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Abstract—Optimal error probabilities for transmission over
the average-power-limited Gaussian channel with intermittent
feedback are studied. For the two-message case, the asymptotic
decay of the probability of error in the blocklength is double-
exponential and is fully characterized. For positive rates a critical
rate is identified below which a double-exponential decay is
possible and above which it is not.

I. INTRODUCTION

The asymptotic behavior of the best achievable error prob-
ability over the memoryless Gaussian channel has received
much attention over the years both in the absence and in
the presence of feedback. Much of the work on feedback has
focused on ideal feedback (as in [1] and references therein),
but there has recently been growing interest in imperfect
feedback, e.g., [4]–[8]. Most relevant to the present work is the
model introduced in [2] where the feedback is “intermittent,”
i.e., where each channel output is fed back with some given
probability ρ and the receiver is cognizant of which outputs
were fed back. While [2] dealt with the multiple-access
channel, here we focus on the single-user channel and on
the achievable probabilities of error. As in [2], the results in
this paper are derived under the assumption that the receiver
knows which channel outputs are fed back to the transmitter.
(A partial result for the case when the receiver does not know
which symbols are fed back is presented in Section V.)

We show that if only one of two equally-likely messages
is to be transmitted over the channel, then the optimal error
probability decays with the blocklength double-exponentially
with second-order exponent − log(1 − ρ); see Theorem III.1
ahead. When transmitting at a positive rate R, we show that a
double-exponential decay of the probability of error is possible
if R < ρC, where C denotes channel capacity. If the rate
exceeds ρC, then the optimal probability of error decays
at most exponentially in the blocklength; see Theorem IV.1
ahead.

Our model is more pessimistic than the one in [4], and
indeed our converse for the positive-rate case is based on the
converse in [4]. In this paper, most of the effort goes into the
achievability proofs.

II. NOTATION AND PRELIMINARIES

We denote by Q(ξ) the probability that a standard Gaussian
exceeds the value ξ. The following bounds will be useful.

1√
2πξ2

e−ξ
2/2
(

1− 1

ξ2

)
< Q(ξ) ≤ 1

2
e−ξ

2/2, ξ ≥ 0. (1)

We use the notation xn = (x1, . . . , xn) for n-tuples. The
complement of an event E is denoted by Ec. All logarithms
are natural logarithms.

III. THE TWO-MESSAGE CASE

Consider the problem of transmitting one of two equiprob-
able messages in n uses of a channel whose output at time k
is

Yk = xk + Zk, (2)

where xk is the input of the channel at time k, and
where {Zk}∞k=1 are IID Gaussian of zero mean and unit
variance. We assume that the transmitter receives intermittent
feedback in the sense that Yk is revealed causally to the
transmitter if, and only if, Vk = 1, where {Vk}∞k=1 are
independent of the noise {Zk}∞k=1 and of the message and
are IID Bernoulli with Pr(Vk = 1) = 1 − Pr(Vk = 0) = ρ
for some ρ ∈ (0, 1). The input of the channel at time k is
thus a function of the message, of V k−1, and of those Yi with
1 ≤ i ≤ k − 1 for which Vi = 1. The receiver knows which
symbols were fed back to the transmitter, i.e., it knows V n.

To be more precise, let (Ω,F , P ) be the underlying proba-
bility space and let Fk be the σ-field of all events A ∈ F
such that for all vk ∈ {0, 1}k we have {V k = vk} ∩
A ∈ σ(V k, Yi(1), . . . , Yi(`)) where i(1), . . . , i(`) are those
indices i ∈ {1, . . . , k} for which vi = 1. A two-message
blocklength-n code for this channel comprises two random
n-tuples Xn(m), m ∈ {0, 1}, such that each Xk(m) is Fk−1-
measurable, and a (Borel-measurable) decoder mapping

ϕ : Rn × {0, 1}n → {0, 1}. (3)

