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Encoding Tasks and Rényi Entropy
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Abstract— A task is randomly drawn from a finite set of tasks
and is described using a fixed number of bits. All the tasks that
share its description must be performed. Upper and lower bounds
on the minimum ρth moment of the number of performed tasks
are derived. The case where a sequence of tasks is produced
by a source and n tasks are jointly described using nR bits
is considered. If R is larger than the Rényi entropy rate of
the source of order 1/(1 + ρ) (provided it exists), then the ρth
moment of the ratio of performed tasks to n can be driven to
one as n tends to infinity. If R is smaller than the Rényi entropy
rate, this moment tends to infinity. The results are generalized to
account for the presence of side-information. In this more general
setting, the key quantity is a conditional version of Rényi entropy
that was introduced by Arimoto. For IID sources, two additional
extensions are solved, one of a rate-distortion flavor and the
other where different tasks may have different nonnegative costs.
Finally, a divergence that was identified by Sundaresan as a
mismatch penalty in the Massey-Arikan guessing problem is
shown to play a similar role here.

Index Terms— Divergence, Rényi entropy, Rényi entropy rate,
mismatch, source coding, tasks.

I. INTRODUCTION

ATASK X that is drawn from a finite set of tasks X
according to some probability mass function (PMF) P is

to be described using a fixed number of bits. The least number
of bits needed for an unambiguous description is the base-2
logarithm of the total number of tasks in X (rounded up to the
nearest integer). When fewer bits are available, the classical
source coding approach is to provide descriptions for the tasks
with the largest or with the “typical” probabilities only. This
has the obvious drawback that less common, or atypical, tasks
will never be completed. For example, if X comprises all
possible household chores, then “wash the dishes” will almost
certainly occur more frequently than “take out the garbage”,
but most people would agree that the latter should not be
neglected.

The classical approach is not so well-suited here because
it does not take into account the fact that not performing an
unlikely but critical task may have grave consequences, and
that performing a superfluous task often causes little or no
harm. A more natural approach in this context is to partition
the set of tasks into subsets. If a particular task needs to
be completed, then the subset containing it is described and
all the tasks in this subset are performed. This approach

Manuscript received January 24, 2014; accepted May 6, 2014. Date of
publication June 6, 2014; date of current version August 14, 2014. This paper
was presented in part at the 2013 IEEE Information Theory Workshop and in
part at the 2014 IEEE International Symposium on Information Theory.

The authors are with the Signal and Information Processing Labora-
tory, ETH Zurich, Zurich 8092, Switzerland (e-mail: bunte@isi.ee.ethz.ch;
lapidoth@isi.ee.ethz.ch).

Communicated by R. Sundaresan, Associate Editor for Communications.
Digital Object Identifier 10.1109/TIT.2014.2329490

has the disadvantage that tasks are sometimes completed
superfluously, but it guarantees that critical tasks, no matter
how atypical, are never neglected (provided that the number of
subsets in the partition of X does not exceed M , when log M
is the number of bits available to describe them). One way
to partition the set of tasks is to provide distinct descriptions
for the typical tasks and to group together the atypical ones.
We will see, however, that this may not always be optimal.

If we assume for simplicity that all tasks require an equal
amount of effort, then it seems reasonable to choose the
subsets so as to minimize the expected number of performed
tasks. Ideally, this expectation is close to one. More generally,
we look at the ρ-th moment of the number of performed tasks,
where ρ may be any positive number. Phrased in mathematical
terms, we consider encoders of the form

f : X → {1, . . . , M}, (1)

where M is a given positive integer. Every such encoder gives
rise to a partition of X into M disjoint subsets

f −1(m) = {
x ∈ X : f (x) = m

}
, m ∈ {1, . . . , M}. (2)

Here f (x) is the description of the task x , and the set
f −1( f (x)) comprises all the tasks sharing the same descrip-
tion as x , i.e., the set of tasks that are performed when x is
required.

We seek an f that minimizes the ρ-th moment of the
cardinality of f −1( f (X)), i.e.,

E
[| f −1( f (X))|ρ] =

∑

x∈X
P(x)| f −1( f (x))|ρ. (3)

This minimum is at least 1 because X ∈ f −1( f (X)); it
is nonincreasing in M (because fewer tasks share the same
description when M grows); and it is equal to one for M ≥ |X |
(because then X can be partitioned into singletons). Our first
result is a pair of lower and upper bounds on this minimum.
The bounds are expressed in terms of the Rényi entropy of X
of order 1/(1 + ρ)

H 1
1+ρ

(X) = 1 + ρ

ρ
log

∑

x∈X
P(x)

1
1+ρ . (4)

Throughout log(·) stands for log2(·), the logarithm to base 2.
For typographic reasons we henceforth use the notation

ρ̃ = 1

1 + ρ
, ρ > 0. (5)

Theorem I.1: Let X be a chance variable taking value in a
finite set X , and let ρ > 0.

1) For all positive integers M and every f : X →
{1, . . . , M},

E
[| f −1( f (X))|ρ] ≥ 2ρ(Hρ̃ (X)−log M). (6)
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2) For all integers M > log|X | + 2 there exists f : X →
{1, . . . , M} such that

E
[| f −1( f (X))|ρ]

< 1 + 2ρ(Hρ̃ (X)−log M̃), (7)

where M̃ = (M − log|X | − 2)/4.
A proof is provided in Section III. Theorem I.1 is particu-

larly useful when applied to the case where a sequence of tasks
is produced by a source {Xi }∞i=1 with alphabet X and the first
n tasks Xn = (X1, . . . , Xn) are jointly described using n R
bits (the number R is the rate of the description in bits per
task and can be any nonnegative number):

Theorem I.2: Let {Xi }∞i=1 be a source with finite alpha-
bet X , and let ρ > 0.

1) If R > lim supn→∞ Hρ̃(Xn)/n, then there exist encoders
fn : X n → {1, . . . , 2nR} such that1

lim
n→∞ E

[| f −1
n ( fn(Xn))|ρ] = 1. (8)

2) If R < lim infn→∞ Hρ̃(Xn)/n, then for any choice of
encoders fn : X n → {1, . . . , 2nR},

lim
n→∞ E

[| f −1
n ( fn(Xn))|ρ] = ∞. (9)

Proof: On account of Theorem I.1, for all n large enough
so that 2nR > n log|X | + 2,

2nρ
( Hρ̃ (Xn )

n −R
)

≤ min
fn : X n→{1,...,2nR}

E
[| f −1

n ( fn(Xn))|ρ]

< 1 + 2nρ
( Hρ̃ (Xn )

n −R+δn

)
, (10)

where δn → 0 as n → ∞. �
When it exists, the limit

Hα({Xi }∞i=1) � lim
n→∞

Hα(Xn)

n
(11)

is called the Rényi entropy rate of {Xi }∞i=1 of order α. It exists
for a large class of sources, including time-invariant Markov
sources [1], [2].

If we assume that every n-tuple of tasks in f −1
n ( fn(Xn)) is

performed (even if this means that some tasks are performed
multiple times) and thus that the total number of performed
tasks is n times | f −1

n ( fn(Xn))|, then Theorem I.2 furnishes
the following operational characterization of the Rényi entropy
rate for all orders in (0, 1). For all rates above the Rényi
entropy rate of order 1/(1 + ρ), the ρ-th moment of the ratio
of performed tasks to n can be driven to one as n tends to
infinity. For all rates below it, this moment grows to infinity.
In fact, the proof of Theorem I.2 shows that for large n it
grows exponentially in n with exponent approaching

ρ
(
Hρ̃({Xi }∞i=1) − R

)
. (12)

More precisely, (10) shows that for all rates R < Hρ̃({Xi }∞i=1),

lim
n→∞

1

n
log min

fn : X n→{1,...,2nR}
E
[| f −1

n ( fn(Xn))|ρ]

= ρ
(
Hρ̃({Xi }∞i=1) − R

)
. (13)

Note that for IID sources the Rényi entropy rate reduces to
the Rényi entropy because in this case Hρ̃(Xn) = nHρ̃(X1).

