blocklength n and rate R with
maximal probability of erasure under z.u.e. decoding less than
some δ ∈ (0, 1)

max
1≤m≤M

∑

y∈Yn:
M(y)>1

W n(y|xm) < δ, (18)

where M(y) denotes the number of messages that cannot be
ruled out when y is observed at the output

M(y) = ∣∣{1 ≤ m ≤ M : W n(y|xm) > 0
}∣∣. (19)

Condition (18) implies that xm �= xm′ when m �= m′ because
otherwise, as we next argue, the conditional probability of
erasure given that the m-th message was sent would be one.
Indeed, if xm = xm′ for some m �= m′, then M(y) ≥ 2
whenever W n(y|xm) > 0 (because then also W n(y|xm′) > 0),
and hence ∑

y∈Yn:
M(y)>1

W n(y|xm) = 1. (20)

Having established that the codewords are distinct, we choose
P to be the uniform PMF on the codebook. Then P ∈ Un and

P
(X n(y)

) = M(y)

M
, for all y ∈ Yn . (21)

We further observe that

λ ≥ 1

n

∑

y∈Yn

(PW n )(y) log
1

P(X n(y))
(22)

= R − 1

n

∑

y∈Yn:
M(y)>1

(PW n)(y) log M(y) (23)

≥ R

(
1 −

∑

y∈Yn:
M(y)>1

(PW n)(y)

)
(24)

= R

(
1 − 1

M

M∑

m=1

∑

y∈Yn:
M(y)>1

W n(y|xm)

)
(25)

> R(1 − δ), (26)

where (22) follows because λ is the supremum of a sequence
whose n-th term is no smaller than the RHS of (22);

2A sequence a1, a2, . . . of real numbers is superadditive if an+m ≥ an +am
for every n and m. For superadditive sequences an/n tends to supn an/n
[16, Problem 98].

where (23) follows from (21) and the fact that log 1 = 0;
where (24) follows because M(y) ≤ M; where (25) follows
from the choice of P; and where (26) follows from (18).
Thus, for any sequence of blocklength-n rate-R codebooks
with maximal probability of erasure approaching zero,

R ≤ λ. (27)

A standard expurgation argument shows that this is also true
when we replace the maximal probability of erasure with the
average (over the messages) probability of erasure. �

IV. GRAPH-THEORETIC PRELIMINARIES

A directed graph (or simply a graph) G is described by its
finite vertex set V (G) and its edge set E(G) ⊂ V (G)×V (G).
We say that there is an edge from x to y in G if (x, y) ∈ E(G).
We always assume that G does not contain self-loops, i.e., that
(x, x) /∈ E(G) for all x ∈ V (G).

The strong product of two graphs G and H is denoted by
G × H ; its vertex set is V (G) × V (H ), and there is an edge
from (x, y) to (x ′, y ′) in G × H if either (x, x ′) ∈ E(G) and
(y, y ′) ∈ E(H ), or if (x, x ′) ∈ E(G) and y = y ′, or if x = x ′
and (y, y ′) ∈ E(H ). The n-fold strong product of G with itself
is denoted by Gn .

The subgraph of G induced by A ⊆ V (G) is the graph
whose vertex set is A and whose edge set is E(G)∩ (A × A).

A subset A ⊆ V (G) is an independent set in G if the
subgraph of G it induces has no edges, i.e., if E(G) ∩
(A × A) = ∅. The maximum cardinality of an independent
set in G is denoted by α(G). We define the Sperner capacity
of G as

�(G) = lim
n→∞

1

n
log α(Gn), (28)

where the limit on the RHS is equal to the supremum because
the sequence α(G1), α(G2), . . . is supermultiplicative.3 The
reader is warned that this definition is not standard. However,
it is equivalent to the original definition given in [17]; see
Appendix C.

