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Abstract—Ahlswede, Cai, and Zhang proved that, in the noise-
free limit, the zero-undetected-error capacity is lower-bounded by
the Sperner capacity of the channel graph, and they conjectured
equality. Here we derive an upper bound that proves the
conjecture.

I. INTRODUCTION

A zero-undetected-error (z.u.e.) decoder declares that a
message was transmitted only if it is the only message that
could have produced the observed output. If the output could
have been produced by two or more messages, it declares an
erasure. Such a decoder thus never errs: it either produces the
correct message or an erasure.

The z.u.e. capacity C0-u of a channel is the supremum of all
rates that are achievable with a z.u.e. decoder in the sense that
the probability of erasure tends to zero as the blocklength tends
to infinity [1], [2]. (It does not matter whether we define C0-u
using an average or a maximal erasure probability criterion.)
Clearly, C0-u never exceeds the Shannon capacity C.

Determining the z.u.e. capacity of general discrete memo-
ryless channels (DMCs) is an open problem. The focus of this
paper is the z.u.e. capacity of nearly noise-free channels. More
precisely, we focus on ε-noise channels, that is, DMCs whose
input alphabet X is a subset of their output alphabet Y and
whose transition law W satisfies

W (x|x) ≥ 1− ε for all x ∈ X . (1)

Here and throughout we assume that 0 ≤ ε < 1. For ε-
noise channels we derive an upper bound on C0-u. We then
apply this result to study the limit of C0-u as ε tends to zero.
Ahlswede, Cai, and Zhang proved that this limit is lower-
bounded by the Sperner capacity of a certain related graph,
and they conjectured equality [2]. Our upper bound proves this
conjecture.

The Sperner capacity is defined using graph-theoretic lan-
guage in Section III. Here we give an alternative characteri-
zation in terms of codes (see also [2]). For this we need some
standard notation.

A DMC is specified by its transition law W (y|x), x ∈ X ,
y ∈ Y , where X and Y are finite input and output alphabets.
Feeding a sequence of input symbols x = (x(1), . . . , x(n)) to
a DMC of transition law W produces a random sequence of
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output symbols Y = (Y (1), . . . , Y (n)) with distribution

Wn(y|x) ,
∏

1≤j≤n

W (y(j)|x(j)), y ∈ Yn. (2)

The support of W is the set of all pairs (x, y) ∈ X × Y for
which W (y|x) is positive; it is denoted by S(W ). Similarly,
if P is a PMF on X , then S(P ) denotes the set of all x ∈
X for which P (x) is positive. We write PW for the PMF
on Y induced by P and the channel W , i.e., (PW )(y) =∑
x∈X P (x)W (y|x). If A ⊆ X , then P (A) =

∑
x∈A P (x).

The cardinality of a set A is denoted by |A|. All logarithms are
natural logarithms, and we adopt the convention 0 log 1

0 = 0.
We define a blocklength-n Sperner code for a DMC W

with X ⊆ Y and W (x|x) > 0 for all x ∈ X as a collection
of length-n codewords x1, . . . ,xM with the property

Wn(xm|xm′) = 0 whenever m 6= m′. (3)

The rate of the code is n−1 logM . The largest rate of a Sperner
code is a function of the channel law W and the blocklength n.
In fact, it depends on W only via its support S(W ). The
supremum over n of the largest rate of blocklength-n Sperner
codes is the Sperner capacity CSp of the channel.

With this notation, we can now state our main result.

Theorem I.1. For every ε-noise channel,

C0-u ≤ log
(
eCSp + ε|X |(|Y| − 1)

)
. (4)

Combining Theorem I.1 with [2, Theorem 2] proves the
following corollary, which was conjectured in [2].

Corollary I.2. For ε-noise channels,

lim
ε→0

C0-u = CSp, (5)

where the limit is to be understood in a uniform sense with
respect to all ε-noise channels with given S(W ).

To put this result into perspective, a review of the literature
on the zero-undetected-error capacity is provided in the ArXiv-
version of this paper [3]. Here we only mention our earlier
work [4], where (5) is proved for the “cyclic triangle channel”.