The probability of error is

Pr(error) = Pr
(
ϕ(Y n, V n) 6= M

)
, (4)

where conditional on M = m the input to the channel
is Xn(m), and Pr(M = 0) = Pr(M = 1) = 1/2. We permit
only codes that satisfy the power constraint

E
[ n∑
k=1

Xk(m)2
]
≤ nP, m ∈ {0, 1}, (5)

where P is a given positive number. We denote by P
(n)
e the

least probability of error of any two-message blocklength-n
code satisfying (5).
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Theorem III.1. For any P > 0 and any ρ ∈ (0, 1),

lim
n→∞

1

n
log
(
− logP (n)

e

)
= − log(1− ρ). (6)

Proof. We begin with the converse part. Let N denote the
event that the transmitter receives no feedback at all. Then
Pr(N) = (1−ρ)n. Suppose for the moment that the transmitter
knows in advance which output symbols will be fed back,
i.e., V n is revealed noncausally. This can only decrease the
minimum probability of error. Moreover,

Pr(error) ≥ Pr(error|N)(1− ρ)n, (7)

and

E
[ n∑
k=1

Xk(m)2
]
≥ E

[ n∑
k=1

Xk(m)2
∣∣∣∣N](1− ρ)n. (8)

To satisfy (5), we must therefore have

E
[ n∑
k=1

Xk(m)2
∣∣∣∣N] ≤ (1− ρ)−nnP. (9)

Subject to the constraint (9), the conditional probability of
error Pr(error|N) is minimized by using binary antipodal
signaling whenever N occurs:

X1(m) =

{√
(1− ρ)−nnP if m = 0,

−
√

(1− ρ)−nnP if m = 1,
(10)

and X2(m) = . . . = Xn(m) = 0; and to remain silent
otherwise: X1(m) = . . . = Xn(m) = 0. Thus,

Pr(error|N) ≥ Q(
√

(1− ρ)−nnP ). (11)

Using the lower bound in (1), it follows from (7) and (11) that

lim
n→∞

1

n
log
(
− logP (n)

e

)
≤ − log(1− ρ), (12)

which is the desired converse result.
To prove the direct part we exhibit a sequence of codes

that achieves a second-order error exponent of − log(1 − ρ).
We describe the construction of Xn(m) when m = 0; the
description for m = 1 is similar with obvious reversals of signs
and inequalities. To simplify notation, we henceforth write Xk

instead of Xk(0). In the rest of this proof, all probabilities and
expectations are implicitly conditioned on M = 0.

Fix the blocklength n and let T1 and T2 denote the times
of occurrence of the first and second feedback symbols, i.e.,

T1 = min{k ≥ 1 : Vk = 1}, T2 = min{k > T1 : Vk = 1}.

Note that, by convention, the minimum of an empty set is
infinity: min ∅ = +∞.

It will be convenient to describe the coding scheme sepa-
rately for the case where T2 ≤ n−1, the case where T2 > n−1
and T1 < n − 1, and the case where T1 ≥ n − 1. We begin
with the case where T2 ≤ n− 1.
• 1st phase: Xk = A1, 1 ≤ k ≤ T1.

• 2nd phase:

Xk =

{
0 if YT1

≥ 0,
A2 if YT1

< 0,
T1 + 1 ≤ k ≤ T2, (13)

and Xk = 0 for T2 + 1 ≤ k ≤ n− 1 if T2 < n− 1.
• 3rd phase:

Xn =

A3
if YT2 < −A2/2 or (YT1 < 0 and
YT2

< A2/2),
0 otherwise.

(14)

Consider now the case where T1 < n− 1 and T2 > n− 1.
• 1st phase: Xk = A1, 1 ≤ k ≤ T1.
• 2nd phase:

Xk =

{
0 if YT1

≥ 0,
A2 if YT1 < 0,

T1 + 1 ≤ k ≤ n− 1. (15)

• 3rd phase: Xn = Ã3.
Finally, consider the case T1 ≥ n− 1.
• 1st phase:

Xk = A1, 1 ≤ k ≤ n− 1. (16)

• 2nd phase: Xn = Ã3.
It is readily verified that the different cases are consistent and
that Xn satisfies the required measurability condition (i.e., that
each Xk depends causally on the feedback symbols).