A path in G is a sequence of n ≥ 2 distinct vertices
x1, . . . , xn such that (x j , x j+1) ∈ E(G) for all j ∈ {1, . . . ,
n − 1}. The first vertex in this path is x1, and the last vertex
is xn . We say that there is a path from x to y in G if there is
a path in G whose first vertex is x and whose last vertex is y.

A cycle is a path x1, . . . , xn with (xn, x1) ∈ E(G). (Note
that with this definition a bidirectional edge is a cycle.) We say
that G is acyclic if it does not contain a cycle. The maximum
cardinality of a subset A ⊆ V (G) that induces an acyclic
subgraph of G is denoted by ρ(G).

The following two results will be key in the proof of
Theorem 1. The first is that α can be replaced with ρ in (28).

Theorem 4: For every graph G,

�(G) = lim
n→∞

1

n
log ρ(Gn), (29)

and the limit is equal to the supremum.

3A sequence a1, a2, . . . of real numbers is supermultiplicative if an+m ≥
anam for all m and n.
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In particular, Theorem 4 asserts that

ρ(Gn) ≤ en�(G), for all n. (30)

A proof of Theorem 4 is provided in Appendix A.
(An anonymous reviewer pointed out that a statement
equivalent to Theorem 4 is apparently well-known; see
Appendix C.)

The number of edges of G ending in a vertex x is called
the in-degree of x in G and is denoted by din(x, G), i.e.,

din(x, G) = ∣∣{x ′ ∈ V (G) : (x ′, x) ∈ E(G)
}∣∣. (31)

The next result is a slight generalization of [18, p. 95, Th. 1].
Theorem 5: For every graph G,

∑

x∈V (G)

1

1 + din(x, G)
≤ ρ(G). (32)

A proof of Theorem 5 is provided in Appendix B.
For DMCs W with X ⊆ Y and W (x |x) > 0 for every

x ∈ X , we define the associated graph G(W ) to have vertex set
X and edge set comprising all ordered pairs (x, y) of distinct
elements of X for which W (y|x) > 0. Thus, for such channels
we have

CSp(W ) = �
(
G(W )

)
. (33)

Indeed, every Sperner code for W of blocklength n is an
independent set in G(W )n and vice versa. We note the
identity

G(W n) = G(W )n . (34)

V. PROOF OF THEOREM 1

Applying Jensen’s Inequality to the RHS of (17) yields

C0-u ≤ sup
n≥1

1

n
max
P∈Un

log
∑

y∈S(PW n)

(PW n)(y)

P(X n(y))
. (35)

It thus suffices to show that for all P ∈ Un ,

∑

y∈S(PW n)

(PW n)(y)

P(X n(y))
≤ (

eCSp + ε|X |(|Y| − 1)
)n

. (36)

Fix then some P ∈ Un . Since the labels do not matter, we may
assume for simplicity of notation that X = {0, . . . , |X | − 1}
and Y = {0, . . . , |Y| − 1}, where |Y| ≥ |X |. The distribution
on Yn induced by P and W n can be written as

(PW n)(y) =
∑

z∈Yn :
y+z∈X n

P(y + z)W n(y|y + z), (37)

where addition is to be understood component-wise mod-
ulo |Y|. The ε-noise property (1) implies

W n(y|y + z) ≤ ε‖z‖0, if y + z ∈ X n, (38)

where ‖z‖0 denotes the number of nonzero components of z.
Thus, starting with the LHS of (36),

∑

y∈S(PW n)

(PW n)(y)

P(X n(y))
(39)

=
∑

y∈S(PW n)

∑

z∈Yn :
y+z∈X n

P(y + z)W n(y|y + z)
P(X n(y))

(40)

=
∑

z∈Yn

∑

y∈Yn:
y+z∈X n

P(y+z)>0
W n(y|y+z)>0

P(y + z)W n(y|y + z)
P(X n(y))

(41)

≤
∑

z∈Yn

ε‖z‖0
∑

y∈Yn:
y+z∈X n

P(y+z)>0
W n(y|y+z)>0

P(y + z)
P(X n(y))

(42)

