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Abstract—A random variable Z taking value in a finite,
nonatomic measure space (X,M, µ) and whose distribution is
absolutely continuous with respect to µ is to be described using N
labels. We seek the labeling that minimizes the ρ-th moment of
the µ-volume of the set of points in X that have the same label
as Z. The large-N asymptotics of this minimum are expressed
in terms of the Rényi entropy of order 1/(1 + ρ).

I. INTRODUCTION AND RESULTS

Consider a random variable (RV) Z taking value in a
measure space (X,M, µ), where the measure µ is finite (i.e.,
µ(X) <∞) and nonatomic [1]. Assume that Z has a density f
with respect to µ, i.e.,

Pr(Z ∈ A) =
∫
A

f dµ, for all A ∈M. (1)

For example, X could be a finite interval, µ the Lebesgue
measure, and Z a continuous RV with density f .

We wish to describe Z using a quantizer, i.e., a measurable
mapping of the form

ϕ : X → {1, . . . , N}, (2)

where N is a given positive integer.

The description of Z is ϕ(Z), and the cell containing Z
comprises the elements of X that have the same description
as Z, i.e., ϕ−1(ϕ(Z)). The µ-volume of this cell is thus
µ(ϕ−1(ϕ(Z))), and we seek a quantizer ϕ that minimizes its
ρ-th moment

E
[
µ
(
ϕ−1(ϕ(Z))

)ρ]
=

∫
X

µ
(
ϕ−1(ϕ(z))

)ρ
f(z) dµ(z), (3)

where ρ is a given positive number. (Replacing ϕ−1(ϕ(Z))
with ϕ−1(ϕ(Z))∩supp(f), where supp(f) = {z ∈ X : f(z) >
0}, makes little difference; see the remark at the end of this
section.)

The problem of encoding tasks studied in [2] corresponds
to X being finite and µ being the counting measure (and hence
not nonatomic). The asymptotics we study here are, however,
different.

We derive upper and lower bounds on the minimum ρ-th
moment of µ(ϕ−1(ϕ(Z))) and study its large-N asymptotics.
The Rényi entropy of Z of order 1/(1+ρ) will be key. Recall
that the Rényi entropy of Z of order α is defined (for positive α
other than one) as

hα(Z) =
1

1− α
log

∫
X

f(z)α dµ(z). (4)

(Throughout log denotes the natural logarithm.)

A trivial upper bound can be obtained by partitioning X
into N subsets (cells) of µ-volume µ(X)/N each1, labeling
them with the numbers {1, . . . , N}, and setting ϕ(z) = n if z
is a member of the n-th subset. This quantizer achieves

E[µ(ϕ−1(ϕ(Z)))ρ] =
µ(X)ρ

Nρ
, (5)

and the right-hand side (RHS) thus upper-bounds the mini-
mum.

Intuition suggests that (5) is the best we can do when Z is
uniformly distributed over X (and Theorem I.1 ahead proves
this). For other distributions, however, we expect to do better
(and Theorem I.2 ahead shows that we can).

Let F(X,N) denote the set of all measurable mappings
from X into {1, . . . , N}. What we have shown so far is

min
ϕ∈F(X,N)

E[µ(ϕ−1(ϕ(Z)))ρ]1/ρ ≤ µ(X)

N
. (6)

(Writing min instead of inf is justified; see Section III.)

Our first result is the following lower bound.

Theorem I.1. For every N ∈ N and every ρ > 0,

min
ϕ∈F(X,N)

E[µ(ϕ−1(ϕ(Z)))ρ]1/ρ ≥ e
h 1

1+ρ
(Z)

N
. (7)

We note that this result combined with (6) implies that

h 1
1+ρ

(Z) ≤ logµ(X), (8)

i.e., that among all distributions on X that are absolutely con-
tinuous with respect to µ, the uniform distribution maximizes
the Rényi entropy of any order in (0, 1). (See [4] on the
maximization of Rényi entropy subject to constraints.)