The amplitudes are chosen as follows.

A1 =
√
α1ρnP , A2 =

√
2α2ρnPe

α1ρnP
4 , (17)

A3 =
√

2α3nPe
α2ρnP

8 e
α1ρnP

2 , Ã3 = e
n
2 (log 1

1−ρ−δ), (18)

where the constants α1, α2, α3 may be any positive numbers
satisfying

α1 + α2 + α3 < 1, (19)

and where δ is arbitrary in the interval (0,− log(1− ρ)).
The decoding rule is

ϕ(Y n, V n) =


0

if (T2 > n − 1, Yn ≥ 0) or
(T2 ≤ n − 1, Yn ≥ A3/2) or
(T2 ≤ n − 1, Yn ≥ −A3/2,
YT2
≥ A2/2) or (T2 ≤ n − 1,

Yn ≥ −A3/2, YT2 ≥ −A2/2,
YT1 ≥ 0),

1 otherwise.

(20)

Next, we analyze the probability of error. Let D denote the
event that T2 ≤ n−1. Conditioning on the complement of D,

Pr(error|Dc) = Pr(Yn < 0|Dc)

= Q(Ã3). (21)

Conditioning on D,

Pr(error|D) = Pr(Yn < −A3/2|D)

+ Pr
(
YT2 < −A2/2, Yn ∈ [−A3/2, A3/2)

∣∣D)
+ Pr

(
YT1

< 0, YT2
∈ [−A2/2, A2/2),

Yn ∈ [−A3/2, A3/2)
∣∣D). (22)
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For the first probability on the RHS of (22),

Pr(Yn < −A3/2|D) ≤ Q(A3/2). (23)

For the second probability on the RHS of (22),

Pr
(
YT2

< −A2/2, Yn ∈ [−A3/2, A3/2)
∣∣D)

≤ Pr
(
Yn < A3/2

∣∣YT2 < −A2/2, D
)

= Q(A3/2). (24)

For the third probability on the RHS of (22),

Pr
(
YT1 < 0, YT2 ∈ [−A2/2, A2/2), Yn ∈ [−A3/2, A3/2)

∣∣D)
≤ Pr

(
Yn < A3/2

∣∣YT1
< 0, YT2

∈ [−A2/2, A2/2), D
)

= Q(A3/2). (25)

Thus, the overall probability of error can be bounded as

Pr(error) = Pr(error|Dc) Pr(Dc) + Pr(error|D) Pr(D)

≤ Q(Ã3) + 3Q(A3/2). (26)

Recalling (18) and (1), it follows from (26) that

lim
n→∞

1

n
log
(
− log Pr(error)

)
≥ − log(1− ρ)− δ. (27)

Letting δ → 0 gives the desired lower bound.
It remains to verify that the power constraint is satisfied.

Conditioning on D and computing the power in the three
phases separately, we have

E

[
T1∑
k=1

X2
k

∣∣∣∣∣D
]

Pr(D) = A2
1E[T1 |D] Pr(D)

≤ A2
1E[T1]

= α1nP, (28)

and

E

[
T2∑

k=T1+1

X2
k

∣∣∣∣∣D
]

Pr(D)

= A2
2E[T2 − T1 |D,YT1

< 0] Pr(YT1
< 0|D) Pr(D)

= A2
2Q(A1)E[T2 − T1 |D] Pr(D)

≤ A2
2Q(A1)E[T2 − T1]

≤ A2
2

2ρ
e−A

2
1/2

= α2nP, (29)

and

E[X2
n |D]

= A2
3

(
Pr(YT2

< −A2/2|YT1
≥ 0, D) Pr(YT1

≥ 0|D)

+ Pr(YT2 < A2/2|YT1 < 0, D) Pr(YT1 < 0|D)
)

≤ A2
3Q(A2/2)