1Throughout 2n R stands for �2n R�.

Other operational characterizations of the Rényi entropy rate
were given in [1]–[6], and of the Rényi entropy in [7]–[10].

The connection between the problem of encoding tasks and
the Massey-Arikan guessing problem [10], [11] is explored
in [12].

The operational characterization of Rényi entropy provided
by Theorem I.2 (applied to IID sources) reveals many of the
known properties of Rényi entropy (see [9], [13]). For exam-
ple, it shows that Hρ̃(X) is nondecreasing in ρ because ξρ is
nondecreasing in ρ when ξ ≥ 1. It also shows that

H (X) ≤ Hρ̃(X) ≤ log|supp(P)|, (14)

where H (X) denotes the Shannon entropy and supp(P) =
{x : P(x) > 0} denotes the support of P . Indeed, if R <
H (X), then, by the converse part of the classical source-coding
theorem [14, Th. 3.1.1]

lim
n→∞ Pr

(| f −1
n ( fn(Xn))| ≥ 2

) = 1, (15)

which implies that the ρ-th moment of | f −1
n ( fn(Xn))| cannot

tend to one as n tends to infinity. And if R > log|supp(P)|,
then every n-tuple of tasks that occurs with positive probability
can be given a distinct description so for every n

min
fn : X n→{1,...,2nR}

E
[| f −1

n ( fn(Xn))|ρ] = 1. (16)

The limit

lim
ρ→∞ Hρ̃(X) = log|supp(P)| (17)

follows from our operational characterization of Rényi entropy
as follows. If R > log|supp(P)|, then, by the pigeonhole-
principle, for any choice of fn : X n → {1, . . . , 2nR} there
must exist some xn

0 ∈ supp(Pn) for which

| f −1
n ( fn(xn

0 ))| ≥ 2n(log|supp(P)|−R). (18)

Since Pn(xn
0 ) ≥ pn

min, where pmin denotes the smallest
nonzero probability of any source symbol, we have

E
[| f −1

n ( fn(Xn))|ρ] ≥ Pn(xn
0 )| f −1

n ( fn(xn
0 ))|ρ (19)

≥ 2nρ(log|supp(P)|−R+ρ−1 log pmin). (20)

For all sufficiently large ρ the RHS tends to infinity as
n → ∞, which proves that limρ→∞ Hρ̃(X) ≥ log|supp(P)|;
the reverse inequality follows from (14).

As to the limit when ρ approaches zero, note that if
R > H (X), then the probability that the cardinality of
f −1
n ( fn(Xn)) exceeds one can be driven to zero exponentially

fast in n [15, Th. 2.15], say as e−nζ for some ζ > 0 and
sufficiently large n. And since | f −1

n ( fn(Xn))| is triv-
ially upper-bounded by 2n log|X |, the ρ-th moment of
| f −1

n ( fn(Xn))| will tend to one if ρ < ζ/ log|X |. Thus,
limρ→0 Hρ̃(X) ≤ H (X) and, in view of (14),

lim
ρ→0

Hρ̃(X) = H (X). (21)

The rest of this paper is organized as follows. In Section II
we introduce some notation. In Section III we prove
Theorem I.1. In Section IV we consider a mismatched version
of the direct part of Theorem I.1 (i.e., the upper bound), where
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f is designed based on the law Q instead of P . We show
that the penalty incurred by this mismatch can be expressed
in terms of a divergence measure between P and Q that
was proposed by Sundaresan [16]. In Section V we state and
prove a universal version of the direct part of Theorem I.2
for IID sources. In Section VI we generalize Theorems I.1
and I.2 to account for the presence of side-information, where
the key quantity is a conditional version of Rényi entropy.
We also generalize the result from Section V. In Section VII
we study a rate-distortion version of the problem for IID
sources, where the key quantity is “Rényi’s analog to the rate-
distortion function” introduced by Arikan and Merhav [17].
In Section VIII we study the problem of encoding IID tasks
when different tasks may have different costs.

II. NOTATION AND PRELIMINARIES

We denote by N the set of positive integers. The cardinality
of a finite set X is denoted by |X |. We use the notation xn =
(x1, . . . , xn) for n-tuples. If P is a PMF on X , then Pn denotes
the product PMF on X n

Pn(xn) =
n∏

i=1

P(xi ), xn ∈ X n . (22)

The support of P is denoted by supp(P), so

supp(P) = {
x ∈ X : P(x) > 0

}
. (23)

If A ⊆ X , then we write P(A) in lieu of
∑

x∈A P(x).
If W (·|x) is a PMF on a finite set Y for every x ∈ X (i.e.,
a channel from X to Y), then P ◦ W denotes the induced joint
PMF on X × Y

(P ◦ W )(x, y) = P(x)W (y|x), (x, y) ∈ X × Y, (24)

and PW denotes the induced marginal PMF on Y
(PW )(y) =

∑

x∈X
P(x)W (y|x), y ∈ Y. (25)

The collection of all PMFs on X is denoted by P(X ). The
collection of all channels from X to Y is denoted by P(Y|X ).

For information-theoretic quantities (entropy, relative
entropy, mutual information, etc.) we adopt the notation
in [15]. We need basic results from the Method of Types as
presented in [15, Ch. 2]. The set of types of sequences in X n

(i.e., the set of rational PMFs with denominator n) is denoted
by Pn(X ). The set of all xn ∈ X n of type Q ∈ Pn(X ) (i.e., the
type class of Q) is denoted by T (n)

Q or by TQ if n is clear from
the context. The V -shell of a sequence xn ∈ X n is denoted
by TV (xn).

The ceiling of a real number ξ (i.e., the smallest integer
no smaller than ξ ) is denoted by �ξ�. We frequently use the
inequality

�ξ�ρ < 1 + 2ρξρ, ξ ≥ 0, (26)

which is easily checked by considering separately the
cases 0 ≤ ξ ≤ 1 and ξ > 1. As mentioned in the introduction,
log(·) denotes the base-2 logarithm, and logα(·) denotes the
base-α logarithm for general α > 1.

III. PROOF OF THEOREM I.1

A. The Lower Bound (Converse)

The proof of the lower bound (6) in Theorem I.1 is inspired
by the proof of [10, Th. 1]. It hinges on the following simple
observation.