=
∑

z∈Yn

ε‖z‖0
∑

y∈X n:
P(y)>0

W n(y−z|y)>0

1

|{x ∈ S(P) : W n(y − z|x) > 0}| ,

(43)

where (40) follows from (37); where (41) follows by changing
the order of summation and dropping terms that are zero;
where (42) follows from (38); and where (43) follows by
substituting y for y + z and because P is uniform over its
support. For every z ∈ Yn , let Pz be any PMF on X n of
support

S(Pz) = {x ∈ X n : P(x)W n(x − z|x) > 0}. (44)

(In fact, Pz could be any nonnegative function with the above
support.) Also define for every z ∈ Yn the channel

Wz(y|x) = W n(y − z|x), (45)

with input alphabet S(Pz) and output alphabet Yn . Since
S(Pz) ⊆ S(P),

|{x ∈ S(P) : W n(y − z|x) > 0}|
≥ |{x ∈ S(Pz) : Wz(y|x) > 0}|. (46)

Using (46) we can upper-bound the inner sum on the RHS of
(43) by ∑

y∈S(Pz)

1

|{x ∈ S(Pz) : Wz(y|x) > 0}| . (47)

This sum can also be written as
∑

y∈V (G(Wz))

1

1 + din(y, G(Wz))
, (48)

where G(Wz) is the graph associated with the channel Wz
(see Section IV). Since (48) is upper-bounded by ρ(G(Wz))
(Theorem 5), we thus have

∑

y∈S(PW n)

(PW n)(y)

P(X n(y))
≤

∑

z∈Yn

ε‖z‖0ρ
(
G(Wz)

)
. (49)

We next argue that

ρ
(
G(Wz)

) ≤ |X |‖z‖0ρ
(
G(W )n−‖z‖0

)
, (50)
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where we define ρ(G(W )0) = 1. When ‖z‖0 = n, then (50)
is trivial, so we assume that 0 ≤ ‖z‖0 < n. Let x(z) denote
the restriction of x ∈ X n to the nonzero components of z, and
let x(zc) denote the restriction of x to the zero components
of z. We will prove (50) by contradiction. In order to reach
a contradiction, assume that for some integer η strictly larger
than the RHS of (50) there exist distinct vertices x1, . . . , xη in
S(Pz) that induce an acyclic subgraph of G(Wz). Partition this
collection of vertices by placing into the same class all x j ’s
that have the same restriction x j (z). Since there are |X |‖z‖0

such classes, one of them must contain κ > ρ(G(W )n−‖z‖0)
vertices; call them x′

1, . . . , x′
κ . Since x′

1, . . . , x′
κ are distinct,

and since their restrictions to the nonzero components of z are
identical, their restrictions to the zero components of z, i.e.,
x′

1(z
c), . . . , x′

κ(zc) must all be distinct. Also, if x, y ∈ S(Pz)
and x(z) = y(z), then

Wz(y|x) > 0 ⇐⇒ W n−‖z‖0
(
y(zc)

∣∣x(zc)
)

> 0. (51)

It follows that the subgraph of G(Wz) induced by x′
1, . . . , x′

κ
is isomorphic to the subgraph of G(W n−‖z‖0) induced by
x′

1(z
c), . . . , x′

κ(zc).4 And since the former is acyclic, so must
the latter be, which is a contradiction because G(W n−‖z‖0) =
G(W )n−‖z‖0 and κ > ρ(G(W )n−‖z‖0).

Having established (50), we further note that by (30)
and (33),

ρ
(
G(W )n−‖z‖0

) ≤ e(n−‖z‖0)CSp . (52)

By combining (49), (50), and (52), we obtain

∑

y∈S(PW n)

(PW n)(y)

P(X n(y))

≤
∑

z∈Yn

ε‖z‖0 |X |‖z‖0e(n−‖z‖0)CSp (53)

=
n∑

k=0

(
n

k

)
(|Y| − 1)kεk |X |ke(n−k)CSp, (54)

where the equality follows because the summand on the
RHS of (53) depends on z only via ‖z‖0 and there are(n

k

)
(|Y| − 1)k elements in Yn with exactly k nonzero com-

ponents. This completes the proof because the RHS of (54) is
equal to the RHS of (36). �

VI. CONCLUDING REMARKS

1) In Theorem 1 we may replace |Y| with |X | +
2|X | −1. Indeed, using Proposition 1 and noting that the
ε-noise property and CSp are preserved if we combine
only output symbols in Y \X , we can reduce the output
alphabet to at most |X | + 2|X | − 1 symbols.

