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Abstract—Of all univariate distributions on the nonnegative
reals of a given mean, the distribution that maximizes the Rényi
entropy is Lomax. But the memoryless Lomax stochastic process
does not maximize the Rényi entropy rate: For Rényi orders
smaller than one the supremum of the Rényi entropy rates is
infinite, and for orders larger than one it is the differential
Shannon entropy of the exponential distribution, which is the
distribution that maximizes the differential Shannon entropy
subject to these constraints. This is shown to be a special case
of a much more general principle.

I. INTRODUCTION

The order-α Rényi entropy of a probability density function

(PDF) f is defined as

hα(f) =
1

1− α
log

∫ ∞

−∞

f(x)α dx, (1)

where α can be any positive number other than one. The

integral on the RHS of (1) always exists, possibly taking on

the value +∞, in which case we define hα(f) = +∞ if

0 < α < 1 and hα(f) = −∞ if α > 1. When a random

variable (RV) X is of density fX we sometimes write hα(X)
instead of hα(fX).

The order-α Rényi entropy rate of a stochastic process (SP)

{Xk} is defined as

hα({Xk}) = lim
n→∞

1

n
hα

(

Xn
1

)

,

whenever the limit exists. Here we use the notation Xj
i to

denote the tuple (Xi, . . . , Xj).
The Rényi entropy is closely related to the differential

Shannon entropy:

h(f) = −

∫ ∞

−∞

f(x) log f(x) dx. (2)

(The integral on the RHS of (2) need not exist. If it does

not, then we say that h(f) does not exist.) Under some mild

technical conditions [1],

hα(f) ≤ h(f), for α > 1; (3)

hα(f) ≥ h(f) for 0 < α < 1; (4)

and

lim
α→1

hα(f) = h(f). (5)

The entropy of a pair of independent random variables is the

sum of the individual entropies. This is true for both Rényi en-

tropy and differential Shannon entropy. But the two entropies

behave differently when the random variables are correlated:

The differential Shannon entropy of a pair is always upper

bounded by the sum of the individual differential Shannon

entropies, but this inequality need not hold for Rényi entropy.

Consequently, the SP that maximizes the Rényi entropy rate

among all stochastic processes of a given marginal distribution

need not be IID.

As we shall show, Rényi entropy rate is typically maximized

by stochastic processes with memory. By introducing memory

we can typically achieve Rényi rates that are infinite when α
is smaller than one, and that—notwithstanding (3)—are equal

to the Shannon rates when α > 1.

II. RESULTS

A. Maximizing Rényi Entropy Subject to Constraints

Consider the problem of maximizing hα(f) subject to a set

of constraints of the form

f(x) ≥ 0, with equality if x /∈ S ,
∫

S

f(x) dx = 1,
∫

S

f(x)ri(x) dx = γi, i = 1, . . . ,m.























(6)

(The first two constraints make sure that f is a PDF that is

zero outside the set S ⊆ R
n.) A classic result [2, Th. 12.1.1]

is that if one can find constants λ0, . . . , λm such that

f⋆(x) = eλ0+
∑

m

i=1
λiri(x), x ∈ S, (7)

satisfies (6), then f⋆ is the unique maximizer of h(f) with

respect to all f satisfying (6). Our first result is the analogous

result for Rényi entropy:

Theorem II.1.

1) Let 0 < α < 1 and

f⋆(x) =







c
(

1+
∑

m

i=1
λiri(x)

) 1

1−α

if x ∈ S ,

0 otherwise,

(8)

where the constants c and λ1, . . . , λm are such that f⋆

satisfies (6) and
∑m

i=1 λiri(x) ≥ −1 for all x ∈ S .

Then f⋆ is the unique maximizer of hα(f) with respect

to all f satisfying (6).

2) Let α > 1 and

f⋆(x) =







c
(

1 +
∑m

i=1 λiri(x)
)

1

α−1

if x ∈ S ∩ T ,

0 otherwise,

(9a)
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where

T =
{

x :

m
∑

i=1

λiri(x) ≥ −1
}

, (9b)

and where the constants c and λ1, . . . , λm are such

that f⋆ satisfies (6). Then f⋆ is the unique maximizer

of hα(f) with respect to all f satisfying (6).

The proof of Theorem II.1 is similar to the proof of [2, Thm.

12.1.1] with the KL-divergence replaced with Sundaresan’s

divergence [3]:

∆α(f ||g)

= log

(

∫∞

−∞
g(x)α dx

(
∫∞

−∞
f(x)α dx)

1

1−α

(

∫ ∞

−∞

f(x)

g(x)1−α
dx
)

α

1−α

)

.

