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Abstract—We compute the supremum of the Rényi entropy
rate over the class of stationary stochastic processes having
autocovariance sequences that begin with p+1 given values. Our
results are closely related to Burg’s maximum entropy theorem
on the supremum over the same class but of the Shannon entropy
rate.

I. INTRODUCTION

Motivated by spectral estimation, Burg found the maximum
of the differential Shannon entropy rate over the class of sta-
tionary stochastic processes whose autocovariance sequences
begin with p+1 given values [1], [2, Theorem 12.6.1]. Here we
consider the same class, but we maximize a different objective
function: the Rényi entropy rate.

To recall the definition of the Rényi rate of a stochastic
process, we begin with the Rényi entropy of a random vector
or of a (joint) density. The order-↵ Rényi entropy of a
probability density function (PDF) f is defined as

h↵(f) =
1

1� ↵
log

Z 1

�1
f(x)↵ dx, (1)

where ↵ can be any positive number other than one. The
integral on the RHS of (1) always exists, possibly taking on
the value +1, in which case we define h↵(f) = +1 if
0 < ↵ < 1 and h↵(f) = �1 if ↵ > 1. When a random
variable (or random vector) X is of density fX we sometimes
write h↵(X) instead of h↵(fX).

The order-↵ Rényi entropy rate (or “Rényi rate” for short)
of a stochastic process (SP) {Xk} is defined as

h↵({Xk}) = lim

n!1

1

n
h↵

�
Xn

1

�
,

whenever the limit exists. Here we use the notation Xj
i to

denote the tuple (Xi, . . . , Xj).
The Rényi entropy rate of finite-state Markov chains was

computed by Rached, Alajaji, and Campbell [3] with exten-
sions to countable state space in [4].1 The Rényi entropy rate
of stationary Gaussian processes was found by Golshani and
Pasha in [5]. Extensions to other types of rate are explored in
[6].

The Rényi entropy is closely related to the differential
Shannon entropy:

h(f) = �
Z 1

�1
f(x) log f(x) dx. (2)

1In the discrete case the density in (1) is replaced by the probability mass
function, and the integral is replaced by a sum.

(The integral on the RHS of (2) need not exist. If it does
not, then we say that h(f) does not exist.) Under some mild
technical conditions [7],

h↵(f)  h(f), for ↵ > 1; (3)
h↵(f) � h(f), for 0 < ↵ < 1; (4)

and
lim

↵!1
h↵(f) = h(f). (5)

The entropy of a pair of independent random variables is
the sum of the individual entropies. This is true for both
differential Shannon entropy and Rényi entropy. But the two
entropies behave differently when the random variables are
dependent. While the differential Shannon entropy of a pair is
always upper-bounded by the sum of the individual entropies,
this need not hold for Rényi entropy: the Rényi entropy of a
random vector can exceed the sum of the Rényi entropies of
its components. Consequently, the random vector of highest
Rényi entropy among all those whose components have some
prespecified distribution need not have independent compo-
nents. This is, of course, also true if the distributions of the
components are not specified but only constrained.2 Likewise,
the supremum of the Rényi rate subject to constraints on the
marginal distribution is not achieved by memoryless processes
[8].

Here we focus on the supremum of the Rényi rate subject to
autocovariance constraints. We show that the solution exhibits
a dichotomy: when the order ↵ is smaller than one, the supre-
mum is infinite; and when it is greater than one the supremum
is the same as if we were maximizing the Shannon rate (with
the supremum thus being computable using Burg’s theorem).
Note, however, that the supremum—unlike the supremum in
Burg’s theorem—is not achieved by a Gauss-Markov process.
It is, however, approachable by stochastic processes having the
same autocovariance sequence as the Gauss-Markov process.

II. PRELIMINARIES

Key to our results is the following proposition [8, Corol-
lary 4]:

Proposition 1 (Rényi Rate under a Variance Constraint).
1) For every ↵ > 1, every � > 0, and every " > 0 there

exists a centered stationary SP {Yk} whose Rényi entropy

2Nevertheless, the maximization of Rényi entropy subject to linear con-
straints does typically have a simple solution [8].
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rate exceeds 1
2 log(2⇡e�

2
)� " and which satisfies

E[YkYk0
] = �2

I{k = k0}, (6)

where I{statement} is 1 when statement is true and 0

when it is not.
2) For every 0 < ↵ < 1, every � > 0, and every M > 0

there exists a centered stationary SP {Yk} whose Rényi
entropy rate exceeds M and which satisfies (6).

To address some technical boundary issues we shall also
need the following lemma.

Lemma 2. Let f1, . . . , fp be probability density functions
on Rn, and let q1, . . . , qp � 0 be nonnegative numbers that
sum to one. Let f be the mixture density

f(x) =
pX

`=1

q`f`(x), x 2 Rn.

Then

h↵(f) � min

1`p
h↵(f`).

Proof. For 0 < ↵ < 1 this follows by the concavity of Rényi
entropy. Consider now ↵ > 1:

log

Z
f↵

(x) dx = log

Z ✓ pX

`=1

q`f`(x)

◆↵

dx

 log

Z pX

`=1

q`f
↵
` (x) dx

= log

 
pX

`=1

q`

Z
f↵
` (x) dx

!

 log max

1`p

Z
f↵
` (x) dx

= max

1`p
log

Z
f↵
` (x) dx,

from which the claim follows because 1/(1� ↵) is negative.