2) The Sperner capacity of a graph and the Sperner capacity
of a channel are of course just different formulations
of the same problem. Indeed, in Section IV we noted
that CSp(W ) = �(G(W )), where G(W ) is the graph
associated with the ε-noise channel W . Conversely, we
may associate with each directed graph G a canonical

4The isomorphism is x �→ x(zc).

ε-noise channel Wε(G) by choosing X = Y = V (G)
and

Wε(G)(y|x) =

⎧
⎪⎨

⎪⎩

1 − ε y = x,
ε

dout(x,G) (x, y) ∈ E(G),

0 otherwise,

(55)

if dout(x, G) ≥ 1, and otherwise

Wε(G)(y|x) =
{

1 if y = x ,

0 if y �= x ,
(56)

where dout(x, G) denotes the out-degree of x in G, i.e.,
the number of edges of G emanating from the vertex x .
Then for any ε ∈ (0, 1),

�(G) = CSp(Wε(G)). (57)

3) We mentioned in the introduction that limε→0 C0-u ≥
CSp was proved in [2]. Here, we offer a simple
proof based on the n-letter version of Forney’s lower
bound (10). Given δ > 0 choose n so that there exists
a Sperner code of size en(CSp−δ). Let P be the uniform
PMF on the codebook and note that

(PW n)(x) ≥ P(x)(1 − ε)n for all x ∈ X n . (58)

For this P ,

C0-u ≥ 1

n

∑

y∈Yn

(PW n)(y) log
1

P(X n(y))
(59)

≥ 1

n

en(CSp−δ)∑

m=1

(PW n)(xm) log
1

P(X n(xm))
(60)

= 1

n

en(CSp−δ)∑

m=1

(PW n)(xm) log
1

P(xm)
(61)

≥ (1 − ε)n 1

n

en(CSp−δ)∑

m=1

P(xm) log
1

P(xm)
(62)

= (1 − ε)n(CSp − δ), (63)

where (59) follows from (10); where (60) follows
because the summand is nonnegative; where (61) follows
from the choice of P and the property of Sperner
codes (4); where (62) follows from (58); and where (63)
follows from the choice of P . Letting first ε → 0 and
then δ → 0 completes the proof.

4) For some channels the bound in Theorem 1 can be
sharpened. For example, for the canonical ε-noise chan-
nel associated with the cyclic orientation of a triangle
CSp = log 2 [19], [20], and it is shown in [21] that
C0-u ≤ log 2 for every ε ∈ (0, 1).

APPENDIX A
PROOF OF THEOREM 4

We shall need the elementary fact that the vertices
of any acyclic graph G can be labeled with the num-
bers 1, . . . , |V (G)| such that (x, y) ∈ E(G) only if x < y
(see [22, Sec. 5.7]).5

5A different way to state this is that any partial order on a finite set can be
extended to a total order on this set.
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Using this fact, we first show that the sequence ρ(G1),
ρ(G2), . . . is supermultiplicative, which will imply that the
limit on the RHS of (29) equals the supremum. Choose
for each n some An ⊆ V (G)n that achieves ρ(Gn), i.e.,
An induces an acyclic subgraph of Gn and |An| = ρ(Gn).
We show that An × Am induces an acyclic subgraph of Gn+m

and hence that

ρ
(
Gn+m) ≥ |An × Am | (64)

= ρ(Gn)ρ(Gm). (65)

Label the vertices in An with the numbers 1, . . . , |An | so that
(x, x ′) ∈ E(Gn) ∩ (An × An) implies x < x ′. Similarly
label the vertices in Am . To reach a contradiction, assume
that (x1, y1), . . . , (xη, yη) is a cycle in the subgraph of Gn+m

induced by An × Am . From the definition of strong product
and the labeling of the vertices it follows that x1 < xη or
y1 < yη. Consequently, there cannot be an edge from (xη, yη)
to (x1, y1) in this subgraph, which contradicts the assumption
that (x1, y1), . . . , (xη, yη) is a cycle.