A proof of Theorem I.1 is given in Section IV. Before
providing an outline of this proof, we try to explain why
Corollary I.2 is plausible. If we use a Sperner code in con-
junction with a z.u.e. decoder, then an erasure can occur only
if the codeword is corrupted, which happens with probability
at most 1 − (1 − ε)n. This suggests that CSp should be a
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lower bound to C0-u when ε is very small (ignoring the issue
that n tends to infinity before ε tends to zero). Conversely,
any code whose maximal probability of erasure under z.u.e.
decoding is smaller than (1 − ε)n must be a Sperner code.
Since for all rates strictly smaller than C0-u the probability
of erasure can be driven to zero exponentially fast [3], this
suggests that CSp should be an upper bound on C0-u for small ε
(ignoring the issue that the exponent of the erasure probability
may become arbitrarily small as ε becomes small and the rate
approaches C0-u).

As to the outline of the proof of Theorem I.1, we first show
that a multi-letter version of Forney’s lower bound on C0-u
is asymptotically tight, even when the input distributions are
restricted to be uniform over their support (Section II). We
then upper-bound the multi-letter expression using Jensen’s
inequality followed by algebraic manipulations that yield a still
looser bound. Thanks to the input distribution being uniform,
this looser bound depends only on ε and the support of W .
The final step is to use graph-theoretic techniques, which are
introduced in Section III, to obtain the desired upper bound.
These techniques include upper-bounding a sum that depends
only on the in-degrees of the vertices of a graph G by the
maximum size of any induced acyclic subgraph of G. They
also include showing that the Sperner capacity of a graph G
can be expressed as the limit as n tends to infinity of 1/n
times the logarithm of the maximum cardinality of any induced
acyclic subgraph of the n-fold strong product of G with itself.

II. A MULTI-LETTER FORMULA FOR C0-u

In [5] Forney derived the lower bound

C0-u ≥ max
P

∑
y∈Y

(PW )(y) log
1

P (X (y))
, (6)

where the maximum is over all PMFs on the input alpha-
bet X , and where X (y) denotes the set of all x ∈ X for
which W (y|x) is positive.

Since any code for the product channel Wn is also a code
for the channel W of n times the blocklength and 1/n times
the rate, it follows that Forney’s bound can be improved by
applying it to Wn and normalizing the result by 1/n. This
yields for every n the bound

C0-u ≥ n−1 max
P

∑
y∈Yn

(PWn)(y) log
1

P (Xn(y))
, (7)

where the maximum is over all PMFs on Xn, and
where Xn(y) denotes the set of all x ∈ Xn for
which Wn(y|x) is positive.

We next show that (7) is asymptotically tight even when the
input PMFs are restricted to be uniform over their support.

Theorem II.1. For any DMC,

C0-u = lim
n→∞

n−1 max
P∈Un

∑
y∈Yn

(PWn)(y) log
1

P (Xn(y))
, (8)

where Un denotes the collection of PMFs on Xn that are
uniform over their support. Moreover, the limit is equal to the
supremum.

Proof: It is straightforward to verify that the sequence
on the RHS of (8) without the 1/n factor is superadditive,
which implies that the limit is equal to the supremum.1 Let us
denote this limit by λ. Achievability, i.e., C0-u ≥ λ, follows
because (7) holds for every n.

As to the converse, let x1, . . . ,xM be a codebook of
blocklength n and rate R with maximal probability of erasure
under z.u.e. decoding less than some δ ∈ (0, 1):

max
1≤m≤M

∑
y∈Yn:M(y)>1

Wn(y|xm) < δ, (9)

where M(y) denotes the number of messages that cannot be
ruled out when y is observed at the output

M(y) =
∣∣{1 ≤ m ≤M : Wn(y|xm) > 0

}∣∣. (10)

Condition (9) implies that xm 6= xm′ when m 6= m′ because
otherwise, as we next argue, the conditional probability of
erasure given that the m-th message was sent would be one.
Indeed, if xm = xm′ for some m 6= m′, then M(y) ≥ 2
whenever Wn(y|xm) > 0 because then also Wn(y|xm′) > 0,
and hence ∑

y∈Yn:M(y)>1

Wn(y|xm) = 1. (11)

Having established that the codewords are distinct, we
choose P to be the uniform PMF on the codebook. Then
P ∈ Un and

P
(
Xn(y)

)
=
M(y)

M
, for all y ∈ Yn. (12)

We further observe that

λ ≥ n−1
∑
y∈Yn

(PWn)(y) log
1

P (Xn(y))
(13)

= R− n−1
∑

y∈Yn:M(y)>1

(PWn)(y) logM(y) (14)

≥ R
(

1−
∑

y∈Yn:M(y)>1

(PWn)(y)

)
(15)

= R

(
1−M−1

M∑
m=1

∑
y∈Yn:M(y)>1

Wn(y|xm)

)
(16)

> R(1− δ), (17)

where (13) follows because λ is the supremum of a se-
quence whose n-th term is no smaller than the RHS of (13);
where (14) follows from (12) and the fact that log 1 = 0;
where (15) follows because M(y) ≤ M ; where (16) follows
from the choice of P ; and where (17) follows from (9). Thus,
for any sequence of blocklength-n rate-R codebooks with
maximal probability of erasure approaching zero, we must
have R ≤ λ. A standard expurgation argument shows that
this is also true when we replace the maximal probability of
erasure with the average (over the messages) probability of
erasure.