III. RESULTS

Given ↵0, . . . ,↵p 2 R, we consider the family of all
stochastic processes X1, X2, . . . for which

E[XiXi+k] = ↵k,
⇣
i 2 N, k 2 {0, . . . , p}

⌘
. (7)

We assume that the (p + 1) ⇥ (p + 1) matrix whose Row-`
Column-m element is ↵|`�m| is positive definite. This implies
[9] that there exist constants a1, . . . , ap,�2 and a p⇥p positive
definite matrix Kp such that the following holds:3 if the
random p-vector (W1�p, . . . ,W0) is of second-moment matrix
Kp (not necessarily centered) and if {Zi}1i=1 are independent
of (W1�p, . . . ,W0) with

E[Zi] = 0, i 2 N, (8a)
E[ZiZj ] = �2

I{i = j}, i, j 2 N, (8b)

3The Row-` Column-m element element of the matrix Kp is ↵|`�m|.

then the process defined inductively via

Xi =

pX

k=1

aiXi�k + Zi, i 2 N (9)

with the initialization

(X1�p, . . . , X0) = (W1�p, . . . ,W0) (10)

satisfies the constraints (7).
By Burg’s maximum entropy theorem [2, Theorem 12.6.1],

of all stochastic processes satisfying (7) the one of highest
(differential) Shannon entropy rate is the p-th order Gauss-
Markov process. It is obtained when (W1�p, . . . ,W0) is a
centered Gaussian and {Zi} are IID ⇠ N

�
0,�2

�
. Its Shannon

entropy rate is

lim

n!1

1

n
h(X1, . . . , Xn) =

1

2

log(2⇡e�2
).

Our interest is in the maximum Rényi entropy rate.

Theorem 3. The supremum of the order-↵ Rényi entropy rate
over all stochastic processes satisfying (7) is +1 for 0 < ↵ <
1 and is equal to the Shannon entropy rate of the p-th order
Gauss-Markov process for ↵ > 1.

Proof. We first consider the case where ↵ > 1. Let
a1, . . . , ap,�2 and Kp be as above, and let " > 0 be arbitrarily
small. By Proposition 1 there exists a stochastic process {Zi}
such that (8) holds and such that

lim

n!1

1

n
h↵(Z1, . . . , Zn) �

1

2

log(2⇡e�2
)� ". (11)

The matrix Kp is positive definite, so by the spectral repre-
sentation theorem we can find vectors w1, . . . ,wp 2 Rp and
constants q1, . . . , qp > 0 with q1 + · · ·+ qp = 1 such that

Kp =

pX

`=1

q`w`w
T
`. (12)

(The vectors are eigenvectors of Kp, and the constants
q1, . . . , qp are the scaled eigenvalues of Kp.) Draw the random
vector W independently of {Zi} with

Pr[W = w`] = q`,

so that, by (12),

E[WW

T
] = Kp.

Construct now the stochastic process {Xi} using (9) initialized
with (X1�p, . . . , X0)

T being set to W.
The resulting stochastic process thus satisfies the constraints

(7). We next study its Rényi entropy rate. To that end, we study
the Rényi entropy of the vector Xn

1 . Let fX denote its density,
and let fX|w`

denote its conditional density given W = w`,
so

fX(x) =

pX

`=1

q`fX|w`
(x), x 2 Rn.
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Consequently, by Lemma 2,

h↵(fX) � min

1`p
h↵(fX|w`

). (13)

We next study h↵(fX|w`
) for any given ` 2 {1, . . . , p}.

Recalling that W and {Zi} are independent, we conclude that,
conditional on W = w`, the random variables X1, . . . , Xn are
generated inductively via (9) with the initialization

(X1�p, . . . , X0)
T
= w`.

Conditionally on W = w`, the random variables X1, . . . , Xn

are thus an affine transformation of Z1, . . . , Zn. The transfor-
mation is of unit Jacobian, and thus

h↵(fX|w`
) = h↵(Z1, . . . , Zn), ` 2 {1, . . . , p}. (14)

From this and (13) it follows that

h↵(fX) � h↵(Z1, . . . , Zn).

Dividing by n and using (11) establishes the result.
We next turn to the case 0 < ↵ < 1. For every M > 0

arbitrarily large, we use Proposition 1 to construct {Zi} as
above but with

lim

n!1

1

n
h↵(Z1, . . . , Zn) � M.

The proof continues as for the case where ↵ exceeds one.

IV. DISCUSSION

Theorem 3 has bearing on the spectral estimation problem,
i.e., the problem of extrapolating the values of the autocovari-
ance sequence from its first p + 1 values. One approach is
to choose the extrapolated sequence to be the autocovariance
sequence of the stochastic process that—among all stochastic
processes that have an autocovariance sequence that starts with
these p+ 1 values—maximizes the Shannon rate, namely the
p-th order Gauss-Markov process (Burg’s theorem).

A different approach might be to choose some ↵ > 1 and to
replace the maximization of the Shannon rate with that of the
order-↵ Rényi rate. As we next argue, Theorem 3 shows that
this would result in the same extrapolated sequence. Indeed,
inspecting the proof of the theorem we see that the stochastic
process {Xi} that we constructed, while not a Gauss-Markov
process, has the same autocovariance sequence as the p-
th order Gauss-Markov process that satisfies the constraints.
And, for ↵ > 1 the supremum can only be achieved by a
stochastic process of this autocovariance sequence: for any
other autocovariance function the Rényi rate is upper bounded
by the Shannon rate (because ↵ > 1), and the latter is upper
bounded by the Shannon rate of the Gaussian process, which,
unless the autocovariance sequence is that of the p-th order
Gauss-Markov process, is strictly smaller than the supremum
(Burg’s theorem).
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