Proof of Theorem I.1: We use Hölder’s inequality (see,
e.g., [1, Thm. 5.1.2]): If p, q > 1 and 1/p+1/q = 1, then for
any measurable, nonnegative functions g and h,∫

X

g(z)h(z)dµ(z)

≤
(∫

X

g(z)pdµ(z)
)1/p(∫

X

h(z)qdµ(z)
)1/q

. (9)

If the rightmost integral is positive and finite, we can rearrange
to obtain∫

X

g(z)pdµ(z)

≥
(∫

X

g(z)h(z)dµ(z)
)p(∫

X

h(z)qdµ(z)
)−p/q

. (10)

1This is possible because µ is nonatomic [3].



The choice

p = 1 + ρ, (11a)
q = (1 + ρ)/ρ, (11b)

g(z) = f(z)
1

1+ρµ(ϕ−1(ϕ(z)))
ρ

1+ρ , (11c)

h(z) = µ(ϕ−1(ϕ(z)))−
ρ

1+ρ , (11d)

gives∫
X

µ
(
ϕ−1(ϕ(z))

)ρ
f(z)dµ(z)

≥
(∫

X

f(z)
1

1+ρ dµ(z)
)1+ρ(∫

X

1

µ
(
ϕ−1(ϕ(z))

)dµ(z))−ρ.
(12)

Observe further that∫
X

1

µ
(
ϕ−1(ϕ(z))

)dµ(z) = N∑
n=1

∫
ϕ−1(n)

1

µ
(
ϕ−1(n)

)dµ(z)
=

∑
n:µ(ϕ−1(n))>0

1

≤ N. (13)

Combining (13) and (12) completes the proof.

It follows from the conditions for equality in Hölder’s
inequality that (12) holds with equality if, and only if,
µ(ϕ−1(ϕ(z))) is proportional to f(z)−1/(1+ρ) µ-almost ev-
erywhere (µ-a.e.). In particular, this is possible only if f is
equal µ-a.e. to a function taking on a finite number of different
values.

As our next result shows, the lower bound in Theorem I.1
is asymptotically achievable when N is large. The result is
reminiscent of the asymptotic result of [5, Thm. 6.2], which
concerns the ρ-th moment of the quantization error with respect
to a norm on Rd. In our setting, however, X need not be a
subset of Rd, and it need not be endowed with a norm or a
metric.

Theorem I.2. For any ρ > 0,

lim
N→∞

N min
ϕ∈F(X,N)

E[µ(ϕ−1(ϕ(Z)))ρ]1/ρ = e
h 1

1+ρ
(Z)
. (14)

In view of Theorem I.1, the limit N →∞ may be replaced
with the infimum over N ∈ N. The proof is in Section II.

Note that, in general, it is necessary to let N → ∞
to achieve the lower bound in Theorem I.1. In fact, the
convergence may be quite slow, as the following example
illustrates: Let X = [0, 1], M the Borel sets, µ the Lebesgue
measure, and f(x) = 3x2. It can be shown [6] that

min
ϕ∈F(X,N)

E
[
µ(ϕ−1(ϕ(Z)))

]
≥ eh1/2(Z)

N
+

1

4N3
. (15)

Also note that Theorem I.2 combined with the fact that
(E[Y ρ])1/ρ is nondecreasing in ρ for any nonnegative RV Y
(see, e.g., [7, p.193]) implies the well-known result [8]
that h 1

1+ρ
(Z) is nondecreasing in ρ > 0.

We can extend Theorem I.2 to σ-finite nonatomic measure
spaces as follows.

Corollary I.3. Let the RV Z take value in a σ-finite, nonatomic
measure space (X,M, µ) and have a density f with respect
to µ. Let (Vk)k≥1 be an increasing sequence in M such that
µ(Vk) < ∞ and

⋃∞
k=1 Vk = X . Let Zk be a RV on Vk with

density fk(z) = f(z)/
∫
Vk
fdµ. Then

lim
k→∞

lim
N→∞

min
ϕ∈F(Vk,N)

N E[µ(ϕ−1(ϕ(Z)))ρ]1/ρ = e
h 1

1+ρ
(Z)
.

(16)

Proof: In view of Theorem I.2 we only need to show that
limk→∞ h 1

1+ρ
(Zk) = h 1

1+ρ
(Z). This is straightforward:

h 1
1+ρ

(Zk)

=
1 + ρ

ρ
log

∫
Vk

f(z)
1

1+ρ dµ(z)− 1

ρ
log

∫
Vk

f(z)dµ(z)

→ 1 + ρ

ρ
log

∫
X

f(z)
1

1+ρ dµ(z), (k →∞), (17)

where (17) follows from the Monotone Convergence Theorem.