1A sequence a1, a2, . . . of real numbers is superadditive if an+m ≥
an + am for every n and m. For superadditive sequences an/n tends to
supn an/n [6, Problem 98].
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III. GRAPH-THEORETIC PRELIMINARIES

A directed graph (or simply a graph) G is described by its
finite vertex set V (G) and its edge set E(G) ⊂ V (G)×V (G).
We say that there is an edge from x to y in G if (x, y) ∈ E(G).
We always assume that G does not contain self-loops, i.e., that
(x, x) /∈ E(G) for all x ∈ V (G).

The strong product of two graphs G and H is denoted by
G×H; its vertex set is V (G)× V (H), and there is an edge
from (x, y) to (x′, y′) in G×H if either (x, x′) ∈ E(G) and
(y, y′) ∈ E(H), or if (x, x′) ∈ E(G) and y = y′, or if x = x′

and (y, y′) ∈ E(H). The n-fold strong product of G with
itself is denoted by Gn.

The subgraph of G induced by A ⊆ V (G) is the graph
whose vertex set is A and whose edge set is E(G)∩ (A×A).

A subset A ⊆ V (G) is an independent set in G if the
subgraph of G it induces has no edges, i.e., if E(G) ∩ (A ×
A) = ∅. The maximum cardinality of an independent set in G
is denoted by ω(G). We define the Sperner capacity of G as2

Σ(G) = lim
n→∞

n−1 logω(Gn), (18)

where the limit on the RHS is equal to the supremum because
the sequence ω(G1), ω(G2), . . . is supermultiplicative.3

A path in G is a sequence of n ≥ 2 distinct ver-
tices x1, . . . , xn such that (xj , xj+1) ∈ E(G) for all j ∈
{1, . . . , n− 1}. The first vertex in this path is x1, and the last
vertex is xn. We say that there is a path from x to y in G
if there is a path in G whose first vertex is x and whose last
vertex is y.

A cycle is a path x1, . . . , xn with (xn, x1) ∈ E(G). We say
that G is acyclic if it does not contain a cycle. The maximum
cardinality of a subset A ⊆ V (G) that induces an acyclic
subgraph of G is denoted by ρ(G).

The following two results will be key in the proof of
Theorem I.1. The first is that ω can be replaced with ρ in (18).

Theorem III.1. For every graph G,

Σ(G) = lim
n→∞

n−1 log ρ(Gn), (19)

and the limit is equal to the supremum.

In particular, Theorem III.1 asserts that

ρ(Gn) ≤ enΣ(G), for all n. (20)

A proof of Theorem III.1 is provided in the appendix.
The number of edges of G ending in a vertex x is called

the in-degree of x in G and is denoted by din(x,G), i.e.,

din(x,G) =
∣∣{x′ ∈ V (G) : (x′, x) ∈ E(G)

}∣∣. (21)

The next result is a slight generalization of [8, p. 95, Thm 1].

2Some authors prefer to define Sperner capacity in terms of cliques instead
of independent sets (see, e.g., [7]).

3A sequence a1, a2, . . . of real numbers is supermultiplicative if an+m ≥
anam for all m and n.

Theorem III.2. For every graph G,∑
x∈V (G)

1

1 + din(x,G)
≤ ρ(G). (22)

A proof of Theorem III.2 is provided in the appendix.
For DMCs W with X ⊆ Y and W (x|x) > 0 for every x ∈

X , we define the associated graph G(W ) to have vertex set X
and edge set comprising all ordered pairs (x, y) of distinct
elements of X for which W (y|x) > 0. Thus, for such channels

CSp(W ) = Σ
(
G(W )

)
. (23)

Indeed, every Sperner code for W of blocklength n is an
independent set in G(W )n and vice versa.