Proposition III.1: If L1, . . . ,LM is a partition of a finite
set X into M nonempty subsets, i.e.,

M⋃

m=1

Lm = X and (Lm ∩ Lm′ = ∅ iff m′ �= m), (27)

and L(x) is the cardinality of the subset containing x, i.e.,
L(x) = |Lm | if x ∈ Lm, then

∑

x∈X

1

L(x)
= M. (28)

Proof:

∑

x∈X

1

L(x)
=

M∑

m=1

∑

x∈Lm

1

L(x)
(29)

=
M∑

m=1

∑

x∈Lm

1

|Lm | (30)

= M. (31)

�
To prove the lower bound in Theorem I.1, fix any f : X →

{1, . . . , M}, and let N denote the number of nonempty sub-
sets in the partition f −1(1), . . . , f −1(M). Note that for this
partition the cardinality of the subset containing x is

L(x) = | f −1( f (x))|, x ∈ X . (32)

Recall Hölder’s Inequality: If a and b are functions from X
into the nonnegative reals, and p and q are real numbers larger
than one satisfying 1/p + 1/q = 1, then

∑

x∈X
a(x)b(x) ≤

(∑

x∈X
a(x)p

)1/p(∑

x∈X
b(x)q

)1/q

. (33)

Rearranging (33) gives

∑

x∈X
a(x)p ≥

(∑

x∈X
b(x)q

)−p/q(∑

x∈X
a(x)b(x)

)p

. (34)

Substituting p = 1 + ρ, q = (1 + ρ)/ρ, a(x) =
P(x)

1
1+ρ | f −1( f (x))| ρ

1+ρ and b(x) = | f −1( f (x))|− ρ
1+ρ

in (34), we obtain
∑

x∈X
P(x)| f −1( f (x))|ρ

≥
(∑

x∈X

1

| f −1( f (x))|
)−ρ(∑

x∈X
P(x)

1
1+ρ

)1+ρ

(35)

= 2ρ(Hρ̃ (X)−log N) (36)

≥ 2ρ(Hρ̃ (X)−log M), (37)

where (36) follows from (4), (32), and Proposition III.1; and
where (37) follows because N ≤ M . �
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B. The Upper Bound (Direct Part)

The key to the upper bound in Theorem I.1 is the following
reversed version of Proposition III.1; a proof is provided in
Appendix A.

Proposition III.2: If X is a finite set, λ : X → N ∪ {+∞}
and

∑

x∈X

1

λ(x)
= μ (38)

(with the convention 1/∞ = 0), then there exists a partition
of X into at most

min
α>1

�αμ + logα|X | + 2� (39)

subsets such that

L(x) ≤ min{λ(x), |X |}, for all x ∈ X , (40)

where L(x) is the cardinality of the subset containing x.
(Proposition III.1 cannot be fully reversed in the sense

that (39) cannot be replaced with μ. Indeed, consider X =
{a, b, c, d} with λ(a) = 1, λ(b) = 2, and λ(c) = λ(d) = 4.
In this example, μ equals 2, but we need 3 subsets to satisfy
the cardinality constraints.)

Since Hölder’s Inequality (33) holds with equality if, and
only if, a(x)p is proportional to b(x)q , it follows from the
proof that the lower bound in Theorem I.1 holds with equality
if, and only if, | f −1( f (x))| is proportional to P(x)−1/(1+ρ)

and f is surjective. We derive (7) by constructing a partition
that approximately satisfies this relationship. To this end, we
use Proposition III.2 with α = 2 in (39) and

λ(x) =
{⌈

β P(x)
− 1

1+ρ
⌉

if P(x) > 0,

+∞ if P(x) = 0,
(41)

where we choose β just large enough to guarantee the exis-
tence of a partition of X into at most M subsets satisfying (40).
For M > log|X | + 2 this is accomplished by the choice

β = 2
∑

x∈X P(x)
1

1+ρ

M − log|X | − 2
. (42)

Indeed, with this choice

μ =
∑

x∈X

1

λ(x)
(43)

≤
∑

x∈X

P(x)
1

1+ρ

β
(44)

= M − log|X | − 2

2
, (45)

and hence

2μ + log|X | + 2 ≤ M. (46)

Let then the partition L1, . . . ,LN with N ≤ M be
as promised by Proposition III.2. Construct an encoder

f : X → {1, . . . , M} by setting f (x) = m if x ∈ Lm . For
this encoder,

∑

x∈X
P(x)| f −1( f (x))|ρ

=
∑

x :P(x)>0

P(x)L(x)ρ (47)

≤
∑

x :P(x)>0

P(x)λ(x)ρ (48)

=
∑

x :P(x)>0

P(x)
⌈
β P(x)

− 1
1+ρ

⌉ρ (49)

< 1 + (2β)ρ
∑

x :P(x)>0

P(x)
1

1+ρ (50)

= 1 + 2ρ(Hρ̃ (X)−log M̃), (51)

where (50) follows from (26), and where M̃ is as in
Theorem I.1. �

IV. MISMATCH

The key to the upper bound in Theorem I.1 was to use
Proposition III.2 with λ as in (41)–(42) to obtain a partition
of X for which the cardinality of the subset containing x is
approximately proportional to P(x)−1/(1+ρ). Evidently, this
construction requires knowledge of the distribution P of X .
(But see Section V for a universal version of the direct part of
Theorem I.2 for IID sources that does not require knowledge
of the source’s distribution.)

In this section, we study the penalty when P is replaced
with Q in (41) and (42). Since it is then still true that

μ ≤ M − log|X | − 2

2
, (52)

Proposition III.2 guarantees the existence of a partition of X
into at most M subsets satisfying (40). Constructing an
encoder f from this partition as in Section III-B and following
steps similar to (47)–(51) yields
∑

x∈X
P(x)| f −1( f (x))|ρ <1+2ρ(Hρ̃ (X)+	ρ̃(P||Q)−log M̃), (53)

where M̃ is as in Theorem I.1, and where

	α(P||Q)

� log

∑
x∈X Q(x)α

(∑
x∈X P(x)α

) 1
1−α

(∑

x∈X

P(x)

Q(x)1−α

) α
1−α

. (54)

The parameter α can be any positive number not equal to one.
We use the convention 0/0 = 0 and a/0 = +∞ if a > 0.
Thus, 	ρ̃(P||Q) < ∞ only if the support of P is contained
in the support of Q.

The penalty in the exponent on the RHS of (53) when
compared to the upper bound in Theorem I.1 is thus given
by 	ρ̃(P||Q). To reinforce this, note further that

	α(Pn ||Qn) = n	α(P||Q). (55)

Consequently, if the source {Xi }∞i=1 is IID P and we construct
fn : X n → {1, . . . , 2nR} based on Qn instead of Pn , we obtain
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the bound

E
[| f −1

n ( fn(Xn))|ρ]

< 1 + 2nρ(Hρ̃ (X1)+	ρ̃(P||Q)−R+δn), (56)

where δn → 0 as n → ∞. The RHS of (56) tends to one
provided that R > Hρ̃(X1) + 	ρ̃(P||Q). Thus, in the IID
case 	ρ̃(P||Q) is the rate penalty incurred by the mismatch
between P and Q.

The family of divergence measures 	α(P||Q) was first
identified by Sundaresan [16] who showed that it plays a
similar role in the Massey-Arikan guessing problem [10], [11].
We conclude this section with some properties of 	α(P||Q).
Properties 1–3 (see below) were given in [16]; we repeat them
here for completeness. Note that Rényi’s divergence (see [9])

Dα(P||Q) = 1

α − 1
log

∑

x∈X
P(x)α Q(x)1−α, (57)

satisfies Properties 1 and 3 but none of the others in general.
Proposition IV.1: The functional 	α(P||Q) has the follow-

ing properties.

1) 	α(P||Q) ≥ 0 with equality if, and only if, P = Q.
2) 	α(P||Q) = ∞ if, and only if, supp(P) �⊆ supp(Q) or

(α > 1 and supp(P) ∩ supp(Q) = ∅.)
3) limα→1 	α(P||Q) = D(P||Q).

4) limα→0 	α(P||Q)= log |supp(Q)|
|supp(P)| if supp(P)⊆supp(Q).