(
Pr(YT1 ≥ 0|D) + Pr(YT1 < 0|D)

)
= A2

3Q(A2/2)

≤ A2
3

2
e−A

2
2/8

= α3nP. (30)

Letting B denote the event that T1 < n− 1 and conditioning
on the complement of D, we have

E
[ n∑
k=1

X2
k

∣∣∣∣Dc
]

= E
[
X2
n

∣∣Dc]+ E

[
n−1∑
k=1

X2
k

∣∣∣∣∣Dc

]
= Ã2

3 + (n− 1)A2
1 Pr(Bc|Dc) +A2

1E[T1 |Dc, B] Pr(B|Dc)

+A2
2E[n− 1− T1 |Dc, B, YT1

< 0] Pr(B, YT1
< 0|Dc)

≤ Ã2
3 + (2n− 3)A2

1 + (n− 2)A2
2 Pr(YT1 < 0|B,Dc)

= Ã2
3 + (2n− 3)A2

1 + (n− 2)A2
2Q(A1). (31)

Noting that

Pr(Dc) = (1− ρ)n−1 + (n− 1)ρ(1− ρ)n−2

= e−n(log(
1

1−ρ )−δn), (32)

where δn → 0 as n → ∞, it follows from (17), (18), (31),
and (1) that

lim
n→∞

E
[ n∑
k=1

X2
k

∣∣∣∣Dc
]

Pr(Dc) = 0. (33)

Combining (28), (29), (30), and (33) shows that

E
[ n∑
k=1

X2
k

]
≤ (α1 + α2 + α3)nP + εn, (34)

where εn → 0 as n → ∞. Thus, in view of (19), the power
constraint is satisfied for all sufficiently large blocklengths n.

IV. POSITIVE RATES

Consider the problem of transmitting one of enR equiproba-
ble messages in n uses of the channel described in Section III.
Formally, a rate-R blocklength-n code for this channel com-
prises enR random n-tuples Xn(1), . . . , Xn(enR) such that
each Xk(m) is Fk−1-measurable, and a (Borel-measurable)
decoder mapping

ϕ : Rn × {0, 1}n → {1, . . . , enR}. (35)

The probability of error is

Pr(error) = Pr
(
ϕ(Y n, V n) 6= M

)
, (36)

where conditional on M = m the input to the channel
is Xn(m), and Pr(M = m) = e−nR for all m. We impose
the power constraint

E
[ n∑
k=1

Xk(m)2
]
≤ nP, m ∈ {1, . . . , enR}, (37)

where P is some given positive number. Let C(P ) denote the
capacity of the channel (in nats per channel use) subject to
the power constraint (37), i.e.,

C(P ) =
1

2
log(1 + P ), (38)
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and let Pe(n,R) denote the least probability of error of any
rate-R blocklength-n code satisfying (37).

Theorem IV.1. For any ρ ∈ (0, 1) and any P > 0,

1) if R > ρC(P ), then limn→∞− 1
n logPe(n,R) <∞;

2) if R < ρC(P ), then limn→∞
1
n log(− logPe(n,R)) > 0.

Note that the second-order error exponent in the case
0 < R < ρC(P ) is finite. Indeed, it is upper-bounded by
− log(1− ρ) on account of Theorem III.1.

Proof. We begin with the case R > ρC(P ). Select ε > 0 small
enough so that R > (ρ+ε)C(P ). Assume that the transmitter
knows the positions of the feedback symbols in advance,
i.e., V n is revealed noncausally. This can only decrease the
probability of error. It is shown in [4] that when a fixed
fraction f of the output symbols is fed back to the transmitter
(the positions of the symbols that are fed back are fixed
and known to the transmitter and receiver), and R is larger
than f times the capacity, then the probability of error cannot
decay faster than exponentially. To apply this result here,
let K denote the event that the number of symbols fed back
in the first n channel uses is no more than (ρ + ε)n, i.e.,
K = {V1 + . . .+ Vn ≤ (ρ+ ε)n}. The maximum amount of
power we can use conditional on K is PK = P/Pr(K), and
PK → P as n→∞ because Pr(K)→ 1 by the weak law of
large numbers. Thus, by the continuity of C(P ) in P , we have
R > (ρ+ ε)C(PK) for all sufficiently large n, and for such n
the conditional probability of error Pr(error|K) cannot decay
faster than exponentially on account of the aforementioned
result in [4]. The desired result now follows by noting that