(10)

We omit the details. When the constraints are covariance

constraints, the result can be found in [4].

B. The Lomax Distribution Maximizes the Rényi Entropy Over

All Nonnegative RVs with a Given Mean

If we apply Theorem II.1 to the case where S = [0,∞)
and

∫∞

0
xf(x) dx = µ, we obtain that for 1/2 < α < 1 the

maximizer is the Lomax density

f⋆(x) =
1

µ

α
2α−1

(

1 + x
µ( 1

1−α
−2)

)
1

1−α

, x ≥ 0. (11)

And for α > 1 it is

f⋆(x) =
α

µ(2α− 1)

(

1−
x

µ( α
α−1 + 1)

)
1

α−1

,

0 ≤ x ≤ µ
( α

α− 1
+ 1
)

. (12)

It is instructive to also consider the vector case. If we wish to

maximizes hα(X1, X2) subject to the constraints that both X1

and X2 be nonnegative and of mean µ, then the joint densities

we obtain from Theorem II.1 do not factorize. Under the

maximizing distribution, X1 and X2 are thus not independent.

This already indicates that the SP maximizing the Rényi rate

will not be IID. But rather than studying this maximization

for these particular constraints, we turn to the general case.

C. Maximizing Rényi Entropy Rate Subject to Constraints

Let h⋆(Γ) denote the supremum of h(fX) over all densities

fX under which

Pr(X ∈ S) = 1 and E[g(X)] ≤ Γ. (13)

Assume that for some Γ0

h⋆(Γ0) > −∞, (14a)

and

h⋆(Γ) < ∞ for every Γ ≥ Γ0. (14b)

It then follows that h⋆(Γ) is finite, nondecreasing, and concave

in Γ for all Γ ≥ Γ0.

Since h(X1, . . . , Xn) ≤
∑n

i=1 h(Xi), the SP that max-

imizes the Shannon rate limn→∞ h(Xn)/n subject to the

constraint that Pr(Xi ∈ S) = 1 and E[g(Xi)] ≤ Γ for all i is

IID. This is not the case for Rényi entropy rate:

Theorem II.2. Let Γ0 be such that (14) holds, and let Γ > Γ0.

1) For every α > 1,

lim
n→∞

sup
hα(X

n)

n
= h⋆(Γ), (15)

where the supremum is over all joint distributions on

X1, . . . , Xn under which Pr(Xi ∈ S) = 1 and

E[g(Xi)] ≤ Γ.

2) For every 0 < α < 1,

lim
n→∞

sup
hα(X

n)

n
= lim

Γ̃→∞
h⋆(Γ̃), (16)

where the supremum is as in Part 1.

Before we present a proof, we point out that Theorem II.2

can be generalized in a straightforward fashion to account

for multiple constraints: E[gℓ(Xi)] ≤ Γℓ for ℓ = 1, . . . , L.

However, for ease of presentation we focus on the case of a

single constraint.

Proof. We begin with the proof of (15). The “converse part”

that the LHS of (15) cannot exceed its RHS is an immediate

consequence of the fact that the Rényi entropy of any order

larger than 1 is upper-bounded by the differential Shannon

entropy (3).

To prove the “direct part”, let f⋆ be a density satisfying the

constraints (13) and for which h(f⋆) ≥ h⋆(Γ)−ε. Let T ε
n (f

⋆)
denote the set of ε-weakly-typical sequences of length n with

respect to f⋆:

T ε
n (f

⋆)

=
{

xn ∈ Sn : 2−n(h(f⋆)+ε) ≤

n
∏

i=1

f⋆(xi) ≤ 2−n(h(f⋆)−ε)
}

.

(17)

Further, let

Gε
n =

{

xn ∈ Sn : Γ− ε ≤
1

n

n
∑

i=1

g(xi) ≤ Γ + ε
}

. (18)

By the Law of Large Numbers, for all sufficiently large n,

1− ε ≤

∫

T ε
n
(f⋆)∩Gε

n

n
∏

i=1

f⋆(xi) dx
n (19)

≤ |T ε
n (f

⋆) ∩ Gε
n|2

−n(h(f⋆)−ε), (20)

where the second line follows from the definition of T ε
n (f

⋆).
(We use |·| to denote Lebesgue measure.) Rearranging gives

|T ε
n (f

⋆) ∩ Gε
n| ≥ (1− ε)2n(h(f

⋆)−ε). (21)



2014 IEEE 28-th Convention of Electrical and Electronics Engineers in Israel

Let fn denote the uniform density over the set T ε
n (f

⋆) ∩ Gε
n.

