Rényi Entropy and Quantization for Densities

Christoph Bunte and Amos Lapidoth
ETH Zurich
Switzerland
Email: \{bunte,lapidoth\}@isi.ee.ethz.ch

Abstract

A random variable Z taking value in a finite, nonatomic measure space (X, \mathcal{M}, μ) and whose distribution is absolutely continuous with respect to μ is to be described using N labels. We seek the labeling that minimizes the ρ-th moment of the μ-volume of the set of points in X that have the same label as Z. The large $-N$ asymptotics of this minimum are expressed in terms of the Rényi entropy of order $1 /(1+\rho)$.

I. Introduction and Results

Consider a random variable (RV) Z taking value in a measure space (X, \mathcal{M}, μ), where the measure μ is finite (i.e., $\mu(X)<\infty)$ and nonatomic [1]. Assume that Z has a density f with respect to μ, i.e.,

$$
\begin{equation*}
\operatorname{Pr}(Z \in A)=\int_{A} f d \mu, \quad \text { for all } A \in \mathcal{M} \tag{1}
\end{equation*}
$$

For example, X could be a finite interval, μ the Lebesgue measure, and Z a continuous RV with density f.

We wish to describe Z using a quantizer, i.e., a measurable mapping of the form

$$
\begin{equation*}
\varphi: X \rightarrow\{1, \ldots, N\} \tag{2}
\end{equation*}
$$

where N is a given positive integer.
The description of Z is $\varphi(Z)$, and the cell containing Z comprises the elements of X that have the same description as Z, i.e., $\varphi^{-1}(\varphi(Z))$. The μ-volume of this cell is thus $\mu\left(\varphi^{-1}(\varphi(Z))\right)$, and we seek a quantizer φ that minimizes its ρ-th moment

$$
\begin{equation*}
\mathrm{E}\left[\mu\left(\varphi^{-1}(\varphi(Z))\right)^{\rho}\right]=\int_{X} \mu\left(\varphi^{-1}(\varphi(z))\right)^{\rho} f(z) d \mu(z) \tag{3}
\end{equation*}
$$

where ρ is a given positive number. (Replacing $\varphi^{-1}(\varphi(Z)$) with $\varphi^{-1}(\varphi(Z)) \cap \operatorname{supp}(f)$, where $\operatorname{supp}(f)=\{z \in X: f(z)>$ $0\}$, makes little difference; see the remark at the end of this section.)

The problem of encoding tasks studied in [2] corresponds to X being finite and μ being the counting measure (and hence not nonatomic). The asymptotics we study here are, however, different.

We derive upper and lower bounds on the minimum ρ-th moment of $\mu\left(\varphi^{-1}(\varphi(Z))\right)$ and study its large- N asymptotics. The Rényi entropy of Z of order $1 /(1+\rho)$ will be key. Recall that the Rényi entropy of Z of order α is defined (for positive α other than one) as

$$
\begin{equation*}
h_{\alpha}(Z)=\frac{1}{1-\alpha} \log \int_{X} f(z)^{\alpha} d \mu(z) \tag{4}
\end{equation*}
$$

(Throughout \log denotes the natural logarithm.)

A trivial upper bound can be obtained by partitioning X into N subsets (cells) of μ-volume $\mu(X) / N$ each ${ }^{1}$, labeling them with the numbers $\{1, \ldots, N\}$, and setting $\varphi(z)=n$ if z is a member of the n-th subset. This quantizer achieves

$$
\begin{equation*}
\mathrm{E}\left[\mu\left(\varphi^{-1}(\varphi(Z))\right)^{\rho}\right]=\frac{\mu(X)^{\rho}}{N^{\rho}} \tag{5}
\end{equation*}
$$

and the right-hand side (RHS) thus upper-bounds the minimum.

Intuition suggests that (5) is the best we can do when Z is uniformly distributed over X (and Theorem I. 1 ahead proves this). For other distributions, however, we expect to do better (and Theorem I. 2 ahead shows that we can).

Let $\mathcal{F}(X, N)$ denote the set of all measurable mappings from X into $\{1, \ldots, N\}$. What we have shown so far is

$$
\begin{equation*}
\min _{\varphi \in \mathcal{F}(X, N)} \mathrm{E}\left[\mu\left(\varphi^{-1}(\varphi(Z))\right)^{\rho}\right]^{1 / \rho} \leq \frac{\mu(X)}{N} \tag{6}
\end{equation*}
$$

(Writing min instead of inf is justified; see Section III.)
Our first result is the following lower bound.
Theorem I.1. For every $N \in \mathbb{N}$ and every $\rho>0$,

$$
\begin{equation*}
\min _{\varphi \in \mathcal{F}(X, N)} \mathrm{E}\left[\mu\left(\varphi^{-1}(\varphi(Z))\right)^{\rho}\right]^{1 / \rho} \geq \frac{e^{h \frac{1}{1+\rho}(Z)}}{N} \tag{7}
\end{equation*}
$$

We note that this result combined with (6) implies that

$$
\begin{equation*}
h_{\frac{1}{1+\rho}}(Z) \leq \log \mu(X) \tag{8}
\end{equation*}
$$

i.e., that among all distributions on X that are absolutely continuous with respect to μ, the uniform distribution maximizes the Rényi entropy of any order in $(0,1)$. (See [4] on the maximization of Rényi entropy subject to constraints.)