We conclude this section with a remark: The reader may
object to minimizing the ρ-th moment of µ(ϕ−1(ϕ(Z))) for
the following reason. Conditioned on the observation ϕ(Z) =
n, with probability 1 Z lies in the set

ϕ−1(n) ∩ supp(f), (18)

where supp(f) = {z ∈ X : f(z) > 0}, and this set may have
strictly smaller µ-volume than ϕ−1(n).

While this is a valid point, replacing everywhere
ϕ−1(ϕ(Z)) by ϕ−1(ϕ(Z)) ∩ supp(f) will not change our
results fundamentally. Indeed, Theorem I.1 remains true, as can
be seen by restricting the domain of integration to X∩supp(f)
everywhere in the proof. And this implies that also Theorem I.2
continues to hold because the achievability only becomes
easier.

II. PROOF OF THEOREM I.2

In this section we present a proof of Theorem I.2. One
direction—the “converse” part—is an immediate consequence
of Theorem I.1. To prove the other direction—the “direct”
part—we shall first prove an analogous result for nonnegative
simple functions that do not necessarily integrate to 1 (see (20)
ahead). We then approximate arbitrary densities by sequences
of simple functions.

Suppose then that f is a measurable, nonnegative, simple
function, i.e.,

f(z) =

k∑
i=1

ai χDi(z), z ∈ X, (19)

where χDi is the indicator function of the set Di, where the
ai’s are nonnegative numbers, and where the sets Di ∈ M
form a partition of X , i.e., Di ∩ Dj = ∅ whenever i 6= j and⋃k
i=1Di = X . (Remember that f need not integrate to 1.)



We construct ϕ ∈ F(X,N) such that

lim
N→∞

N
(∫

X

f(z)µ(ϕ−1(ϕ(z)))ρdµ(z)
)1/ρ

=
(∫

X

f(z)
1

1+ρ dµ(z)
) 1+ρ

ρ

. (20)

To this end, let

I = {i ∈ {1, . . . , k} : ai µ(Di) > 0}. (21)

We may assume that I is not empty, for otherwise f = 0
µ-a.e., and (20) clearly holds.

For each i ∈ I partition the set Di into⌊
(N − 1)a

1
1+ρ

i γ−1µ(Di)
⌋

(22)

subsets of equal measure2, where

γ =
∑
i∈I

µ(Di)a
1

1+ρ

i , (23)

and N is assumed large enough so that (22) be at least 2 for
every i ∈ I.

The choice (22) with γ as in (23) guarantees that the total
number of subsets does not exceed N − 1. Indeed,∑
i∈I

⌊
(N − 1)a

1
1+ρ

i γ−1µ(Di)
⌋
≤
∑
i∈I

(N − 1)a
1

1+ρ

i γ−1µ(Di)

= N − 1. (24)

Consequently, we can label the different subsets with the
integers 1 through N − 1 (or fewer) and set ϕ(z) = n if z
is in the n-th subset. This defines ϕ(z) for all z ∈

⋃
i∈I Di.

For all z ∈
⋃
i/∈I Di we set ϕ(z) = N . Then ϕ ∈ F(X,N).

Moreover, if z ∈ Di and i ∈ I,

µ(ϕ−1(ϕ(z))) =
µ(Di)⌊

(N − 1)a
1

1+ρ

i γ−1µ(Di)
⌋ . (25)

Using the inequality bξc > ξ − 1, we thus have∫
X

f(z)µ(ϕ−1(ϕ(z)))ρdµ(z)

=
∑
i∈I

∫
Di
ai µ(ϕ

−1(ϕ(z)))ρdµ(z)

<
∑
i∈I

µ(Di)ai

(
µ(Di)

(N − 1)a
1

1+ρ

i γ−1µ(Di)− 1

)ρ

=
1

Nρ

∑
i∈I

µ(Di)ai

(
µ(Di)

N−1
N a

1
1+ρ

i γ−1µ(Di)− 1
N

)ρ
. (26)

It follows from (26) and (23) that

lim
N→∞

N
(∫

X

f(z)µ(ϕ−1(ϕ(z)))ρdµ(z)
)1/ρ

≤
( n∑
i∈I

µ(Di)a
1

1+ρ

i

) 1+ρ
ρ

=
(∫

X

f(z)
1

1+ρ dµ(z)
) 1+ρ

ρ

. (27)

2Here we are using again that µ is nonatomic [3].