Then

hα(fn) = log|T ε
n (f

⋆) ∩ Gε
n| (22)

≥ n
(

h(f⋆)− ε
)

+ log(1− ε) (23)

≥ n
(

h⋆(Γ)− 2ε
)

+ log(1− ε). (24)

Consequently, if Xn has density fn, then

lim
n→∞

hα(X
n)

n
≥ h⋆(Γ)− 2ε. (25)

The permutation invariance of the sets T ε
n (f

⋆) and Gε
n

imply that the Xi’s have identical marginals. And since

n−1
∑n

i=1 E[g(Xi)] ≤ Γ+ε by the definition of Gε
n and fn, it

follows that E[g(Xi)] ≤ Γ + ε for every i. The proof of (15)

now follows from the continuity of h⋆(Γ) in Γ.

To establish the direct part of (16), we will show that for

any fixed Γ1 > Γ we can achieve h⋆(Γ1). The result will then

follow by letting Γ1 tend to infinity. Fix then some Γ1 > Γ. Let

f0 achieve h⋆(Γ0) and let f1 achieve h⋆(Γ1).
1 Since Γ1 > Γ0,

it follows that h⋆(Γ1) ≥ h⋆(Γ0).
Define

Si = T ε
n (fi) ∩ Gε

n(fi), i ∈ {0, 1}, (26)

and fix some δ > 0 small enough so that

(1− δ)Γ0 + δΓ1 ≤ Γ. (27)

Consider now the “mixture” density

fn(x
n) = (1− δ)

1

|S0|
1{xn ∈ S0}+ δ

1

|S1|
1{xn ∈ S1}, (28)

where 1{·} denotes the indicator function. Let Xn be of

density fn. As in the proof of (15) it follows that the Xi’s

have identical marginals and E[g(Xi)] ≤ Γ. Moreover, since

S0 and S1 are disjoint (for small enough ε > 0 that guarantees

that Γ1 − ε > Γ0 + ε),

hα(X
n)

n

=
1

n(1− α)
log
(

(1− δ)α|S0|
1−α + δα|S1|

1−α
)

. (29)

On account of (21), this implies

lim
n→∞

hα(X
n)

n
≥ h⋆(Γ1)− ε (30)

and thus completes the direct part of (16).

We next turn to the converse. If limΓ̃→∞ h⋆(Γ̃) = ∞, then

the converse is trivial: no achievable Rényi rate can exceed

+∞. To conclude the converse we therefore now consider the

case where

lim
Γ̃→∞

h⋆(Γ̃) < ∞. (31)

1For simplicity we assume that the suprema are achieved. Otherwise use
h(f0) ≥ h⋆(Γ0)− ε and h(f1) ≥ h⋆(Γ1)− ε.

We will show that in this case the Lebesgue measure of the

support set S must be finite

|S| < ∞ (32)

and

lim
Γ̃→∞

h⋆(Γ̃) = log |S|. (33)

To this end, observe that

h⋆(k) ≥ log|{x ∈ S : g(x) ≤ k}| (34)

because the RHS can be achieved by a uniform distribution

on the set {x ∈ S : g(x) ≤ k}. Moreover, by the monotone

convergence theorem,

lim
k→∞

|{x ∈ S : g(x) ≤ k}| = |S|. (35)

Combining (34) and (35) we obtain

lim
Γ̃→∞

h⋆(Γ̃) ≥ log |S|, (36)

which establishes that (31) indeed implies (32). And since the

uniform distribution on S maximizes the differential Shannon

entropy,

h⋆(Γ̃) ≤ log |S|, (37)

which combines with (36) to establish (33).

Having established that (31) implies (32) and (33), we are

now ready to conclude the converse.

Since the uniform distribution maximizes both the differ-

ential entropy and the Rényi entropy when the support is

finite, it follows that for every tuple X1, . . . , Xn for which

Pr(Xi ∈ S) = 1 for all 1 ≤ i ≤ n, we have

hα(X
n)

n
≤ log|S| (38)

= lim
Γ̃→∞

h⋆(Γ̃). (39)

This completes the converse part of (16).

D. Consistency and Stationarity

Let Γ0 and Γ be as in Theorem II.2. We now make the

additional assumptions that the cost function g is nonnegative

g(x) ≥ 0, x ∈ S, (40a)

and that its sublevel sets are of finite Lebesgue measure

|{x ∈ S : g(x) ≤ Γ̃}| < ∞, Γ̃ ≥ Γ0. (40b)

Consider first the case where α > 1. Inspecting the proof

of Theorem II.2 we see that we can find some sufficiently

large n such that the n-vector whose density fn is uniform

over T ε
n (f

⋆) ∩ Gε
n satisfies (24). Being uniform, the density

fn is bounded. And since its support is contained in Gε
n—

which by (40b) and the nonnegativity of g is a subset of

Sn of finite Lebesgue measure—all the marginals of fn have

bounded density. Consequently, since α > 1,

hα(X1, . . . , Xr) > −∞, r ∈ {1, . . . , n− 1}. (41)
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Consider now the SP {Yk} that we construct by drawing

. . . , Y 0
−n+1, Y

n
1 , Y 2n

n+1, . . . ,∼ IID fn.