Proof of Theorem I.1: We use Hölder's inequality (see, e.g., [1, Thm. 5.1.2]): If $p, q>1$ and $1 / p+1 / q=1$, then for any measurable, nonnegative functions g and h,

$$
\begin{align*}
\int_{X} g(z) & h(z) d \mu(z) \\
& \leq\left(\int_{X} g(z)^{p} d \mu(z)\right)^{1 / p}\left(\int_{X} h(z)^{q} d \mu(z)\right)^{1 / q} \tag{9}
\end{align*}
$$

If the rightmost integral is positive and finite, we can rearrange to obtain

$$
\begin{align*}
& \int_{X} g(z)^{p} d \mu(z) \\
& \quad \geq\left(\int_{X} g(z) h(z) d \mu(z)\right)^{p}\left(\int_{X} h(z)^{q} d \mu(z)\right)^{-p / q} \tag{10}
\end{align*}
$$

[^0]The choice

$$
\begin{align*}
p & =1+\rho, \tag{11a}\\
q & =(1+\rho) / \rho, \tag{11b}\\
g(z) & =f(z)^{\frac{1}{1+\rho}} \mu\left(\varphi^{-1}(\varphi(z))\right)^{\frac{\rho}{1+\rho}}, \tag{11c}\\
h(z) & =\mu\left(\varphi^{-1}(\varphi(z))\right)^{-\frac{\rho}{1+\rho}}, \tag{11d}
\end{align*}
$$

gives

$$
\begin{align*}
& \int_{X} \mu\left(\varphi^{-1}(\varphi(z))\right)^{\rho} f(z) d \mu(z) \\
\geq & \left(\int_{X} f(z)^{\frac{1}{1+\rho}} d \mu(z)\right)^{1+\rho}\left(\int_{X} \frac{1}{\mu\left(\varphi^{-1}(\varphi(z))\right)} d \mu(z)\right)^{-\rho} . \tag{12}
\end{align*}
$$

Observe further that

$$
\begin{align*}
\int_{X} \frac{1}{\mu\left(\varphi^{-1}(\varphi(z))\right)} d \mu(z) & =\sum_{n=1}^{N} \int_{\varphi^{-1}(n)} \frac{1}{\mu\left(\varphi^{-1}(n)\right)} d \mu(z) \\
& =\sum_{n: \mu\left(\varphi^{-1}(n)\right)>0} 1 \\
& \leq N \tag{13}
\end{align*}
$$

Combining (13) and (12) completes the proof.
It follows from the conditions for equality in Hölder's inequality that (12) holds with equality if, and only if, $\mu\left(\varphi^{-1}(\varphi(z))\right)$ is proportional to $f(z)^{-1 /(1+\rho)} \mu$-almost everywhere (μ-a.e.). In particular, this is possible only if f is equal μ-a.e. to a function taking on a finite number of different values.

As our next result shows, the lower bound in Theorem I. 1 is asymptotically achievable when N is large. The result is reminiscent of the asymptotic result of [5, Thm. 6.2], which concerns the ρ-th moment of the quantization error with respect to a norm on \mathbb{R}^{d}. In our setting, however, X need not be a subset of \mathbb{R}^{d}, and it need not be endowed with a norm or a metric.

Theorem I.2. For any $\rho>0$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} N \min _{\varphi \in \mathcal{F}(X, N)} \mathrm{E}\left[\mu\left(\varphi^{-1}(\varphi(Z))\right)^{\rho}\right]^{1 / \rho}=e^{h \frac{1}{1+\rho}(Z)} \tag{14}
\end{equation*}
$$

In view of Theorem I.1, the limit $N \rightarrow \infty$ may be replaced with the infimum over $N \in \mathbb{N}$. The proof is in Section II.

Note that, in general, it is necessary to let $N \rightarrow \infty$ to achieve the lower bound in Theorem I.1. In fact, the convergence may be quite slow, as the following example illustrates: Let $X=[0,1], \mathcal{M}$ the Borel sets, μ the Lebesgue measure, and $f(x)=3 x^{2}$. It can be shown [6] that

$$
\begin{equation*}
\min _{\varphi \in \mathcal{F}(X, N)} \mathrm{E}\left[\mu\left(\varphi^{-1}(\varphi(Z))\right)\right] \geq \frac{e^{h_{1 / 2}(Z)}}{N}+\frac{1}{4 N^{3}} \tag{15}
\end{equation*}
$$

Also note that Theorem I. 2 combined with the fact that $\left(\mathrm{E}\left[Y^{\rho}\right]\right)^{1 / \rho}$ is nondecreasing in ρ for any nonnegative $\mathrm{RV} Y$ (see, e.g., [7, p.193]) implies the well-known result [8] that $h_{\frac{1}{1+\rho}}(Z)$ is nondecreasing in $\rho>0$.

We can extend Theorem I. 2 to σ-finite nonatomic measure spaces as follows.