This, in fact, shows that (20) holds because (7) is true not just
for densities (and hence expectations), but more generally for
any measurable nonnegative f :(∫

X

f(z)µ(ϕ−1(ϕ(z)))ρdµ(z)
)1/ρ

≥ 1

N

(∫
X

f(z)
1

1+ρ dµ(z)
) 1+ρ

ρ

. (28)

That this is true can be gleaned from the proof of Theorem I.1
(see (12) and (13)).

Suppose now that f is an arbitrary density on X , i.e., f
is measurable, nonnegative, and

∫
X
fdµ = 1. We may assume

that h 1
1+ρ

(f) <∞, for otherwise there is nothing to prove.

We begin by constructing a sequence of measurable, non-
negative, simple functions converging to f µ-a.e. on X . To
this end, for every positive integer k we define the sets

Ek,i = {z ∈ X : (i− 1)2−k ≤ f(z) < i2−k} (29)

for i ∈ {1, . . . , 22k}, and

Ek = {z ∈ X : f(z) ≥ 2k}. (30)

We then define

fk(z) =

22k∑
i=1

ai χEk,i(z), z ∈ X, (31)

where

ai =

{
µ(Ek,i)−1

∫
Ek,i fdµ, if i ∈ Ik,

0 otherwise,
(32)

and Ik =
{
i ∈ {1, . . . , 22k} : µ(Ek,i) > 0

}
. Let E =⋃∞

k=1

⋃
i/∈Ik Ek,i and note that µ(E) = 0. By construction

of fk,

|fk(z)− f(z)| ≤ 2−k, if z ∈ X \ E and f(z) < 2k.

Thus, fk → f µ-a.e. on X . Moreover, since fk(z) ≤ f(z) +
2−k for all z ∈ X , the Dominated Convergence Theorem
yields(∫

X

fk(z)
1

1+ρ dµ(z)
) 1+ρ

ρ → e
h 1

1+ρ
(f)
, (k →∞). (33)

Indeed, if
∫
X
f(z)

1
1+ρ dµ(z) < ∞, as is implied by our

assumption that h 1
1+ρ

(f) <∞, then we also have
∫
X
(f(z) +

δ)
1

1+ρ dµ(z) <∞ for any δ > 0 because

(f(z) + δ)
1

1+ρ ≤
(
2max{f(z), δ}

) 1
1+ρ

= 2
1

1+ρ max{f(z)
1

1+ρ , δ
1

1+ρ }
≤ 2

1
1+ρ
(
f(z)

1
1+ρ + δ

1
1+ρ
)
. (34)

Next, we fix some α ∈ (0, 1) and construct ϕk ∈ F(X, bαNc)
for fk as we did for nonnegative simple functions above (with
the Di’s replaced by the Ek,i’s and Ek, and with N replaced
by bαNc). Then by (20)

lim
N→∞

bαNc
(∫

X

fk(z)µ(ϕ
−1
k (ϕk(z)))

ρdµ(z)
)1/ρ

=
(∫

X

fk(z)
1

1+ρ dµ(z)
) 1+ρ

ρ

. (35)



Next, we construct ϕ̃k by setting ϕ̃k(z) = ϕk(z) for all
z ∈ X \ Ek. To define ϕ̃k on Ek, we partition Ek into
b(1 − α)Nc subsets of equal µ-volume, label them with the
numbers bαNc + 1 through N and set ϕ̃k(z) = n if z is in
the n-th subset of Ek. Then ϕ̃k ∈ F(X,N) and∫

X

f(z)µ(ϕ̃−1k (ϕ̃k(z)))
ρdµ(z)

=

∫
X\Ek

f(z)µ(ϕ̃−1k (ϕk(z)))
ρdµ(z) +

Pr(Z ∈ Ek)µ(Ek)ρ

b(1− α)Ncρ
(36)