Pr(error) ≥ Pr(error|K) Pr(K). (39)

Next, consider the case where R < ρC(P ). We exhibit
a coding scheme that satisfies the power constraint (37) and
achieves a positive second-order error exponent. Select ε > 0
small enough so that R < (ρ−ε)C(P ). The total blocklength
of the scheme is n + 1 + αn, where α > 0 is arbitrary, and
the rate is R/(1 + 1/n+α). (Later on we let α tend to zero.)
Choose a codebook C of size enR and blocklength (ρ− δ)n,
where δ is arbitrary in the interval (0, ε), that satisfies the
power constraint

(ρ−δ)n∑
k=1

x2k ≤ (ρ− δ)nP, x(ρ−δ)n ∈ C. (40)

Let m be the message to be transmitted. In the first n channel
uses we repeat each component of the m-th codeword in C
until feedback occurs and pad the remaining channel uses (if
any) with zeros. Let A be the event that at least (ρ − δ)n
symbols are fed back in the first n channel uses, i.e., A =
{V1 + . . .+ Vn ≥ (ρ− δ)n}.

If A occurs, then the transmitter decodes the codeword
based on the symbols that were fed back using an optimal
decoder for C. If the decoding is successful, i.e., if the
message produced by an optimal decoder for C is m, then

the remaining 1 + αn channel uses are padded with zeros.
Otherwise a flag is sent in the (n+ 1)-st channel use:

Xn+1 =
√
P/(2Pe(C)), (41)

where Pe(C) is the maximum probability of error of the
code C. After sending the flag, the transmitter retransmits the
message using a code C̃ of size enR and blocklength αn that
satisfies the power constraint

αn∑
k=1

x2k ≤
αnP

2Pe(C)
, xαn ∈ C̃. (42)

If A does not occur, i.e., if fewer than (ρ − δ)n symbols
are fed back in the first n channels uses, then the transmitter
retransmits the message using a third code C′ of size enR and
blocklength 1 + αn that satisfies the power constraint

1+αn∑
k=1

x2k ≤
(1 + αn)P

2 Pr(Ac)
, x1+αn ∈ C′. (43)

The decoding procedure is described next. If A occurs, then
the receiver compares Yn+1 to the threshold

Υ =
1

2

√
P/(2Pe(C)). (44)

If Yn+1 > Υ, then the receiver ignores the first n outputs and
decodes the message based on the last αn outputs using an
optimal decoder for C̃. If Yn+1 ≤ Υ, then the receiver decodes
the message based on the first (ρ− δ)n outputs that were fed
back to the transmitter using an optimal decoder for C. If A
does not occur, then the receiver decodes the message based
on the last 1 + αn outputs using an optimal decoder for C′.

To analyze the probability of error, we expand it as

Pr(error) = Pr(error|A) Pr(A) + Pr(error|Ac) Pr(Ac). (45)

Let E be the event that A occurs and that decoding C based
on the first (ρ− δ)n feedback symbols fails. Then

Pr(error|A) = Pr(error|E) Pr(E|A)

+ Pr(error|A \ E) Pr(A \ E|A). (46)

Observe that

Pr(error|E) = Pr(error|Yn+1 > Υ, E) Pr(Yn+1 > Υ|E)

+ Pr(error|Yn+1 ≤ Υ, E) Pr(Yn+1 ≤ Υ|E)

≤ Pr(error|Yn+1 > Υ, E) + Pr(Yn+1 ≤ Υ|E)