IV. PROOF OF THEOREM I.1
Applying Jensen’s Inequality to the RHS of (8) yields

C0-u ≤ sup
n≥1

n−1 max
P∈Un

log
∑

y∈S(PWn)

(PWn)(y)

P (Xn(y))
. (24)

It thus suffices to show that for all P ∈ Un,∑
y∈S(PWn)

(PWn)(y)

P (Xn(y))
≤
(
eCSp + ε|X |(|Y| − 1)

)n
. (25)

Fix then some P ∈ Un. Since the labels do not matter, we may
assume for simplicity of notation that X = {0, . . . , |X | − 1}
and Y = {0, . . . , |Y| − 1}, where |Y| ≥ |X |. The distribution
on Yn induced by P and Wn can be written as

(PWn)(y) =
∑

z∈Yn:
y+z∈Xn

P (y + z)Wn(y|y + z), (26)

where addition is to be understood component-wise mod-
ulo |Y|. The ε-noise property (1) implies

Wn(y|y + z) ≤ ε‖z‖0 , if y + z ∈ Xn, (27)

where ‖z‖0 denotes the number of nonzero components of z.
Thus, starting with the LHS of (25),∑

y∈S(PWn)

(PWn)(y)

P (Xn(y))
(28)

=
∑

y∈S(PWn)

∑
z∈Yn:

y+z∈Xn

P (y + z)Wn(y|y + z)

P (Xn(y))
(29)

=
∑
z∈Yn

∑
y∈Yn:

y+z∈Xn

P (y+z)>0
Wn(y|y+z)>0

P (y + z)Wn(y|y + z)

P (Xn(y))
(30)

≤
∑
z∈Yn

ε‖z‖0
∑

y∈Yn:
y+z∈Xn

P (y+z)>0
Wn(y|y+z)>0

P (y + z)

P (Xn(y))
(31)

=
∑
z∈Yn

ε‖z‖0
∑

y∈Xn:
P (y)>0

Wn(y−z|y)>0

1

|{x ∈ S(P ) : Wn(y − z|x) > 0}|
,

(32)
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where (29) follows from (26); where (30) follows by changing
the order of summation and dropping terms that are zero;
where (31) follows from (27); and where (32) follows by
substituting y for y + z and because P is uniform over its
support. For every z ∈ Yn, let Pz be any PMF on Xn of
support

S(Pz) = {x ∈ Xn : P (x)Wn(x− z|x) > 0}. (33)

(In fact, Pz could be any nonnegative function with the above
support.) Also define for every z ∈ Yn the channel

Wz(y|x) = Wn(y − z|x), (34)

with input alphabet S(Pz) and output alphabet Yn. Since
S(Pz) ⊆ S(P ),

|{x ∈ S(P ) : Wn(y − z|x) > 0}|
≥ |{x ∈ S(Pz) : Wz(y|x) > 0}|. (35)

Using (35) we can upper-bound the inner sum on the RHS
of (32) by ∑

y∈S(Pz)

1

|{x ∈ S(Pz) : Wz(y|x) > 0}|
. (36)

This sum can also be written as∑
y∈V (G(Wz))

1

1 + din(y, G(Wz))
, (37)

where G(Wz) is the graph associated with the channel Wz

(see Section III). Since (37) is upper-bounded by ρ(G(Wz))
(Theorem III.2), we thus have∑

y∈S(PWn)

(PWn)(y)

P (Xn(y))
≤
∑
z∈Yn

ε‖z‖0ρ
(
G(Wz)

)
. (38)

We next argue that

ρ
(
G(Wz)

)
≤ |X |‖z‖0ρ

(
G(W )n−‖z‖0

)
, (39)

where we define ρ(G(W )0) = 1. When ‖z‖0 = n, then (39)
is trivial, so we assume that 0 ≤ ‖z‖0 < n. Let x(z)
denote the restriction of x ∈ Xn to the nonzero components
of z, and let x(zc) denote the restriction of x to the zero
components of z. We will prove (39) by contradiction. In
order to reach a contradiction, assume that for some integer η
strictly larger than the RHS of (39) there exist distinct ver-
tices x1, . . . ,xη in S(Pz) that induce an acyclic subgraph
of G(Wz). Partition this collection of vertices by placing into
the same class all xj’s that have the same restriction xj(z).
Since there are |X |‖z‖0 such classes, one of them must contain
κ > ρ(G(W )n−‖z‖0) vertices; call them x′1, . . . ,x

′
κ. Since

x′1, . . . ,x
′
κ are distinct, and since their restrictions to the

nonzero components of z are identical, their restrictions to
the zero components of z, i.e., x′1(zc), . . . ,x′κ(zc) must all be
distinct. Also, if x,y ∈ S(Pz) and x(z) = y(z), then