≤
∫
X\Ek

f(z)µ(ϕ−1k (ϕk(z)))
ρdµ(z) +

µ(Ek)ρ

b(1− α)Ncρ
(37)

=

∫
X\Ek

fk(z)µ(ϕ
−1
k (ϕk(z)))

ρdµ(z) +
µ(Ek)ρ

b(1− α)Ncρ
(38)

≤
∫
X

fk(z)µ(ϕ
−1
k (ϕk(z)))

ρdµ(z) +
µ(Ek)ρ

b(1− α)Ncρ
(39)

where (36) follows from the construction of ϕ̃k; where (37)
follows because ϕ̃−1k (ϕk(z)) = ϕ−1k (ϕk(z))\Ek for z ∈ X\Ek
and because Pr(Z ∈ Ek) ≤ 1; where (38) follows because
µ(ϕ−1k (ϕk(z))) is constant on each Ei,k and

∫
Ei,k fdµ =∫

Ei,k fkdµ; and where (39) follows because the integrand is
nonnegative so enlarging the domain of integration can only
increase the value of the integral. It follows that

Nρ E[µ(ϕ̃−1k (ϕ̃k(Z)))
ρ]

≤ Nρ

bαNcρ
bαNcρ

∫
X

fk(z)µ(ϕ
−1
k (ϕk(z)))

ρdµ(z)

+
Nρ

b(1− α)Ncρ
µ(Ek)ρ. (40)

Hence, by (35),

lim
N→∞

N min
ϕ∈F(X,N)

E[µ(ϕ−1(ϕ(Z)))ρ]1/ρ

≤
(
α−ρ

(∫
X

fk(z)
1

1+ρ dµ(z)
)1+ρ

+(1−α)−ρµ(Ek)ρ
)1/ρ

.

(41)

Recalling (33) and noting that limk→∞ µ(Ek) = 0 (see (30)),
the proof is completed by first letting k →∞ and then α→ 1.

III. EXISTENCE OF AN OPTIMAL QUANTIZER

Here we prove that the infimum

inf
ϕ∈F(X,N)

E[µ(ϕ−1(ϕ(Z)))ρ] (42)

is attained. The case N = 1 is trivial, so we assume that
N ≥ 2. Let (ϕk)k≥1 be a sequence in F(X,N) such that

lim
k→∞

E[µ(ϕ−1k (ϕk(Z)))
ρ] = inf

ϕ∈F(X,N)
E[µ(ϕ−1(ϕ(Z)))ρ].

(43)
By passing to a subsequence, we may assume that the sequence
of N -tuples (

µ(ϕ−1k (1)), . . . , µ(ϕ−1k (N))
)

(44)

converges to a limit (a1, . . . , aN ), where the an’s are nonneg-
ative and sum up to µ(X). By relabeling if necessary, we may
further assume that

a1 ≤ a2 ≤ · · · ≤ aN . (45)

To keep the presentation concise, we focus on the case where
a1 > 0. The case where a1 = . . . = aj = 0 for some j ∈
{1, . . . , N − 1} requires only minor modifications.

We construct an optimal ϕ ∈ F(X,N) as follows. Define
the nonincreasing thresholds

tn = inf
{
t ≥ 0 : µ({f ≥ t}) ≤ a1 + . . .+ an

}
, (46)

for 1 ≤ n ≤ N − 1, where we use the shorthand {f ≥ t} =
{z ∈ X : f(z) ≥ t}.

Using the continuity of measure, it is straightforward to
verify that µ({f > t1}) ≤ a1 and µ({f ≥ t1}) ≥ a1. Thus,
since µ is nonatomic [3], there is a measurable A1 ⊆ {f = t1}
(possibly the empty set) such that µ({f > t1}∪A1) = a1. We
set

ϕ−1(1) = {f > t1} ∪A1. (47)

To construct ϕ−1(n) for 2 ≤ n ≤ N − 1, assume that
ϕ−1(1), . . . , ϕ−1(n−1) and A1, . . . , An−1 have been defined.
If tn = tn−1, then we can find a measurable An ⊆ {f =
tn} \

⋃n−1
i=1 Ai such that µ(An) = an. In this case, we set

ϕ−1(n) = An. If tn < tn−1, then we can find a measurable
An ⊆ {f = tn} such that

µ

(
An ∪

(
{f > tn} \

n−1⋃
i=1

ϕ−1(i)
))

= an. (48)

In this case, we set ϕ−1(n) = An∪({f > tn}\
⋃n−1
i=1 ϕ

−1(i)).
Finally, we set ϕ−1(N) = X \

⋃N−1
i=1 ϕ−1(i).