Corollary I.3. Let the RV Z take value in a σ-finite, nonatomic measure space (X, \mathcal{M}, μ) and have a density f with respect to μ. Let $\left(V_{k}\right)_{k \geq 1}$ be an increasing sequence in \mathcal{M} such that $\mu\left(V_{k}\right)<\infty$ and $\bigcup_{k=1}^{\infty} V_{k}=X$. Let Z_{k} be a $R V$ on V_{k} with density $f_{k}(z)=f(z) / \int_{V_{k}} f d \mu$. Then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lim _{N \rightarrow \infty} \min _{\varphi \in \mathcal{F}\left(V_{k}, N\right)} N \mathrm{E}\left[\mu\left(\varphi^{-1}(\varphi(Z))\right)^{\rho}\right]^{1 / \rho}=e^{h \frac{1}{1+\rho}(Z)} \tag{16}
\end{equation*}
$$

Proof: In view of Theorem I. 2 we only need to show that $\lim _{k \rightarrow \infty} h_{\frac{1}{1+\rho}}\left(Z_{k}\right)=h_{\frac{1}{1+\rho}}(Z)$. This is straightforward:

$$
\begin{align*}
& h_{\frac{1}{1+\rho}}\left(Z_{k}\right) \\
& =\frac{1+\rho}{\rho} \log \int_{V_{k}} f(z)^{\frac{1}{1+\rho}} d \mu(z)-\frac{1}{\rho} \log \int_{V_{k}} f(z) d \mu(z) \\
& \rightarrow \frac{1+\rho}{\rho} \log \int_{X} f(z)^{\frac{1}{1+\rho}} d \mu(z), \quad(k \rightarrow \infty), \tag{17}
\end{align*}
$$

where (17) follows from the Monotone Convergence Theorem.

We conclude this section with a remark: The reader may object to minimizing the ρ-th moment of $\mu\left(\varphi^{-1}(\varphi(Z))\right)$ for the following reason. Conditioned on the observation $\varphi(Z)=$ n, with probability $1 Z$ lies in the set

$$
\begin{equation*}
\varphi^{-1}(n) \cap \operatorname{supp}(f) \tag{18}
\end{equation*}
$$

where $\operatorname{supp}(f)=\{z \in X: f(z)>0\}$, and this set may have strictly smaller μ-volume than $\varphi^{-1}(n)$.

While this is a valid point, replacing everywhere $\varphi^{-1}(\varphi(Z))$ by $\varphi^{-1}(\varphi(Z)) \cap \operatorname{supp}(f)$ will not change our results fundamentally. Indeed, Theorem I. 1 remains true, as can be seen by restricting the domain of integration to $X \cap \operatorname{supp}(f)$ everywhere in the proof. And this implies that also Theorem I. 2 continues to hold because the achievability only becomes easier.

II. Proof of Theorem I. 2

In this section we present a proof of Theorem I.2. One direction-the "converse" part-is an immediate consequence of Theorem I.1. To prove the other direction-the "direct" part-we shall first prove an analogous result for nonnegative simple functions that do not necessarily integrate to 1 (see (20) ahead). We then approximate arbitrary densities by sequences of simple functions.

Suppose then that f is a measurable, nonnegative, simple function, i.e.,

$$
\begin{equation*}
f(z)=\sum_{i=1}^{k} a_{i} \chi_{\mathcal{D}_{i}}(z), \quad z \in X \tag{19}
\end{equation*}
$$

where $\chi_{\mathcal{D}_{i}}$ is the indicator function of the set \mathcal{D}_{i}, where the a_{i} 's are nonnegative numbers, and where the sets $\mathcal{D}_{i} \in \mathcal{M}$ form a partition of X, i.e., $\mathcal{D}_{i} \cap \mathcal{D}_{j}=\emptyset$ whenever $i \neq j$ and $\bigcup_{i=1}^{k} \mathcal{D}_{i}=X$. (Remember that f need not integrate to 1 .)

We construct $\varphi \in \mathcal{F}(X, N)$ such that

$$
\begin{align*}
& \lim _{N \rightarrow \infty} N\left(\int_{X} f(z) \mu\left(\varphi^{-1}(\varphi(z))\right)^{\rho} d \mu(z)\right)^{1 / \rho} \\
&=\left(\int_{X} f(z)^{\frac{1}{1+\rho}} d \mu(z)\right)^{\frac{1+\rho}{\rho}} \tag{20}
\end{align*}
$$

To this end, let

$$
\begin{equation*}
\mathcal{I}=\left\{i \in\{1, \ldots, k\}: a_{i} \mu\left(\mathcal{D}_{i}\right)>0\right\} \tag{21}
\end{equation*}
$$

We may assume that \mathcal{I} is not empty, for otherwise $f=0$ μ-a.e., and (20) clearly holds.

For each $i \in \mathcal{I}$ partition the set \mathcal{D}_{i} into

$$
\begin{equation*}
\left\lfloor(N-1) a_{i}^{\frac{1}{1+\rho}} \gamma^{-1} \mu\left(\mathcal{D}_{i}\right)\right\rfloor \tag{22}
\end{equation*}
$$

subsets of equal measure ${ }^{2}$, where

$$
\begin{equation*}
\gamma=\sum_{i \in \mathcal{I}} \mu\left(\mathcal{D}_{i}\right) a_{i}^{\frac{1}{1+\rho}} \tag{23}
\end{equation*}
$$

and N is assumed large enough so that (22) be at least 2 for every $i \in \mathcal{I}$.