5) limα→∞ 	α(P||Q) = log maxx∈X P(x)
1

|Q|
∑

x∈Q P(x)
, where Q =

{
x ∈ X : Q(x) = maxx ′∈X Q(x ′)

}
.

Proof: Property 2 follows by inspection of (54). Proper-
ties 3–5 follow by simple calculus. As to Property 1, consider
first the case where 0 < α < 1. In view of Property 2, we
may assume that supp(P)⊆supp(Q). Hölder’s Inequality (33)
with p = 1/α and q = 1/(1 − α) gives

∑

x∈X
P(x)α

=
∑

x∈supp(P)

P(x)α

Q(x)α(1−α)
Q(x)α(1−α) (58)

≤
( ∑

x∈supp(P)

P(x)

Q(x)1−α

)α( ∑

x∈supp(P)

Q(x)α
)1−α

(59)

≤
(∑

x∈X

P(x)

Q(x)1−α

)α(∑

x∈X
Q(x)α

)1−α

. (60)

Dividing by
∑

x P(x)α and taking (1 − α)-th roots shows
that 	α(P||Q) ≥ 0. The condition for equality in Hölder’s
Inequality implies that equality holds if, and only if, P = Q.
Consider next the case where α > 1. We may assume
supp(P)∩supp(Q) �= ∅ (Property 2). Hölder’s Inequality with
p =α and q = α/(α − 1) gives

∑

x∈X

P(x)

Q(x)1−α
=

∑

x∈X
P(x)Q(x)α−1 (61)

≤
(∑

x∈X
P(x)α

) 1
α
(∑

x∈X
Q(x)α

) α−1
α

. (62)

Dividing by
∑

x P(x)/Q(x)1−α and raising to the power of
α/(α − 1) shows that 	α(P||Q) ≥ 0. Equality holds if, and
only if, P = Q. �

V. UNIVERSAL ENCODERS FOR IID SOURCES

In Section I the direct part of Theorem I.2 is proved using
the upper bound in Theorem I.1. It is pointed out in Section IV
that the construction of the encoder in the proof of this upper
bound requires knowledge of the distribution of X . As the next
result shows, however, for IID sources we do not need to know
the distribution of the source to construct good encoders.

Theorem V.1: Let X be a finite set. For every rate R > 0
there exist encoders fn : X → {1, . . . , 2nR} such that for every
IID source {Xi }∞i=1 with alphabet X and every ρ > 0,

E
[| f −1

n ( fn(Xn))|ρ]
< 1 + 2−nρ(R−Hρ̃ (X1)−δn), (63)

where

δn = 1 + (1 + ρ−1)|X | log(n + 1)

n
. (64)

In particular,

lim
n→∞ E

[| f −1
n ( fn(Xn))|ρ] = 1, (65)

whenever Hρ̃(X1) < R.
Proof: We first partition X n into the different type

classes TQ , of which there are less than (n + 1)|X |. We
then partition each TQ into 2n(R−δ′

n ) subsets of cardinality at
most �|TQ |2−n(R−δ′

n)� where δ′
n = n−1|X | log(n + 1). Since

|TQ | ≤ 2nH(Q), each xn ∈ TQ thus ends up in a subset of
cardinality at most

⌈
2n(H(Q)−R+δ′

n)
⌉
. (66)

Note that the total number of subsets in the partition does
not exceed 2nR . We construct fn : X → {1, . . . , 2nR} by
enumerating the subsets in the partition with the numbers in
{1, . . . , 2nR} and by mapping to m ∈ {1, . . . , 2nR} the xn’s
that comprise the m-th subset. Suppose now that {Xi }∞i=1 is
IID P with alphabet X and observe that

E
[| f −1

n ( fn(Xn))|ρ]

=
∑

xn∈X n

Pn(xn)| f −1
n ( fn(xn))|ρ (67)

≤
∑

Q∈Pn(X )

∑

xn∈TQ

Pn(xn)
⌈
2n(H(Q)−R+δ′

n)
⌉ρ (68)

< 1 + 2ρ
∑

Q∈Pn(X )

2nρ(H(Q)−R+δ′
n)

∑

xn∈TQ

Pn(xn) (69)

≤ 1 + 2ρ
∑

Q∈Pn(X )

2−nρ(R−H(Q)+ρ−1 D(Q||P)−δ′
n) (70)

≤ 1 + 2−nρ(R−Hρ̃ (X1)−δn ). (71)

Here (68) follows from the construction of fn ; (69) follows
from (26); (70) follows because the probability of the source
emitting a sequence of type Q is at most 2−nD(Q||P); and (71)
follows from the identity (see [10])

Hρ̃(X1) = max
Q∈P(X )

H (Q) − ρ−1 D(Q||P), (72)

and the fact that |Pn(X )| < (n + 1)|X |. �
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VI. TASKS WITH SIDE-INFORMATION

In this section we generalize Theorems I.1, I.2, and V.1 to
account for side-information: A task X and side-information
Y are drawn according to a joint PMF PX,Y on X ×Y , where
both X and Y are finite, and where the side-information is
available to both the task describer (encoder) and the tasks
performer. The encoder is now of the form

f : X × Y → {1, . . . , M}. (73)

If the realization of (X, Y ) is (x, y) and f (x, y) = m, then
all the tasks in the set

f −1(m, y) � {x ′ ∈ X : f (x ′, y) = m} (74)

are performed. As in Section I, we seek to minimize for a
given M the ρ-th moment of the number of performed tasks

E
[| f −1( f (X, Y ), Y )|ρ]

=
∑

x∈X

∑

y∈Y
PX,Y (x, y)| f −1( f (x, y), y)|ρ. (75)

The key quantity here is a conditional version of Rényi entropy
(proposed by Arimoto [18]):

Hρ̃(X |Y ) = 1

ρ
log

∑

y∈Y

(∑

x∈X
PX,Y (x, y)

1
1+ρ

)1+ρ

. (76)

Theorem I.1 can be generalized as follows.
Theorem VI.1: Let (X, Y ) be a pair of chance variables

taking value in the finite set X × Y , and let ρ > 0.
1) For all positive integers M and every f : X × Y →

{1, . . . , M},
E
[| f −1( f (X, Y ), Y )|ρ] ≥ 2ρ(Hρ̃ (X |Y )−log M). (77)

2) For all integers M > log|X |+2 there exists f : X×Y →
{1, . . . , M} such that

E
[| f −1( f (X, Y ), Y )|ρ]

< 1 + 2ρ(Hρ̃ (X |Y )−log M̃), (78)

where M̃ = (M − log|X | − 2)/4.
As a corollary we obtain a generalization of Theorem I.2.

Theorem VI.2: Let {(Xi , Yi )}∞i=1 be any source with finite
alphabet X × Y , and let ρ > 0.

1) If R > lim supn→∞ Hρ̃(Xn |Y n)/n, then there exist
fn : X n × Yn → {1, . . . , 2nR} such that

lim
n→∞ E

[| f −1
n ( fn(Xn, Y n), Y n)|ρ] = 1. (79)

2) If R < lim infn→∞ Hρ̃(Xn |Y n)/n, then for any choice
of fn : X n × Yn → {1, . . . , 2nR}

lim
n→∞ E

[| f −1
n ( fn(Xn, Y n), Y n)|ρ] = ∞. (80)

To prove (77) fix M and f : X × Y → {1, . . . , M}. Note
that for every y ∈ Y the sets f −1(1, y), . . . , f −1(M, y) form
a partition of X , and the cardinality of the subset containing
x is | f −1( f (x, y), y)|. Following steps similar to (35)–(37),
we obtain

∑

x∈X
PX |Y (x |y)| f −1( f (x, y), y)|ρ

≥ 2−ρ log M
(∑

x∈X
PX |Y (x |y)

1
1+ρ

)1+ρ

, y ∈ Y. (81)

Multiplying both sides by PY (y) and summing over all y ∈ Y
establishes (77).