The ϕ ∈ F(X,N) thus obtained has the properties:(
µ(ϕ−1(1)), . . . , µ(ϕ−1(N))

)
= (a1, . . . , aN ) (49a)

and (
ϕ(z) ≤ ϕ(z′)

)
=⇒

(
f(z) ≥ f(z′)

)
. (49b)

As we next show, these properties are the key to optimality.

Select δ > 0 and k sufficiently large so that

|µ(ϕ−1k (n))ρ − aρn| < δ, n ∈ {1, . . . , N}. (50)

We then have∫
X

f(z)µ(ϕ−1k (ϕk(z)))
ρdµ(z)

=

N∑
n=1

Pr
(
Z ∈ ϕ−1k (n)

)
µ(ϕ−1k (n))ρ

≥
N∑
n=1

Pr
(
Z ∈ ϕ−1k (n)

)
aρn − δ. (51)

To complete the proof we use a variant of the summation-by-
parts identity: If bn, b̃n, cn are real numbers and

∑N
n=1 bn =



∑N
n=1 b̃n, then

N∑
n=1

cnbn −
N∑
n=1

cnb̃n

=

N−1∑
n=1

(cn − cn+1)
(
(b1 + . . .+ bn)− (b̃1 + . . .+ b̃n)

)
.

(52)

Set bn = Pr(Z ∈ ϕ−1k (n)), b̃n = Pr(Z ∈ ϕ−1(n)), and
observe that for any n ∈ {1, . . . , N − 1},

(b1 + . . .+ bn)− (b̃1 + . . .+ b̃n)

= Pr

(
Z ∈

n⋃
i=1

ϕ−1k (i) \
n⋃
i=1

ϕ−1(i)

)
− Pr

(
Z ∈

n⋃
i=1

ϕ−1(i) \
n⋃
i=1

ϕ−1k (i)

)
. (53)

Since
⋃n
i=1 ϕ

−1(i) = {f > tn} ∪An, where An ⊆ {f = tn},
it follows that the first probability on the RHS of (53) is upper-
bounded by

tn µ

( n⋃
i=1

ϕ−1k (i) \
n⋃
i=1

ϕ−1(i)

)
, (54)

and the second probability is lower-bounded by

tn µ

( n⋃
i=1

ϕ−1(i) \
n⋃
i=1

ϕ−1k (i)

)
. (55)

Thus,

(b1 + . . .+ bn)− (b̃1 + . . .+ b̃n)

≤ tn
(
µ
( n⋃
i=1

ϕ−1k (i)
)
− µ

( n⋃
i=1

ϕ−1(i)
))

= tn

( n∑
i=1

µ(ϕ−1k (i))−
n∑
i=1

ai

)
= ε

(n)
k , (56)

where ε(n)k → 0 as k →∞. Setting εk = maxn ε
(n)
k , recalling

that the an’s are nondecreasing, and using (52) with cn = aρn,
we thus obtain

N∑
n=1

Pr
(
Z ∈ ϕ−1k (n)

)
aρn

≥
N∑
n=1

Pr
(
Z ∈ ϕ−1(n)

)
aρn − εk

N−1∑
n=1

(aρn+1 − aρn)

=

∫
X

f(z)µ
(
ϕ−1(ϕ(z))

)ρ
dµ(z)− εk(aρN − a

ρ
1)

≥
∫
X

f(z)µ
(
ϕ−1(ϕ(z))

)ρ
dµ(z)− εk µ(X)ρ, (57)

where (57) follows because aN ≤ µ(X). Combining (57)
and (51), and letting first k → ∞ and then δ → 0 shows
that∫

X

f(z)µ
(
ϕ−1(ϕ(z))

)ρ
dµ(z)

≤ lim
k→∞

∫
X

f(z)µ(ϕ−1k (ϕk(z)))
ρdµ(z). (58)

In view of (43) this completes the proof.
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