As to (29), we first show that

�(G) = log|V (G)|, for all acyclic G. (66)

Note that this will prove Theorem 4 in the special case
where G is acyclic. Indeed, in this case ρ(G) = |V (G)|,
so (65) implies ρ(Gn) ≥ |V (G)|n . And since clearly ρ(Gn) ≤
|V (G)|n , we thus have

ρ(Gn) = |V (G)|n, for all acyclic G. (67)

To prove (66), note that α(Gn) ≤ |V (G)|n and hence �(G) ≤
log|V (G)| (this is true for any G, not just acyclic), so it only
remains to prove the reverse inequality. Since G is acyclic, we
may label its vertices with the numbers 1, . . . , |V (G)| so that
there is an edge from x to y in G only if x < y. We then
define the weight of a vertex x in Gn as the sum of the labels
of its n components. Thus, the weight is a number between n
and n|V (G)|.

As we next show, if A is a subset of V (G)n all of whose
members have the same weight, then A is an independent
set in Gn . Indeed, if x and y are distinct vertices in A, then
x ( j ) > y( j ), say, for some j ∈ {1, . . . , n}. Since x and y have
equal weight, there must also be some k �= j for which x (k) <
y(k). Thus, (x ( j ), y( j )) /∈ E(G) and (y(k), x (k)) /∈ E(G), so
there is no edge from x to y and no edge from y to x in Gn .

If we partition V (G)n by putting in the same class all
vertices of the same weight, then one of the n|V (G)| − n + 1
different classes must have at least

|V (G)|n
n|V (G)| − n + 1

(68)

members. Thus,

1

n
log α(Gn) ≥ log|V (G)| − 1

n
log

(
n|V (G)| − n + 1

)
, (69)

and letting n tend to infinity establishes �(G) ≥ log|V (G)|
and hence proves (66).

To complete the proof of (29), let G be any graph (not
necessarily acyclic) and let λ denote the limit of n−1 log ρ(Gn)

as n tends to infinity (i.e., the supremum). For a given δ > 0
select ν so that

1

ν
log ρ(Gν) ≥ λ − δ. (70)

Choose A ⊆ V (G)ν that achieves ρ(Gν) and let H denote the
acyclic subgraph of Gν it induces. Since H m is the subgraph
of Gνm induced by Am ,

1

νm
log α(Gνm) ≥ 1

νm
log α(H m). (71)

Letting m tend to infinity, we obtain

�(G) ≥ 1

ν
�(H ). (72)

Since H is acyclic, we can substitute it for G in (66) to obtain

1

ν
�(H ) = 1

ν
log|A| (73)

= 1

ν
log ρ

(
Gν

)
, (74)

where (74) follows because A achieves ρ(Gν). Combin-
ing (72), (74), and (70) shows that �(G) ≥ λ − δ. Since
this is true for every δ > 0,

�(G) ≥ λ. (75)

On the other hand, a graph with no edges is trivially acyclic,
so α(Gn) ≤ ρ(Gn) and hence �(G) ≤ λ. �

APPENDIX B
PROOF OF THEOREM 5

Let < be a total ordering of the vertices of G and consider
the subset A ⊆ V (G) comprising all x ∈ V (G) such that
if (x ′, x) ∈ E(G) for some x ′ ∈ V (G), then x ′ < x . The
subgraph of G induced by A is acyclic. Indeed, if x1, . . . , xη

is a path in this subgraph, then x1 < xη, so we cannot have
(xη, x1) ∈ E(G). Thus,

|A| ≤ ρ(G). (76)