To prove (78) fix some y ∈ Y and replace P(x) with
PX |Y (x |y) everywhere in the proof of the upper bound in
Theorem I.1 (see Section III-B) to obtain an encoder fy : X →
{1, . . . , M} satisfying

∑

x∈X
PX |Y (x |y)| f −1

y ( fy(x))|ρ

< 1 + 2−ρ log M̃
(∑

x∈X
PX |Y (x |y)

1
1+ρ

)1+ρ

. (82)

Setting f (x, y) = fy(x), multiplying both sides of (82)
by PY (y), and summing over all y ∈ Y establishes (78). �

One may also generalize Theorem V.1:
Theorem VI.3: Let X and Y be finite sets, and let ρ > 0.

For every rate R > 0 there exist encoders fn : X × Y →
{1, . . . , 2nR} such that for every IID source {(Xi , Yi )}∞i=1 with
alphabet X × Y ,

E
[| f −1

n ( fn(Xn, Y n), Y n)|ρ]

< 1 + 2−nρ(R−Hρ̃ (X1|Y1)−δn), (83)

where

δn = 1 + (1 + ρ−1)|X ||Y| log(n + 1) + ρ−1|Y| log(n + 1)

n
.

(84)

In particular,

lim
n→∞ E

[| f −1
n ( fn(Xn, Y n), Y n)|ρ] = 1, (85)

whenever Hρ̃(X1|Y1) < R.
Proof: We fix an arbitrary yn ∈ Yn and partition

X n into the different V -shells TV (yn) (see [15, Ch. 2]) of
which there are less than (n + 1)|X ||Y |. We then partition
each V -shell into 2n(R−δ′

n) subsets of cardinality at most
�|TV (yn)|2−n(R−δ′

n)� where δ′
n = n−1|X ||Y| log(n + 1). Since

|TV (yn)| ≤ 2nH(V |Pyn ), where Pyn denotes the type of yn ,
each xn ∈ TV (yn) will end up in a subset of cardinality at
most

⌈
2n(H(V |Pyn )−R+δ′

n)
⌉
. (86)

From this partition we construct fn(·, yn) : X → {1, . . . , 2nR}
by enumerating the subsets with the numbers 1 through 2nR

and by mapping to each m ∈ {1, . . . , 2nR} the xn’s that
comprise the m-th subset. Carrying out this construction for
every yn ∈ Yn yields an encoder fn : X ×Y → {1, . . . , 2nR}.
Suppose now that {(Xi , Yi )}∞i=1 is IID PX,Y with alphabet
X ×Y and observe that for every yn ∈ Yn with P(n)

Y (yn) > 0,
∑

xn∈X n

P(n)
X |Y (xn|yn)

∣
∣ f −1

n

(
fn(xn, yn), yn)∣∣ρ

≤
∑

V :TV (yn) �=∅

∑

xn∈TV (yn)

P(n)
X |Y (xn|yn)

⌈
2n(H(V |Pyn )−R+δ′

n)�ρ

(87)

< 1 + 2ρ
∑

V :TV (yn) �=∅
2nρ(H(V |Pyn )−R+δ′

n)
∑

xn∈TV (yn)

P(n)
X |Y (xn|yn)

(88)
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< 1 + 2ρ
∑

V :TV (yn) �=∅
2−nD(V ||PX |Y |Pyn )2nρ(H(V |Pyn )−R+δ′

n).

(89)

Here (87) follows from the construction of fn ; (88) follows
from (26); (89) follows because conditional on Y n = yn

the probability that Xn is in the V -shell of yn is at most
2−nD(V ||PX |Y |Pyn ). Noting that whether TV (yn) is nonempty
depends on yn only via its type, it follows that the sum in (89)
depends on yn only via Pyn . Noting further that the probability
that Y n is of type Q ∈ Pn(Y) is at most 2−nD(Q||PY ) it follows
from (87)–(89) upon taking expectation with respect to Y n that

E
[| f −1

n ( fn(Xn, Y n), Y n)|ρ]
< 1 + 2ρ

∑

Q∈Pn(Y)

2−nD(Q||PY )

×
∑

V

2−nD(V ||PX |Y |Q)2nρ(H(V |Q)−R+δ′
n), (90)

where for a given Q ∈ Pn(Y) the inner sum extends over all V
such that TV (yn) is not empty for some (and hence all) yn of
type Q. In Appendix B it is shown that

Hρ̃(X1|Y1) = max
Q∈P(Y)

V ∈P(X |Y)

H (V |Q) − ρ−1 D(Q ◦ V ||PX,Y ).

(91)

Using (91), the identity

D(Q ◦ V ||PX,Y ) = D(Q||PY ) + D(V ||PX |Y |Q), (92)

and the fact that the number of types of sequences in Yn is
less than (n + 1)|Y | and the number of conditional types V
is less than (n + 1)|X ||Y |, it follows that the RHS of (90) is
upper-bounded by the RHS of (83). �

VII. CODING FOR TASKS WITH A FIDELITY CRITERION

In this section we study a rate-distortion version of the
problem described in Section I. We only treat IID sources
and single-letter distortion functions. Suppose that the source
{Xi }∞i=1 generates tasks from a finite set of tasks X IID
according to P . Let X̂ be some other finite set of tasks, and
let d : X × X̂ → [0,∞) be a function that measures the
dissimilarity, or distortion, between any pair of tasks in X×X̂ .
The distortion function d extends to n-tuples of tasks in the
usual way:

d(xn, x̂ n) = 1

n

n∑

i=1

d(xi , x̂i ), (xn, x̂ n) ∈ X n × X̂ n . (93)

We assume that for every x ∈ X there is some x̂ ∈ X̂ for
which d(x, x̂) = 0, i.e.,

min
x̂∈X̂

d(x, x̂) = 0, x ∈ X . (94)

We describe the first n tasks Xn using n R bits with an encoder

f : X n → {1, . . . , 2nR}. (95)

Subsequently, the description f (Xn) of Xn is decoded into a
subset of X̂ n by a decoder

ϕ : {1, . . . , 2nR} → 2X̂ n
, (96)

where 2X̂ n
denotes the collection of all subsets of X̂ n .

We require that the subset produced by the decoder always
contain at least one n-tuple of tasks within distortion 	 of
Xn , i.e., we require

min
x̂ n∈ϕ( f (xn))

d(xn, x̂ n) ≤ 	, xn ∈ X n . (97)

Here 	 is a fixed nonnegative number. All n-tuples of tasks
in the set ϕ( f (Xn)) are performed. The next theorem shows
that the infimum of all rates R for which the ρ-th moment of
the ratio of performed tasks to n can be driven to one as n
tends to infinity subject to the constraint (97) is given by

Rρ(P,	) � max
Q∈P(X )

R(Q,	) − ρ−1 D(Q||P), (98)

where R(Q,	) is the classical rate-distortion function (see
[15, Ch. 7]) evaluated at the distortion level 	 for an
IID Q source and distortion function d . The function Rρ(P,	)
(multiplied by ρ) has previously appeared in [17] in the
context of guessing.