The choice (22) with γ as in (23) guarantees that the total number of subsets does not exceed $N-1$. Indeed,

$$
\begin{align*}
\sum_{i \in \mathcal{I}}\left\lfloor(N-1) a_{i}^{\frac{1}{1+\rho}} \gamma^{-1} \mu\left(\mathcal{D}_{i}\right)\right\rfloor & \leq \sum_{i \in \mathcal{I}}(N-1) a_{i}^{\frac{1}{1+\rho}} \gamma^{-1} \mu\left(\mathcal{D}_{i}\right) \\
& =N-1 \tag{24}
\end{align*}
$$

Consequently, we can label the different subsets with the integers 1 through $N-1$ (or fewer) and set $\varphi(z)=n$ if z is in the n-th subset. This defines $\varphi(z)$ for all $z \in \bigcup_{i \in \mathcal{I}} \mathcal{D}_{i}$. For all $z \in \bigcup_{i \notin \mathcal{I}} \mathcal{D}_{i}$ we set $\varphi(z)=N$. Then $\varphi \in \mathcal{F}(X, N)$. Moreover, if $z \in \mathcal{D}_{i}$ and $i \in \mathcal{I}$,

$$
\begin{equation*}
\mu\left(\varphi^{-1}(\varphi(z))\right)=\frac{\mu\left(\mathcal{D}_{i}\right)}{\left\lfloor(N-1) a_{i}^{\frac{1}{1+\rho}} \gamma^{-1} \mu\left(\mathcal{D}_{i}\right)\right\rfloor} \tag{25}
\end{equation*}
$$

Using the inequality $\lfloor\xi\rfloor>\xi-1$, we thus have

$$
\begin{align*}
& \int_{X} f(z) \mu\left(\varphi^{-1}(\varphi(z))\right)^{\rho} d \mu(z) \\
& =\sum_{i \in \mathcal{I}} \int_{\mathcal{D}_{i}} a_{i} \mu\left(\varphi^{-1}(\varphi(z))\right)^{\rho} d \mu(z) \\
& <\sum_{i \in \mathcal{I}} \mu\left(\mathcal{D}_{i}\right) a_{i}\left(\frac{\mu\left(\mathcal{D}_{i}\right)}{(N-1) a_{i}^{\frac{1}{1+\rho}} \gamma^{-1} \mu\left(\mathcal{D}_{i}\right)-1}\right)^{\rho} \\
& =\frac{1}{N^{\rho}} \sum_{i \in \mathcal{I}} \mu\left(\mathcal{D}_{i}\right) a_{i}\left(\frac{\mu\left(\mathcal{D}_{i}\right)}{\frac{N-1}{N} a_{i}^{\frac{1}{1+\rho}} \gamma^{-1} \mu\left(\mathcal{D}_{i}\right)-\frac{1}{N}}\right)^{\rho} \tag{26}
\end{align*}
$$

It follows from (26) and (23) that

$$
\begin{align*}
& \overline{\lim }_{N \rightarrow \infty} N\left(\int_{X} f(z) \mu\left(\varphi^{-1}(\varphi(z))\right)^{\rho} d \mu(z)\right)^{1 / \rho} \\
& \quad \leq\left(\sum_{i \in \mathcal{I}}^{n} \mu\left(\mathcal{D}_{i}\right) a_{i}^{\frac{1}{1+\rho}}\right)^{\frac{1+\rho}{\rho}} \\
& \quad=\left(\int_{X} f(z)^{\frac{1}{1+\rho}} d \mu(z)\right)^{\frac{1+\rho}{\rho}} \tag{27}
\end{align*}
$$

[^1]This, in fact, shows that (20) holds because (7) is true not just for densities (and hence expectations), but more generally for any measurable nonnegative f :

$$
\begin{align*}
&\left(\int_{X} f(z) \mu\left(\varphi^{-1}(\varphi(z))\right)^{\rho} d \mu(z)\right)^{1 / \rho} \\
& \geq \frac{1}{N}\left(\int_{X} f(z)^{\frac{1}{1+\rho}} d \mu(z)\right)^{\frac{1+\rho}{\rho}} \tag{28}
\end{align*}
$$

That this is true can be gleaned from the proof of Theorem I. 1 (see (12) and (13)).

Suppose now that f is an arbitrary density on X, i.e., f is measurable, nonnegative, and $\int_{X} f d \mu=1$. We may assume that $h_{\frac{1}{1+\rho}}(f)<\infty$, for otherwise there is nothing to prove.