Wz(y|x) > 0 ⇐⇒ Wn−‖z‖0
(
y(zc)

∣∣x(zc)
)
> 0. (40)

It follows that the subgraph of G(Wz) induced by x′1, . . . ,x
′
κ

is isomorphic to the subgraph of G(Wn−‖z‖0) induced by

x′1(zc), . . . ,x′κ(zc).4 And since the former is acyclic, so must
the latter be, which is a contradiction because G(Wn−‖z‖0) =
G(W )n−‖z‖0 and κ > ρ(G(W )n−‖z‖0).

Having established (39), we further note that by (20)
and (23),

ρ
(
G(W )n−‖z‖0

)
≤ e(n−‖z‖0)CSp . (41)

By combining (38), (39), and (41), we obtain∑
y∈S(PWn)

(PWn)(y)

P (Xn(y))
(42)

≤
∑
z∈Yn

ε‖z‖0 |X |‖z‖0e(n−‖z‖0)CSp (43)

=

n∑
k=0

(
n

k

)
(|Y| − 1)kεk|X |ke(n−k)CSp , (44)

where the equality follows because the summand on the
RHS of (43) depends on z only via ‖z‖0 and because there
are
(
n
k

)
(|Y|−1)k elements in Yn with exactly k nonzero com-

ponents. This completes the proof because the RHS of (44) is
equal to the RHS of (25).

V. REMARKS

1) In Theorem I.1 we may replace |Y| with |X |+ 2|X | − 1.
See [3] for a proof.

2) For some channels the bound in Theorem I.1 can be
sharpened. See [4] for an interesting example.

APPENDIX

Proof of Theorem III.1: We shall need the elementary
fact that the vertices of any acyclic graph G can be labeled
with the numbers 1, . . . , |V (G)| such that (x, y) ∈ E(G) only
if x < y (see, e.g., [9, Section 5.7]).5

Using this fact, we first show that the sequence
ρ(G1), ρ(G2), . . . is supermultiplicative, which will imply that
the limit on the RHS of (19) equals the supremum. Choose
for each n some An ⊆ V (G)n that achieves ρ(Gn), i.e., An
induces an acyclic subgraph of Gn and |An| = ρ(Gn). We
show that An × Am induces an acyclic subgraph of Gn+m

and hence that

ρ
(
Gn+m

)
≥ |An ×Am| (45)
= ρ(Gn)ρ(Gm). (46)

Label the vertices in An with the numbers 1, . . . , |An| so that
(x, x′) ∈ E(Gn) ∩ (An × An) implies x < x′. Similarly
label the vertices in Am. To reach a contradiction, assume
that (x1, y1), . . . , (xη, yη) is a cycle in the subgraph of Gn+m

induced by An × Am. From the definition of strong product
and the labeling of the vertices it follows that x1 < xη or
y1 < yη . Consequently, there cannot be an edge from (xη, yη)
to (x1, y1) in this subgraph, which contradicts the assumption
that (x1, y1), . . . , (xη, yη) is a cycle.

4The isomorphism is x 7→ x(zc).
5A different way to state this is that any partial order on a finite set can be

extended to a total order on this set.
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As to (19), we first show that

Σ(G) = log|V (G)|, for all acyclic G. (47)

Note that this will prove Theorem III.1 in the special case
where G is acyclic. Indeed, in this case ρ(G) = |V (G)|,
so (46) implies ρ(Gn) ≥ |V (G)|n. And since clearly ρ(Gn) ≤
|V (G)|n, we thus have

ρ(Gn) = |V (G)|n, for all acyclic G. (48)

To prove (47), note that ω(Gn) ≤ |V (G)|n and hence Σ(G) ≤
log|V (G)| (this is true for any G, not just acyclic), so it only
remains to prove the reverse inequality. Since G is acyclic, we
may label its vertices with the numbers 1, . . . , |V (G)| so that
there is an edge from x to y in G only if x < y. We then
define the weight of a vertex x in Gn as the sum of the labels
of its n components. Thus, the weight is a number between n
and n|V (G)|.

As we next show, if A is a subset of V (G)n all of whose
members have the same weight, then A is an independent set
in Gn. Indeed, if x and y are distinct vertices in A, then x(j) >
y(j), say, for some j ∈ {1, . . . , n}. Since x and y have equal
weight, there must also be some k 6= j for which x(k) < y(k).
Thus, (x(j), y(j)) /∈ E(G) and (y(k), x(k)) /∈ E(G), so there
is no edge from x to y and no edge from y to x in Gn.