Theorem VII.1: Let {Xi }∞i=1 be an IID P source with finite
alphabet X , and let 	 ≥ 0 and ρ > 0.

1) If R > Rρ(P,	), then there exist ( fn, ϕn) as in (95)
and (96) satisfying (97) such that

lim
n→∞ E

[|ϕn( fn(Xn))|ρ] = 1. (99)

2) If R < Rρ(P,	), then for any ( fn, ϕn) as in (95)
and (96) satisfying (97),

lim
n→∞ E

[|ϕn( fn(Xn))|ρ] = ∞. (100)

It follows immediately from (98) that Rρ(P,	) is nonneg-
ative and nondecreasing in ρ > 0. Some other properties are
(see [17] for proofs):

1) Rρ(P,	) is nonincreasing, continuous and convex in
	 ≥ 0.

2) Rρ(P, 0) = Hρ̃(P).
3) limρ→0 Rρ(P,	) = R(P,	).
4) limρ→∞ Rρ(P,	) = maxQ∈P(X ) R(Q,	).

The fact that Rρ(P,	) is a continuous function of 	
(Property 1) allows us to strengthen the converse statement
in Theorem VII.1 as follows. Suppose that for every positive
integer n the encoder/decoder pair ( fn, ϕn) is as in (95)
and (96) with R < Rρ(P,	) and satisfies (97) for some 	n

such that lim supn→∞ 	n ≤ 	. Then (100) holds. Indeed,
continuity implies that R < Rρ(P,	 + ε) for a sufficiently
small ε > 0, and lim supn→∞ 	n ≤ 	 implies that 	n ≤ 	+ε
for all sufficiently large n. The claim thus follows from the
converse part of Theorem VII.1 with 	 replaced by 	 + ε.

Considering Property 2, Theorem I.2 particularized to IID
sources can be recovered from Theorem VII.1 by taking
X̂ = X and the Hamming distortion function

d(x, x̂) =
{

0 if x = x̂ ,

1 otherwise.
(101)

It was noted in [17] that Rρ(P,	) can be expressed in
closed form for binary sources and Hamming distortion:
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Fig. 1. Rρ(P,	) in bits for an IID Bernoulli-(1/4) source and Hamming
distortion.

Proposition VII.2: If X = X̂ = {0, 1}, d is the Hamming
distortion function (101), and P(0) = 1 − P(1) = p, then

Rρ(P,	) =
{

Hρ̃(p) − h(	) if 0 ≤ 	 < h−1
(
Hρ̃(p)

)
,

0 if 	 ≥ h−1
(
Hρ̃(p)

)
,

where h−1(·) denotes the inverse of the binary entropy func-
tion h(·) on the interval [0, 1/2] and, with slight abuse of
notation, Hρ̃(p) = Hρ̃(P).

For a proof of Proposition VII.2 see [17, Thereom 3] and
subsequent remarks. A plot of Rρ(P,	) for p = 1/4 and
different values of ρ is shown in Figure 1.

We now prove the direct part of Theorem VII.1. Fix 	 ≥ 0
and select an arbitrary δ > 0. According to the Type Covering
Lemma [15, Lemma 9.1], there is a positive integer n(δ) such
that for all n ≥ n(δ) and every type Q ∈ Pn(X ) we can find a
set B(n)

Q ⊂ X̂ n of cardinality at most 2n(R(Q,	)+δ) that covers

T (n)
Q in the sense that for every xn ∈ T (n)

Q there is at least

one x̂ n ∈ B(n)
Q with d(xn, x̂ n) ≤ 	. We henceforth assume

that n ≥ n(δ). For each type Q ∈ Pn(X ) we partition B(n)
Q

into 2n(R−δn) subsets of cardinality at most
⌈

2n(R(Q,	)+δ−R+δn)
⌉
, (102)

where δn = n−1|X | log(n + 1). Since the total number of
types is less than (n + 1)|X |, we can enumerate all the subsets
of all the different B(n)

Q ’s with the numbers 1, . . . , 2nR . Let

ϕn : {1, . . . , 2nR} → 2X̂ n
be the mapping that maps the index

to the corresponding subset. (If there are less than 2nR subsets
in our construction, then we map the remaining indices to, say,
the empty set.) We then construct fn : X n → {1, . . . , 2nR} by
mapping each xn ∈ X n of type Q to an index of a subset of
B(n)

Q that contains an x̂ n with d(xn, x̂ n) ≤ 	. Note that the
encoder/decoder pair thus constructed satisfies (97), and

E
[|ϕn( fn(Xn))|ρ]

=
∑

xn∈X n

Pn(xn)|ϕn( fn(xn))|ρ (103)

≤
∑

Q∈Pn(X )

∑

xn∈T (n)
Q

Pn(xn)
⌈

2n(R(Q,	)+δ−R+δn)
⌉ρ (104)

< 1 + 2ρ
∑

Q∈Pn(X )

2nρ(R(Q,	)+δ−R+δn)
∑

xn∈T (n)
Q

Pn(xn) (105)

< 1 + 2ρ
∑

Q∈Pn(X )

2−nρ(R+ρ−1 D(Q||P)−R(Q,	)−δ−δn) (106)

≤ 1 + 2−nρ(R−Rρ (P,	)−δ−δ′
n), (107)

where

δ′
n = 1 + (1 + ρ−1)|X | log(n + 1)

n
. (108)

Here (104) follows from the construction of fn and ϕn; (105)
follows from (26); (106) follows because the probability of
an IID P source emitting a sequence of type Q is at most
2−nD(Q||P); and (107) follows from the definition of Rρ(P,	)
in (98) and the fact that |Pn(X )| < (n + 1)|X |. The proof of
the direct part is completed by noting that if R > Rρ(P,	),
then for sufficiently small δ > 0 the RHS of (107) tends to
one as n tends to infinity.

To prove the converse, we fix for each n ∈ N an
encoder/decoder pair ( fn, ϕn) as in (95) and (96) satisfy-
ing (97). We may assume that

ϕn(m) ∩ ϕn(m′) = ∅ whenever m �= m′. (109)

Indeed, if m �= m′ and x̂ n ∈ ϕn(m) ∩ ϕn(m′), then we can
delete x̂ n from the larger of the two subsets, say ϕn(m), and
map to m′ all the source sequences xn that were mapped to m
by fn and satisfy d(xn, x̂ n) ≤ 	. This could only reduce the
ρ-th moment of |ϕn( fn(Xn))| while preserving the
property (97).