We begin by constructing a sequence of measurable, nonnegative, simple functions converging to $f \mu$-a.e. on X. To this end, for every positive integer k we define the sets

$$
\begin{equation*}
\mathcal{E}_{k, i}=\left\{z \in X:(i-1) 2^{-k} \leq f(z)<i 2^{-k}\right\} \tag{29}
\end{equation*}
$$

for $i \in\left\{1, \ldots, 2^{2 k}\right\}$, and

$$
\begin{equation*}
\mathcal{E}_{k}=\left\{z \in X: f(z) \geq 2^{k}\right\} \tag{30}
\end{equation*}
$$

We then define

$$
\begin{equation*}
f_{k}(z)=\sum_{i=1}^{2^{2 k}} a_{i} \chi_{\mathcal{E}_{k, i}}(z), \quad z \in X \tag{31}
\end{equation*}
$$

where

$$
a_{i}= \begin{cases}\mu\left(\mathcal{E}_{k, i}\right)^{-1} \int_{\mathcal{E}_{k, i}} f d \mu, & \text { if } i \in \mathcal{I}_{k} \tag{32}\\ 0 & \text { otherwise }\end{cases}
$$

and $\mathcal{I}_{k}=\left\{i \in\left\{1, \ldots, 2^{2 k}\right\}: \mu\left(\mathcal{E}_{k, i}\right)>0\right\}$. Let $\mathcal{E}=$ $\bigcup_{k=1}^{\infty} \bigcup_{i \notin \mathcal{I}_{k}} \mathcal{E}_{k, i}$ and note that $\mu(\mathcal{E})=0$. By construction of f_{k},

$$
\left|f_{k}(z)-f(z)\right| \leq 2^{-k}, \quad \text { if } z \in X \backslash \mathcal{E} \text { and } f(z)<2^{k}
$$

Thus, $f_{k} \rightarrow f \mu$-a.e. on X. Moreover, since $f_{k}(z) \leq f(z)+$ 2^{-k} for all $z \in X$, the Dominated Convergence Theorem yields

$$
\begin{equation*}
\left(\int_{X} f_{k}(z)^{\frac{1}{1+\rho}} d \mu(z)\right)^{\frac{1+\rho}{\rho}} \rightarrow e^{h \frac{1}{1+\rho}(f)}, \quad(k \rightarrow \infty) . \tag{33}
\end{equation*}
$$

Indeed, if $\int_{X} f(z)^{\frac{1}{1+\rho}} d \mu(z)<\infty$, as is implied by our assumption that $h_{\frac{1}{1+\rho}}(f)<\infty$, then we also have $\int_{X}(f(z)+$ $\delta)^{\frac{1}{1+\rho}} d \mu(z)<\infty$ for any $\delta>0$ because

$$
\begin{align*}
(f(z)+\delta)^{\frac{1}{1+\rho}} & \leq(2 \max \{f(z), \delta\})^{\frac{1}{1+\rho}} \\
& =2^{\frac{1}{1+\rho}} \max \left\{f(z)^{\frac{1}{1+\rho}}, \delta^{\frac{1}{1+\rho}}\right\} \\
& \leq 2^{\frac{1}{1+\rho}}\left(f(z)^{\frac{1}{1+\rho}}+\delta^{\frac{1}{1+\rho}}\right) \tag{34}
\end{align*}
$$

Next, we fix some $\alpha \in(0,1)$ and construct $\varphi_{k} \in \mathcal{F}(X,\lfloor\alpha N\rfloor)$ for f_{k} as we did for nonnegative simple functions above (with the \mathcal{D}_{i} 's replaced by the $\mathcal{E}_{k, i}$'s and \mathcal{E}_{k}, and with N replaced by $\lfloor\alpha N\rfloor$). Then by (20)

$$
\begin{align*}
& \lim _{N \rightarrow \infty}\lfloor\alpha N\rfloor\left(\int_{X} f_{k}(z) \mu\left(\varphi_{k}^{-1}\left(\varphi_{k}(z)\right)\right)^{\rho} d \mu(z)\right)^{1 / \rho} \\
&=\left(\int_{X} f_{k}(z)^{\frac{1}{1+\rho}} d \mu(z)\right)^{\frac{1+\rho}{\rho}} \tag{35}
\end{align*}
$$

Next, we construct $\tilde{\varphi}_{k}$ by setting $\tilde{\varphi}_{k}(z)=\varphi_{k}(z)$ for all $z \in X \backslash \mathcal{E}_{k}$. To define $\tilde{\varphi}_{k}$ on \mathcal{E}_{k}, we partition \mathcal{E}_{k} into $\lfloor(1-\alpha) N\rfloor$ subsets of equal μ-volume, label them with the numbers $\lfloor\alpha N\rfloor+1$ through N and set $\tilde{\varphi}_{k}(z)=n$ if z is in the n-th subset of \mathcal{E}_{k}. Then $\tilde{\varphi}_{k} \in \mathcal{F}(X, N)$ and