≤ Pe(C̃) +Q(Υ), (47)

where Pe(C̃) denotes the maximal probability of error of the
code C̃. Observe further that

Pr(error|A \ E)

= Pr(error|A \ E, Yn+1 > Υ) Pr(Yn+1 > Υ|A \ E)

≤ Pr(Yn+1 > Υ|A \ E) = Q(Υ). (48)

Substituting (48) and (47) into (46), it follows that

Pr(error|A) ≤ Pe(C̃) +Q(Υ). (49)
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If A does not occur, then an error occurs only if decoding
of C′ fails and hence

Pr(error|Ac) ≤ Pe(C′), (50)

where Pe(C′) is the maximal probability of error of C′.
Substituting (49) and (50) into (45), it follows that

Pr(error) ≤ Pe(C̃) + Pe(C′) +Q(Υ). (51)

We next show that each of the three probabilities on the RHS
of (51) decay double-exponentially in n. We begin with Q(Υ).
Note that the rate of C is R/(ρ− δ), and

R

ρ− δ
<
ρ− ε
ρ− δ

C(P )

< C(P ), (52)

where the last inequality holds because 0 < δ < ε. Since
by (40) each codeword in C can have power up to P , the rate
that we want for C is strictly below capacity. Consequently,
we can find a C (more precisely, a sequence of C’s indexed
by n) with

Pe(C) ≤ e−nζ , (53)

for some ζ > 0. From (44) and (1) it thus follows that

Q(Υ) ≤ 1

2
e−

P
16 e

nζ

. (54)

From [3, Eq. (77)] it follows that both Pe(C̃) and Pe(C′)
decay double-exponentially with n provided that the power
constraints on C̃ and C′ grow exponentially with n. This is
true for C̃ by (42) and (53), and for C′ by (43) and the fact
that

Pr(Ac) ≤ e−2δ
2n, (55)

which follows from Hoeffding’s Inequality. We conclude that
the overall probability of error decays double-exponentially
in n for every α > 0. Since the rate of the scheme approaches
R/(1+α), and since α > 0 is arbitrary, the proof is complete
once we show that the power constraint is satisfied.

To this end, we define

T` = min{k > T`−1 : Vk = 1}, ` ≥ 1, (56)

where T0 is taken to be zero. Denote the m-th codeword
in C by xn(m). The power in the first n channel uses can
be bounded as

E
[ n∑
k=1

X2
k(m)

]
≤ E

[
(ρ−δ)n∑
`=1

(T` − T`−1)x2`(m)

]

=

(ρ−δ)n∑
`=1

E[T` − T`−1]x2`(m)

=
1

ρ

(ρ−δ)n∑
`=1

x2`(m) < nP, (57)

where the second inequality follows from (40). To bound the
power in the remaining 1+αn channel uses, we first condition
on A to obtain

E
[n+1+αn∑
k=n+1

X2
k(m)

∣∣∣∣A]

= E
[
X2
n+1(m)

∣∣∣∣A]+ E
[n+1+αn∑
k=n+2

X2
k(m)

∣∣∣∣A]
≤ Pr(E|A)

( P

2Pe(C)
+

αnP

2Pe(C)

)
≤ P

2
(1 + αn). (58)

Conditioning on the complement of A,

E
[n+1+αn∑
k=n+1

X2
k(m)

∣∣∣∣Ac
]
≤ (1 + αn)P

2 Pr(Ac)
. (59)

Combining (59), (58), and (57) it follows that

E
[n+1+αn∑

k=1

X2
k(m)

]
< (n+ 1 + αn)P, (60)

i.e., the power constraint is indeed satisfied.

V. CONCLUDING REMARKS

We conclude this paper with the following result for the
case when the receiver does not know which symbols are fed
back to the transmitter. A proof is given in [9].

Theorem V.1. If ρ > 1/2 and P > 0, then one bit can
be transmitted over the channel described in Section III
with probability of error decaying double-exponentially in
the blocklength even when the receiver does not know which
output symbols are fed back to the transmitter.
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