Define the set

Zn =
2nR⋃

m=1

ϕn(m). (110)

The assumption (109) implies that the union on the RHS
of (110) is disjoint. Consequently, we may define μn(x̂ n) for
every x̂ n ∈ Zn as the unique element of {1, . . . , 2nR} for which
x̂ n ∈ ϕn(μn(x̂ n)). Moreover, (97) guarantees the existence of
a mapping gn : X n → Zn (not necessarily unique) such that,
for all xn ∈ X n ,

gn(xn) ∈ ϕn
(

fn(xn)
)

and d
(
xn, gn(xn)

) ≤ 	. (111)

We also define the PMF on Zn ,

P̃n(x̂ n) = Pn(
g−1

n (x̂ n)
)
, x̂ n ∈ Zn, (112)

where

g−1
n (x̂ n) = {xn ∈ X n : gn(xn) = x̂ n}. (113)
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With these definitions of μn , gn, and P̃n , we have

E
[|ϕn( fn(Xn))|ρ]

=
∑

xn∈X n

Pn(xn)
∣
∣ϕn

(
fn(xn)

)∣∣ρ (114)

=
∑

x̂ n∈Zn

Pn(
g−1

n (x̂ n)
)∣∣ϕn

(
μn(x̂ n)

)∣∣ρ (115)

=
∑

x̂ n∈Zn

P̃n(x̂ n)
∣
∣ϕn

(
μn(x̂ n)

)∣∣ρ (116)

≥ 2ρ(Hρ̃ ( P̃n)−nR), (117)

where the inequality (117) follows from (6) (with Zn , P̃n ,
and μn taking the roles of X , P and f ) by noting that
ϕn = μ−1

n . In view of (114)–(117) the converse is proved
once we show that

Hρ̃(P̃n) ≥ n Rρ(P,	). (118)

To prove (118), note that on account of (72) we have for every
PMF Q on Zn

Hρ̃(P̃n) ≥ H (Q) − ρ−1 D(Q||P̃n). (119)

The PMF P̃n can be written as

P̃n = Pn Wn, (120)

where Wn is the deterministic channel from X n to X̂ n induced
by gn:

Wn(x̂ n|xn) =
{

1 if x̂ n = gn(xn),

0 otherwise.
(121)

Let Q� be a PMF on X that achieves the maximum in the
definition of Rρ(P,	), i.e.,

Rρ(P,	) = R(Q�,	) − ρ−1 D(Q�||P). (122)

Substituting Qn
� Wn for Q in (119) and using (120),

Hρ̃(P̃n) ≥ H (Qn
�Wn) − ρ−1 D(Qn

� Wn ||Pn Wn) (123)

≥ H (Qn
�Wn) − ρ−1 D(Qn

� ||Pn) (124)

= H (Qn
�Wn) − nρ−1 D(Q�||P), (125)

where (124) follows from the Data Processing Inequality [15,
Lemma 3.11]. Let the source {X̃i }∞i=1 be IID Q� and set
X̂n = gn(X̃n). Then

H (Qn
�Wn) = H (X̂n) (126)

= I (X̃n ∧ X̂n). (127)

By (111), we have

E[d(X̃n, X̂n)] ≤ 	, (128)

so applying [14, Th. 9.2.1] (which is the main ingredient in the
classical rate-distortion converse) to the pair (X̃n, X̂n) gives

I (X̃n ∧ X̂n) ≥ n R
(
Q�, E[d(X̃n, X̂n)]) (129)

≥ n R(Q�,	), (130)

where (130) follows from (128) by the monotonicity of the
rate-distortion function. Combining (129)–(130), (126)–(127),
(123)–(125), and (122) establishes (118). �

VIII. TASKS WITH COSTS

We have so far assumed that every task requires an equal
amount of effort. In this section, we discuss an extension
where a nonnegative, finite cost c(x) is associated with each
task x ∈ X . For the sake of simplicity, we limit ourselves to
IID sources and ρ = 1.

For an n-tuple of tasks xn ∈ X n , we denote by c(xn) the
average cost per task:

c(xn) = 1

n

n∑

i=1

c(xi). (131)

We still assume that n-tuples of tasks are describe using n R
bits by an encoder of the form f : X n → {1, . . . , 2nR}, and
that if xn is assigned, then all n-tuples in the set f −1( f (xn))
are performed. Thus, if xn is assigned, then the average cost
per assigned task is

c( f, xn) �
∑

x̃ n∈ f −1( f (xn))

c(x̃ n). (132)

The following result extends Theorem I.2 to this setting (for
IID tasks and ρ = 1). We focus on the case E[c(X1)] > 0
because otherwise we can achieve

E
[
c( f, Xn)

] = 0 (133)

using only one bit by setting f (xn) = 1 if c(xn) = 0 and
f (xn) = 2 otherwise.

Theorem VIII.1: Let {Xi }∞i=1 be IID with finite alphabet X
and E[c(X1)] > 0.

1) If R > H1/2(X1), then there exist encoders fn : X n →
{1, . . . , 2nR} such that

lim
n→∞ E

[
c( fn, Xn)

] = E[c(X1)]. (134)

2) If R < H1/2(X1), then for any choice of encoders
fn : X n → {1, . . . , 2nR},

lim
n→∞ E

[
c( fn, Xn)

] = ∞. (135)

Proof of Theorem VIII.1: We begin with the case R >
H1/2(X1), i.e., the direct part. Let us denote by cmax the largest
cost of any single task in X

cmax = max
x∈X

c(x). (136)

Select a sequence fn : X n → {1, . . . , 2nR} as in the direct part
of Theorem I.2 and observe that

E
[
c( fn, Xn)

]

=
∑

xn∈X n

Pn(xn)c( fn, xn) (137)

=
∑

xn∈X n

Pn(xn)
(

c(xn) +
∑

x̃ n∈ f −1
n ( fn(xn))\{xn}

c(x̃ n)
)

(138)

= E
[
c(X1)

] +
∑

xn∈X n

Pn(xn)
∑

x̃ n∈ f −1
n ( fn(xn))\{xn}

c(x̃ n)

(139)

≤ E
[
c(X1)

] + cmax

∑

xn∈X n

Pn(xn)| f −1
n ( fn(xn)) \ {xn}|

(140)

= E
[
c(X1)

] + cmax
(
E
[| f −1

n ( fn(Xn))|] − 1
)
, (141)
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and the second term on the RHS of (141) tends to zero as
n → ∞ by Theorem I.2.

We now turn to the case R < H1/2(X1), i.e., the converse
part. If the minimum cost of any single task cmin is positive,
then (135) follows from the converse part of Theorem I.2 by
replacing in (140) cmax with cmin and “≤” with “≥”. If at least
one task has zero cost (i.e., cmin = 0), then we need a different
proof.

The assumption E[c(X1)] > 0 implies that there is some
x� ∈ X with P(x�)c(x�) > 0. Using Hölder’s Inequality as
in (34) with p = q = 2, a(x) = √

Pn(xn)c( fn, xn), and
b(x) = √

c(xn)/c( fn, xn) gives
∑

xn∈X n

Pn(xn)c( fn, xn)

≥
∑

xn :c(xn)>0

Pn(xn)c( fn, xn) (142)

≥
(∑

xn :c(xn)>0
√

c(xn)Pn(xn)
)2

∑
xn:c(xn)>0

c(xn)
c( fn,xn)

. (143)

To bound the denominator on the RHS of (143), observe that
∑

xn :c(xn)>0

c(xn)

c( fn, xn)

=
2nR∑

m=1

∑

xn∈ f −1
n (m),c(xn)>0

c(xn)
∑

x̃ n∈ f −1
n (m) c(x̃ n)

(144)

≤ 2nR, (145)

where the inequality follows because for some m the set
{xn ∈ f −1

n (m) : c(xn) > 0} may be empty. Combining (145)
and (143) gives

∑

xn∈X n

Pn(xn)c( fn, xn)

≥ 2−nR
( ∑

xn:c(xn)>0

√
c(xn)Pn(xn)

)2

. (146)

We can bound the sum on the RHS of (146) as follows.
∑

xn:c(xn)>0

√
c(xn)Pn(xn)

≥
√

c(x�)

n

∑

Q∈Pn(X ),Q(x�)>0

∑

xn∈TQ

√
Pn(xn) (147)

≥
√

c(x�)

n
max

Q∈Pn(X )
Q(x�)>0

2n(H(Q)−δn)2− n
2 (D(Q||P)+H(Q)) (148)

= 2
n
2 (maxQ∈Pn (X ),Q(x�)>0 H(Q)−D(Q||P)−δ′

n) (149)