$$
\begin{align*}
& \int_{X} f(z) \mu\left(\tilde{\varphi}_{k}^{-1}\left(\tilde{\varphi}_{k}(z)\right)\right)^{\rho} d \mu(z) \\
& =\int_{X \backslash \mathcal{E}_{k}} f(z) \mu\left(\tilde{\varphi}_{k}^{-1}\left(\varphi_{k}(z)\right)\right)^{\rho} d \mu(z)+\frac{\operatorname{Pr}\left(Z \in \mathcal{E}_{k}\right) \mu\left(\mathcal{E}_{k}\right)^{\rho}}{\lfloor(1-\alpha) N\rfloor^{\rho}} \tag{36}\\
& \leq \int_{X \backslash \mathcal{E}_{k}} f(z) \mu\left(\varphi_{k}^{-1}\left(\varphi_{k}(z)\right)\right)^{\rho} d \mu(z)+\frac{\mu\left(\mathcal{E}_{k}\right)^{\rho}}{\lfloor(1-\alpha) N\rfloor^{\rho}} \tag{37}\\
& =\int_{X \backslash \mathcal{E}_{k}} f_{k}(z) \mu\left(\varphi_{k}^{-1}\left(\varphi_{k}(z)\right)\right)^{\rho} d \mu(z)+\frac{\mu\left(\mathcal{E}_{k}\right)^{\rho}}{\lfloor(1-\alpha) N\rfloor^{\rho}} \tag{38}\\
& \leq \int_{X} f_{k}(z) \mu\left(\varphi_{k}^{-1}\left(\varphi_{k}(z)\right)\right)^{\rho} d \mu(z)+\frac{\mu\left(\mathcal{E}_{k}\right)^{\rho}}{\lfloor(1-\alpha) N\rfloor^{\rho}} \tag{39}
\end{align*}
$$

where (36) follows from the construction of $\tilde{\varphi}_{k}$; where (37) follows because $\tilde{\varphi}_{k}^{-1}\left(\varphi_{k}(z)\right)=\varphi_{k}^{-1}\left(\varphi_{k}(z)\right) \backslash \mathcal{E}_{k}$ for $z \in X \backslash \mathcal{E}_{k}$ and because $\operatorname{Pr}\left(Z \in \mathcal{E}_{k}\right) \leq 1$; where (38) follows because $\mu\left(\varphi_{k}^{-1}\left(\varphi_{k}(z)\right)\right)$ is constant on each $\mathcal{E}_{i, k}$ and $\int_{\mathcal{E}_{i, k}} f d \mu=$ $\int_{\mathcal{E}_{i, k}} f_{k} d \mu$; and where (39) follows because the integrand is nonnegative so enlarging the domain of integration can only increase the value of the integral. It follows that

$$
\begin{align*}
& N^{\rho} \mathrm{E}\left[\mu\left(\tilde{\varphi}_{k}^{-1}\left(\tilde{\varphi}_{k}(Z)\right)\right)^{\rho}\right] \\
& \leq \frac{N^{\rho}}{\lfloor\alpha N\rfloor^{\rho}}\lfloor\alpha N\rfloor^{\rho} \int_{X} f_{k}(z) \mu\left(\varphi_{k}^{-1}\left(\varphi_{k}(z)\right)\right)^{\rho} d \mu(z) \\
& \quad+\frac{N^{\rho}}{\lfloor(1-\alpha) N\rfloor^{\rho}} \mu\left(\mathcal{E}_{k}\right)^{\rho} . \tag{40}
\end{align*}
$$

Hence, by (35),

$$
\begin{align*}
& \varlimsup_{N \rightarrow \infty} N \min _{\varphi \in \mathcal{F}(X, N)} \mathrm{E}\left[\mu\left(\varphi^{-1}(\varphi(Z))\right)^{\rho}\right]^{1 / \rho} \\
\leq & \left(\alpha^{-\rho}\left(\int_{X} f_{k}(z)^{\frac{1}{1+\rho}} d \mu(z)\right)^{1+\rho}+(1-\alpha)^{-\rho} \mu\left(\mathcal{E}_{k}\right)^{\rho}\right)^{1 / \rho} . \tag{41}
\end{align*}
$$

Recalling (33) and noting that $\lim _{k \rightarrow \infty} \mu\left(\mathcal{E}_{k}\right)=0$ (see (30)), the proof is completed by first letting $k \rightarrow \infty$ and then $\alpha \rightarrow 1$.

III. Existence of an Optimal Quantizer

Here we prove that the infimum

$$
\begin{equation*}
\inf _{\varphi \in \mathcal{F}(X, N)} \mathrm{E}\left[\mu\left(\varphi^{-1}(\varphi(Z))\right)^{\rho}\right] \tag{42}
\end{equation*}
$$

is attained. The case $N=1$ is trivial, so we assume that $N \geq 2$. Let $\left(\varphi_{k}\right)_{k \geq 1}$ be a sequence in $\mathcal{F}(X, N)$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathrm{E}\left[\mu\left(\varphi_{k}^{-1}\left(\varphi_{k}(Z)\right)\right)^{\rho}\right]=\inf _{\varphi \in \mathcal{F}(X, N)} \mathrm{E}\left[\mu\left(\varphi^{-1}(\varphi(Z))\right)^{\rho}\right] \tag{43}
\end{equation*}
$$

By passing to a subsequence, we may assume that the sequence of N-tuples

$$
\begin{equation*}
\left(\mu\left(\varphi_{k}^{-1}(1)\right), \ldots, \mu\left(\varphi_{k}^{-1}(N)\right)\right) \tag{44}
\end{equation*}
$$

converges to a limit $\left(a_{1}, \ldots, a_{N}\right)$, where the a_{n} 's are nonnegative and sum up to $\mu(X)$. By relabeling if necessary, we may further assume that

$$
\begin{equation*}
a_{1} \leq a_{2} \leq \cdots \leq a_{N} \tag{45}
\end{equation*}
$$

To keep the presentation concise, we focus on the case where $a_{1}>0$. The case where $a_{1}=\ldots=a_{j}=0$ for some $j \in$ $\{1, \ldots, N-1\}$ requires only minor modifications.