Suppose now that < is drawn uniformly at random among all
total orderings of V (G). Then

Pr(x ∈ A) = 1

1 + din(x, G)
, for all x ∈ V (G). (77)

Indeed, x is in A if, and only if, it is the greatest vertex in the
set

B = {x} ∪ {x ′ : (x ′, x) ∈ E(G)}. (78)

Since < is drawn uniformly at random, every vertex in B
has the same probability of being the greatest element in B ,
so (77) follows by noting that |B| = 1 + din(x, G).

Summing both sides of (77) over all vertices of G yields
∑

x∈V (G)

1

1 + din(x, G)
=

∑

x∈V (G)

Pr(x ∈ A). (79)

By writing Pr(x ∈ A) as the expectation of the indicator
function of the event {x ∈ A} and by swapping summation
and expectation, we see that the RHS of (79) is the expected
cardinality of A. This expected cardinality cannot exceed ρ(G)
because (76) holds for every realization of <. �
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APPENDIX C
REMARKS ABOUT THE DEFINITION OF

SPERNER CAPACITY

It was pointed out in Section IV that the definition of
Sperner capacity used in this paper (28) is not standard. Here
we compare this definition to the original one given in [17]
and discuss their equivalence. But first, we need some more
notation.

The weak product of two directed graphs G and H is
denoted by G · H . The vertex set of G · H is V (G) × V (H )
and there is an edge from (x, y) to (x ′, y ′) in G · H if
(x, x ′) ∈ E(G) or (y, y ′) ∈ E(H ). The n-fold weak product
of G with itself is denoted by G∨n .

The complement Gc of a directed graph G has vertex set
V (Gc) = V (G) and edge set

E(Gc) = (
V (G) × V (G)

) \ (
E(G) ∪ {(x, x) : x ∈ V (G)}),

i.e., E(Gc) is the set complement of E(G) in V (G) × V (G)
minus the self-loops. Note that (Gc)c = G.

A subset A ⊆ V (G) is a symmetric clique in G if the
subgraph it induces is complete, i.e., if (x, y) ∈ E(G)
whenever x and y are distinct vertices in A. The largest
cardinality of a symmetric clique in G is denoted by ω(G).
In [17], the Sperner capacity of G is defined as

�0(G) = lim
n→∞

1

n
log ω(G∨n). (80)

(We use �0 instead of � to distinguish it from our non-
standard definition (28).) This definition is equivalent to the
definition (28) in the following sense: For every directed
graph G,

�(G) = �0(Gc). (81)

To prove this relationship, first note that an independent set
in G is a symmetric clique in Gc and vice versa. Hence
α(G) = ω(Gc). Moreover, one easily verifies that (Gn)c =
(Gc)∨n . Consequently,

α(Gn) = ω((Gn)c) (82)

= ω((Gc)∨n), (83)

and (81) follows.
The reason we prefer (28) over (80) is Theorems 5 and 4.
An anonymous reviewer pointed out to us that an equivalent

version of Theorem 4 is well-known. To state it, we need the
concept of transitive cliques:

A subset of vertices A ⊆ V (G) is called a transitive clique
in G if there exists a total order < on A with the property

(x, y ∈ A and x < y) �⇒ (x, y) ∈ E(G). (84)

It is easily verified that a subset A ⊆ V (G) induces an acyclic
subgraph of G if, and only if, A is a transitive clique in Gc.
Thus, if ωtr(G) denotes the size of the largest transitive clique
in G, then

ρ(G) = ωtr(Gc). (85)

Hence, Theorem 4 is equivalent to the statement that

�0(G) = lim
n→∞

1

n
log ωtr(G∨n), (86)

i.e., that ω can be replaced with ωtr in the original definition of
Sperner capacity (80). Although we could not find a reference
where this is explicitly proven, it was certainly used in [23].
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