If we partition V (G)n by putting in the same class all
vertices of the same weight, then one of the classes must have
at least

|V (G)|n

n|V (G)| − n+ 1

members. Thus,

n−1 logω(Gn) ≥ log|V (G)| − n−1 log
(
n|V (G)| − n+ 1

)
,

and letting n tend to infinity establishes Σ(G) ≥ log|V (G)|
and hence proves (47).

To complete the proof of (19), let G be any graph (not nec-
essarily acyclic) and let λ denote the limit of n−1 log ρ(Gn)
as n tends to infinity (i.e., the supremum). For a given δ > 0
select ν so that

ν−1 log ρ(Gν) ≥ λ− δ. (49)

Choose A ⊆ V (G)ν that achieves ρ(Gν) and let H denote the
acyclic subgraph of Gν it induces. Since Hm is the subgraph
of Gνm induced by Am,

(νm)−1 logω(Gνm) ≥ (νm)−1 logω(Hm). (50)

Letting m tend to infinity, we obtain

Σ(G) ≥ ν−1Σ(H). (51)

Since H is acyclic, we can substitute it for G in (47) to obtain

ν−1Σ(H) = ν−1 log|A| (52)

= ν−1 log ρ
(
Gν
)
, (53)

where (53) follows because A achieves ρ(Gν). Combin-
ing (51), (53), and (49) shows that Σ(G) ≥ λ − δ. Since
this is true for every δ > 0, we must in fact have Σ(G) ≥ λ.

On the other hand, a graph with no edges is trivially acyclic,
so ω(Gn) ≤ ρ(Gn) and hence Σ(G) ≤ λ.

Proof of Theorem III.2: Let < be a total ordering of the
vertices of G and consider the subset A ⊆ V (G) comprising
all x ∈ V (G) such that if (x′, x) ∈ E(G) for some x′ ∈ V (G),
then x′ < x. The subgraph of G induced by A is acyclic.
Indeed, if x1, . . . , xη is a path in this subgraph, then x1 < xη ,
so we cannot have (xη, x1) ∈ E(G). Thus,

|A| ≤ ρ(G). (54)

Suppose now that < is drawn uniformly at random among all
total orderings of V (G). Then

Pr(x ∈ A) =
1

1 + din(x,G)
, for all x ∈ V (G). (55)

Indeed, x is in A if, and only if, it is the greatest vertex in
the set

B = {x} ∪ {x′ : (x′, x) ∈ E(G)}. (56)

Since < is drawn uniformly at random, every vertex in B
has the same probability of being the greatest element in B,
so (55) follows by noting that |B| = 1 + din(x,G).

Summing both sides of (55) over all vertices of G yields∑
x∈V (G)

1

1 + din(x,G)
=

∑
x∈V (G)

Pr(x ∈ A). (57)

By writing Pr(x ∈ A) as the expectation of the indicator
function of the event {x ∈ A} and by swapping summation
and expectation, we see that the RHS of (57) is the expected
cardinality of A. This expected cardinality cannot exceed ρ(G)
because (54) holds for every realization of <.

REFERENCES

[1] I. Csiszár and P. Narayan, “Channel capacity for a given decoding metric,”
IEEE Trans. Inf. Theory, vol. 41, no. 1, pp. 35–43, 1995.

[2] R. Ahlswede, N. Cai, and Z. Zhang, “Erasure, list, and detection zero-
error capacities for low noise and a relation to identification,” IEEE Trans.
Inf. Theory, vol. 42, no. 1, pp. 55–62, 1996.

[3] C. Bunte, A. Lapidoth, and A. Samorodnitsky, “The zero-undetected-error
capacity approaches the Sperner capacity,” Sep. 2013, arXiv:1309.4930
[cs.IT]. [Online]. Available: http://arxiv.org/abs/1309.4930

[4] C. Bunte, A. Lapidoth, and A. Samorodnitsky, “The zero-undetected-error
capacity of the low-noise cyclic triangle channel,” in Information Theory
Proceedings (ISIT), 2013 IEEE International Symposium on, 2013, pp.
91–95.

[5] G. Forney Jr, “Exponential error bounds for erasure, list, and decision
feedback schemes,” IEEE Trans. Inf. Theory, vol. 14, no. 2, pp. 206–220,
1968.
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