We construct an optimal $\varphi \in \mathcal{F}(X, N)$ as follows. Define the nonincreasing thresholds

$$
\begin{equation*}
t_{n}=\inf \left\{t \geq 0: \mu(\{f \geq t\}) \leq a_{1}+\ldots+a_{n}\right\} \tag{46}
\end{equation*}
$$

for $1 \leq n \leq N-1$, where we use the shorthand $\{f \geq t\}=$ $\{z \in \bar{X}: f(z) \geq t\}$.

Using the continuity of measure, it is straightforward to verify that $\mu\left(\left\{f>t_{1}\right\}\right) \leq a_{1}$ and $\mu\left(\left\{f \geq t_{1}\right\}\right) \geq a_{1}$. Thus, since μ is nonatomic [3], there is a measurable $A_{1} \subseteq\left\{f=t_{1}\right\}$ (possibly the empty set) such that $\mu\left(\left\{f>t_{1}\right\} \cup A_{1}\right)=a_{1}$. We set

$$
\begin{equation*}
\varphi^{-1}(1)=\left\{f>t_{1}\right\} \cup A_{1} \tag{47}
\end{equation*}
$$

To construct $\varphi^{-1}(n)$ for $2 \leq n \leq N-1$, assume that $\varphi^{-1}(1), \ldots, \varphi^{-1}(n-1)$ and $\overline{A_{1}}, \ldots, \bar{A}_{n-1}$ have been defined. If $t_{n}=t_{n-1}$, then we can find a measurable $A_{n} \subseteq\{f=$ $\left.t_{n}\right\} \backslash \bigcup_{i=1}^{n-1} A_{i}$ such that $\mu\left(A_{n}\right)=a_{n}$. In this case, we set $\varphi^{-1}(n)=A_{n}$. If $t_{n}<t_{n-1}$, then we can find a measurable $A_{n} \subseteq\left\{f=t_{n}\right\}$ such that

$$
\begin{equation*}
\mu\left(A_{n} \cup\left(\left\{f>t_{n}\right\} \backslash \bigcup_{i=1}^{n-1} \varphi^{-1}(i)\right)\right)=a_{n} \tag{48}
\end{equation*}
$$

In this case, we set $\varphi^{-1}(n)=A_{n} \cup\left(\left\{f>t_{n}\right\} \backslash \bigcup_{i=1}^{n-1} \varphi^{-1}(i)\right)$. Finally, we set $\varphi^{-1}(N)=X \backslash \bigcup_{i=1}^{N-1} \varphi^{-1}(i)$.

The $\varphi \in \mathcal{F}(X, N)$ thus obtained has the properties:

$$
\begin{equation*}
\left(\mu\left(\varphi^{-1}(1)\right), \ldots, \mu\left(\varphi^{-1}(N)\right)\right)=\left(a_{1}, \ldots, a_{N}\right) \tag{49a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\varphi(z) \leq \varphi\left(z^{\prime}\right)\right) \Longrightarrow\left(f(z) \geq f\left(z^{\prime}\right)\right) \tag{49b}
\end{equation*}
$$

As we next show, these properties are the key to optimality.
Select $\delta>0$ and k sufficiently large so that

$$
\begin{equation*}
\left|\mu\left(\varphi_{k}^{-1}(n)\right)^{\rho}-a_{n}^{\rho}\right|<\delta, \quad n \in\{1, \ldots, N\} \tag{50}
\end{equation*}
$$

We then have

$$
\begin{array}{rl}
\int_{X} & f(z) \mu\left(\varphi_{k}^{-1}\left(\varphi_{k}(z)\right)\right)^{\rho} d \mu(z) \\
& =\sum_{n=1}^{N} \operatorname{Pr}\left(Z \in \varphi_{k}^{-1}(n)\right) \mu\left(\varphi_{k}^{-1}(n)\right)^{\rho} \\
& \geq \sum_{n=1}^{N} \operatorname{Pr}\left(Z \in \varphi_{k}^{-1}(n)\right) a_{n}^{\rho}-\delta \tag{51}
\end{array}
$$

To complete the proof we use a variant of the summation-byparts identity: If $b_{n}, \tilde{b}_{n}, c_{n}$ are real numbers and $\sum_{n=1}^{N} b_{n}=$
$\sum_{n=1}^{N} \tilde{b}_{n}$, then

$$
\begin{align*}
& \sum_{n=1}^{N} c_{n} b_{n}-\sum_{n=1}^{N} c_{n} \tilde{b}_{n} \\
& \quad=\sum_{n=1}^{N-1}\left(c_{n}-c_{n+1}\right)\left(\left(b_{1}+\ldots+b_{n}\right)-\left(\tilde{b}_{1}+\ldots+\tilde{b}_{n}\right)\right) \tag{52}
\end{align*}
$$