As we next show, for this SP the Rényi rate exists and is lower

bounded by h⋆(Γ)−2ε. To see this consider a (large) positive

integer m, and express it as m = qn + r where q = ⌊m/n⌋
and the remainder r is in {0, . . . , n−1}. For such m we have

by independence

1

m
hα

(

Y m
1

)

=
1

m

⌊m

n

⌋

hα(fn) +
1

m
hα(X1, . . . , Xr),

from which the result follows by taking m to infinity and using

(41) and (24).

In fact, we can even construct a stationary SP of this Rényi

rate by introducing a random shift

Zk = Yk+P ,

where P is uniform over {0, . . . , n − 1}. The density fZ of

Zm
1 is now the mixture of fZ|p, where fZ|p is the density of

Zm
1 conditional on the shift being p. While hα need not be

concave for α > 1, we can establish that {Zk} has the desired

Rényi entropy rate using the inequality

log

∫

fα
Z
(z) dz = log

∫
(

1

n

n−1
∑

p=0

fZ|P=p(z)

)α

dz (42)

≤ log

∫

n−1
n−1
∑

p=0

fα
Z|P=p(z) dz (43)

= log

(

n−1
n−1
∑

p=0

∫

fα
Z|P=p(z) dz

)

(44)

≤ log max
0≤p<n

∫

fα
Z|P=p(z) dz, (45)

= max
0≤p<n

log

∫

fα
Z|P=p(z) dz, (46)

which holds because α > 1. For such α, the term 1/(1 − α)
that multiplies the log in (1) is negative, so this upper bound

on the log leads to a lower bound on the Rényi entropy.

We next turn to the case where 0 < α < 1. Here too

we can construct a stationary process whose Rényi entropy

rate exists and is arbitrarily large or infinite. Once again we

choose n large enough so that the density fn of (28) will

have sufficiently large Rényi entropy. We next consider two

cases. In the first no subset of X1, . . . , Xn has infinite Rényi

entropy. In this case we proceed as for the case where α > 1
except that we replace (46) with the lower bound on the Rényi

entropy that results from its concavity (for 0 < α < 1).

In the second case where some subset of X1, . . . , Xn has

infinite Rényi entropy, we define n′ to be the cardinality of

the smallest such subset. Since the distribution of X1, . . . , Xn

is permuation invariant, such a subset is X1, . . . , Xn′ . Thus,

hα(X1, . . . , Xn′) = +∞ and for no 1 ≤ r < n′ can the Rényi

entropy of (X1, . . . , Xr) be infinite. We now construct the SP

{Ỹk} by drawing

. . . , Ỹ 0
−n′+1, Ỹ

n′

1 , Ỹ 2n′

n′+1, . . . ,∼ IID fn′ .

where f ′ is the joint density of X1, . . . , Xn′ . We then proceed

as in the first case but with a random delay that is uniform on

{0, . . . , n′ − 1}.

As special cases we now obtain:

Corollary II.3 (Rényi Rate under a Mean Constraint).

1) For every α > 1, every µ > 0, and every ε > 0 there

exists a stationary SP {Yk} whose Rényi entropy rate

exceeds log(µe)− ε and which satisfies

Yk ≥ 0 E[Yk] = µ. (47)

2) For every 0 < α < 1, every µ > 0, and every M > 0
there exists a stationary SP {Yk} whose Rényi entropy

rate exceeds M and which satisfies (47).

We can similarly treat a second moment constraint. Here

we note that the densities we have proposed are isotropic, and

we can thus establish that the SP is centered and uncorrelated.

Corollary II.4 (Rényi Rate under a Variance Constraint).

1) For every α > 1, every σ > 0, and every ε > 0 there

exists a centered stationary SP {Yk} whose Rényi entropy

rate exceeds 1
2 log(2πeσ

2)− ε and which satisfies

E[YkYk′ ] = σ21{k = k′}. (48)

2) For every 0 < α < 1, every σ > 0, and every M > 0
there exists a centered stationary SP {Yk} whose Rényi

entropy rate exceeds M and which satisfies (48).

Some of the implications of Corollary II.4 are explored in

[5].
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