= 2
n
2 (H1/2(X1)−εn−δ′

n), (150)

where δn = n−1|X | log(n + 1), where δ′
n = 2δn +

n−1 log(n/c(x�)), and where εn → 0 as n → ∞. Here, (147)
follows because if xn ∈ TQ and Q(x�) > 0, then xi = x�

for at least one i and hence c(xn) ≥ c(x�)/n > 0; (148)
follows because Pn(xn) = 2−n(D(Q||P)+H(Q)) when xn ∈ TQ ,
and because |TQ | ≥ 2n(H(Q)−δn); (150) follows from (72)
because the set of rational PMFs Q with Q(x�) > 0 is

dense in the set of all PMFs on X , and H (Q) − D(Q||P)
is continuous in Q (provided that Q(x) = 0 whenever
P(x) = 0, which is certainly satisfied by the maximizing Q
in (72)). Combining (150) and (146) completes the proof of
the converse. �

APPENDIX A

PROOF OF PROPOSITION III.2

Since the labels do not matter, we may assume for conve-
nience of notation that X = {1, . . . , |X |} and

λ(1) ≤ λ(2) ≤ · · · ≤ λ(|X |). (151)

We construct a partition of X as follows. The first subset is

L0 = {x ∈ X : λ(x) ≥ |X |}. (152)

If X = L0, then the construction is complete and (39) and (40)
are clearly satisfied. Otherwise we follow the steps below to
construct additional subsets L1, . . . ,LM . (Note that if L0 �=X ,
then X \ L0 = {1, . . . , |X | − |L0|}.)

Step 1: If

|X \ L0| ≤ λ(1), (153)

then we complete the construction by setting L1 = X \
L0 and M = 1. Otherwise we set

L1 = {
1, . . . , λ(1)

}
(154)

and go to Step 2.
Step m ≥ 2: If

∣∣
∣
∣X \

m−1⋃

i=0

Li

∣∣
∣
∣ ≤ λ(|L1| + . . . + |Lm−1| + 1), (155)

then we complete the construction by setting Lm = X \⋃m−1
i=0 Li and M = m. Otherwise we let Lm contain the

λ(|L1| + . . . + |Lm−1| + 1) smallest elements of X \⋃m−1
i=0 Li , i.e., we set

Lm = {|L1| + . . . + |Lm−1| + 1, . . . , |L1| + . . .

+|Lm−1| + λ(|L1| + . . . + |Lm−1| + 1)
}

(156)

and go to Step m + 1.
We next verify that (40) is satisfied and that the total number
of subsets M + 1 does not exceed (39). Clearly, L(x) ≤ |X |
for every x ∈ X , so to prove (40) we check that L(x) ≤
λ(x) for every x ∈ X . From (152) it is clear that L(x) ≤
λ(x) for all x ∈ L0. Let k(x) denote the smallest element
in the subset containing x . Then L(x) ≤ λ(k(x)) for all x ∈⋃M

m=1 Lm by construction (the inequality can be strict only if
x ∈ LM ), and since k(x) ≤ x , we have λ(k(x)) ≤ λ(x) by the
assumption (151), and hence L(x) ≤ λ(x) for all x ∈ X .

It remains to check that M + 1 does not exceed (39). This
is clearly true when M = 1, so we assume that M ≥ 2. Fix
an arbitrary α > 1 and let M be the set of indices m ∈
{1, . . . , M − 1} such that there is an x ∈ Lm with λ(x) >
αλ(k(x)). We next show that

|M| < logα|X |. (157)



BUNTE AND LAPIDOTH: ENCODING TASKS AND RÉNYI ENTROPY 5075

To this end, enumerate the indices in M as m1 < m2 < · · · <
m|M|. For each i ∈ {1, . . . , |M|} select some xi ∈ Lmi for
which λ(xi ) > αλ(k(xi )). Then

λ(x1) > αλ(k(x1)) (158)

≥ α. (159)

Note that if 1 ≤ m < m′ and x ∈ Lm and x ′ ∈ Lm′ , then
x < x ′. Thus, x1 <k(x2) because x1 ∈Lm1 , k(x2) ∈ Lm2 , and
m1 <m2. Consequently, λ(x1) ≤ λ(k(x2)) and hence

λ(x2) > αλ(k(x2)) (160)

≥ αλ(x1) (161)

> α2. (162)

Iterating this argument shows that

λ(x|M|) > α|M|. (163)

And since λ(x) < |X | for every x /∈ L0 by (152), the desired
inequality (157) follows from (163). Let Mc denote the
complement of M in {1, . . . , M − 1}. Using Proposition III.1
and the fact that L(x) = λ(k(x)) ≥ λ(x)/α for all x ∈⋃

m∈Mc Lm ,

M =
∑

x∈⋃M
m=1 Lm

1

L(x)
(164)

= 1 + |M| +
∑

x∈⋃
m∈Mc Lm

1

L(x)
(165)

≤ 1 + |M| + α
∑

x∈⋃
m∈Mc Lm

1

λ(x)
(166)

< 1 + logα|X | + αμ, (167)

where (167) follows from (157) and the hypothesis of the
proposition (38). Since M + 1 is an integer and α > 1 is
arbitrary, it follows from (164)–(167) that M + 1 is upper-
bounded by (39). �

APPENDIX B

PROOF OF (91)

We first show that H (V |Q) − ρ−1 D(Q ◦ V ||PX,Y ) ≤
Hρ̃(X1|Y1) for every Q ∈ P(Y) and V ∈ P(X |Y). This is
clearly true when D(Q ◦ V ||PX,Y ) = ∞, so we may assume
that PX,Y (x, y) = 0 implies Q(y)V (x |y) = 0, and hence that
PY (y) = 0 implies Q(y) = 0. Now observe that

H (V |Q) − ρ−1 D(Q ◦ V ||PX,Y )

= 1 + ρ

ρ

∑

y∈Y
Q(y)

∑

x∈X
V (x |y) log

PX |Y (x |y)
1

1+ρ

V (x |y)

− 1

ρ

∑

y∈Y
Q(y) log

Q(y)

PY (y)
(168)

≤ 1 + ρ

ρ

∑

y∈Y
Q(y) log

∑

x∈X
PX |Y (x |y)

1
1+ρ

− 1

ρ

∑

y∈Y
Q(y) log

Q(y)

PY (y)
(169)

= 1

ρ

∑

y∈Y
Q(y) log

PY (y)
(∑

x∈X PX |Y (x |y)
1

1+ρ
)1+ρ

Q(y)
(170)

≤ 1

ρ
log

∑

y∈Y
PY (y)

(∑

x∈X
PX |Y (x |y)

1
1+ρ

)1+ρ

(171)

= Hρ̃(X1|Y1), (172)

where (169) and (171) follow from Jensen’s Inequality. The
proof is completed by noting that equality is attained in both
inequalities by the choice

Q(y) = PY (y)
(∑

x∈X PX |Y (x |y)
1

1+ρ
)1+ρ

∑
y′∈Y PY (y ′)

(∑
x∈X PX |Y (x |y ′)

1
1+ρ

)1+ρ
, (173)

and

V (x |y) = PX |Y (x |y)
1

1+ρ

∑
x ′∈X PX |Y (x ′|y)

1
1+ρ

, Q(y) > 0. (174)

(Note that PY (y) > 0 when Q(y) > 0 so the RHS of (174)
makes sense. How we define V (x |y) when Q(y) = 0 does
not matter.) �
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