Set $b_{n}=\operatorname{Pr}\left(Z \in \varphi_{k}^{-1}(n)\right), \tilde{b}_{n}=\operatorname{Pr}\left(Z \in \varphi^{-1}(n)\right)$, and observe that for any $n \in\{1, \ldots, N-1\}$,

$$
\begin{align*}
& \left(b_{1}+\ldots+b_{n}\right)-\left(\tilde{b}_{1}+\ldots+\tilde{b}_{n}\right) \\
& \quad=\operatorname{Pr}\left(Z \in \bigcup_{i=1}^{n} \varphi_{k}^{-1}(i) \backslash \bigcup_{i=1}^{n} \varphi^{-1}(i)\right) \\
& \quad-\operatorname{Pr}\left(Z \in \bigcup_{i=1}^{n} \varphi^{-1}(i) \backslash \bigcup_{i=1}^{n} \varphi_{k}^{-1}(i)\right) . \tag{53}
\end{align*}
$$

Since $\bigcup_{i=1}^{n} \varphi^{-1}(i)=\left\{f>t_{n}\right\} \cup A_{n}$, where $A_{n} \subseteq\left\{f=t_{n}\right\}$, it follows that the first probability on the RHS of (53) is upperbounded by

$$
\begin{equation*}
t_{n} \mu\left(\bigcup_{i=1}^{n} \varphi_{k}^{-1}(i) \backslash \bigcup_{i=1}^{n} \varphi^{-1}(i)\right) \tag{54}
\end{equation*}
$$

and the second probability is lower-bounded by

$$
\begin{equation*}
t_{n} \mu\left(\bigcup_{i=1}^{n} \varphi^{-1}(i) \backslash \bigcup_{i=1}^{n} \varphi_{k}^{-1}(i)\right) \tag{55}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\left(b_{1}\right. & \left.+\ldots+b_{n}\right)-\left(\tilde{b}_{1}+\ldots+\tilde{b}_{n}\right) \\
& \leq t_{n}\left(\mu\left(\bigcup_{i=1}^{n} \varphi_{k}^{-1}(i)\right)-\mu\left(\bigcup_{i=1}^{n} \varphi^{-1}(i)\right)\right) \\
& =t_{n}\left(\sum_{i=1}^{n} \mu\left(\varphi_{k}^{-1}(i)\right)-\sum_{i=1}^{n} a_{i}\right) \\
& =\varepsilon_{k}^{(n)} \tag{56}
\end{align*}
$$

where $\varepsilon_{k}^{(n)} \rightarrow 0$ as $k \rightarrow \infty$. Setting $\varepsilon_{k}=\max _{n} \varepsilon_{k}^{(n)}$, recalling that the a_{n} 's are nondecreasing, and using (52) with $c_{n}=a_{n}^{\rho}$, we thus obtain

$$
\begin{align*}
& \sum_{n=1}^{N} \operatorname{Pr}\left(Z \in \varphi_{k}^{-1}(n)\right) a_{n}^{\rho} \\
& \quad \geq \sum_{n=1}^{N} \operatorname{Pr}\left(Z \in \varphi^{-1}(n)\right) a_{n}^{\rho}-\varepsilon_{k} \sum_{n=1}^{N-1}\left(a_{n+1}^{\rho}-a_{n}^{\rho}\right) \\
& \quad=\int_{X} f(z) \mu\left(\varphi^{-1}(\varphi(z))\right)^{\rho} d \mu(z)-\varepsilon_{k}\left(a_{N}^{\rho}-a_{1}^{\rho}\right) \\
& \quad \geq \int_{X} f(z) \mu\left(\varphi^{-1}(\varphi(z))\right)^{\rho} d \mu(z)-\varepsilon_{k} \mu(X)^{\rho} \tag{57}
\end{align*}
$$

where (57) follows because $a_{N} \leq \mu(X)$. Combining (57) and (51), and letting first $k \rightarrow \infty$ and then $\delta \rightarrow 0$ shows that

$$
\begin{align*}
& \int_{X} f(z) \mu\left(\varphi^{-1}(\varphi(z))\right)^{\rho} d \mu(z) \\
& \leq \lim _{k \rightarrow \infty} \int_{X} f(z) \mu\left(\varphi_{k}^{-1}\left(\varphi_{k}(z)\right)\right)^{\rho} d \mu(z) \tag{58}
\end{align*}
$$

In view of (43) this completes the proof.

References

[1] R. M. Dudley, Real Analysis and Probability. Cambridge University Press, 2002.
[2] C. Bunte and A. Lapidoth, "Encoding tasks and Rényi entropy," IEEE Trans. Inf. Theory, vol. 60, no. 9, pp. 5065-5076, Sept 2014.
[3] D. A. Ross, "An elementary proof of Lyapunov's theorem," American Mathematical Monthly, vol. 112, no. 7, pp. 651-653, 2005.
[4] C. Bunte and A. Lapidoth, "Maximizing differential Rényi entropy," submitted to the 2014 IEEE 28th Convention of Electrical and Electronic Engineers in Israel (IEEEI).
[5] S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions. Springer, 2000.
[6] C. Bunte and A. Lapidoth, manuscript in preparation.
[7] A. N. Shiryaev, Probability, 2nd ed. Springer, 1995.
[8] L. Wang and M. Madiman, "Beyond the entropy power inequality, via rearrangements," arXiv preprint arXiv:1307.6018, 2013.

[^0]: ${ }^{1}$ This is possible because μ is nonatomic [3].

[^1]: ${ }^{2}$ Here we are using again that μ is nonatomic [3].

