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On the Listsize Capacity With Feedback
Christoph Bunte and Amos Lapidoth, Fellow, IEEE

Abstract— The listsize capacity of a discrete memoryless chan-
nel is the largest transmission rate for which the expectation—or,
more generally, the ρ-th moment—of the number of messages
that could have produced the output of the channel approaches
one as the blocklength tends to infinity. We show that for channels
with feedback, this rate is upper bounded by the maximum of
Gallager’s E0 function divided by ρ, and that equality holds when
the zero-error capacity of the channel is positive. To establish
this inequality, we prove that feedback does not increase the
cutoff rate. Relationships to other notions of channel capacity
are explored.

Index Terms— Cutoff rate, feedback, listsize capacity,
zero-error capacity, zero-undetected-error capacity.

I. INTRODUCTION AND RESULTS

THE main focus of this paper is the listsize capacity of
discrete memoryless channels (DMCs) with feedback.

We begin by recalling the definition of the listsize capacity
and, to put things into perspective, some other notions of
channel capacity.

A. Various Notions of Capacity

If a code for a DMC is to be decoded without errors, then
for every sequence of output letters there can be at most
one message that, when fed to the encoder, can produce it.
The zero-error capacity C0 of a DMC is the largest rate of
codes with this property. Determining C0 for arbitrary DMCs
is one of the longest standing open problems in Information
Theory [1]. If we only require that the correct message be
decodable with probability approaching one as the blocklength
tends to infinity, then suddenly the problem becomes tractable.
Indeed, the largest rate achievable in this sense is the Shannon
capacity C .

The zero-error capacity is a purely combinatoric quantity: it
depends only on the zeros of the channel matrix. The Shannon
capacity, in contrast, is a continuous function of the channel
matrix. Two notions of channel capacity that lie between these
two extremes are the listsize capacity and the zero-undetected-
error (z.u.e.) capacity; they may be defined as follows.

1) Consider a decoder that outputs the list of all the
messages that could have produced the given output
of the channel. The listsize capacity is the largest rate
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achievable in the sense that the ρ-th moment of the
length of this list approaches one as the blocklength
tends to infinity [2], [3]. It is denoted by C�(ρ). In this
paper, ρ can be any number greater than zero.

2) Consider a decoder that either outputs the correct
message (when there is a unique message that could
have produced the given output) or declares an erasure
(otherwise). The z.u.e. capacity is the largest rate
achievable in the sense that the probability of
erasure approaches zero as the blocklength tends to
infinity [2], [4]. It is denoted by C0-u.

For any given channel,

C0 ≤ C�(ρ) ≤ C0-u ≤ C. (1)

The first and third inequalities are obvious, and the second
inequality is proved in Proposition 1.9 ahead. The listsize and
z.u.e. capacities are not purely combinatoric quantities, nor are
they continuous functions of the channel matrix. But like C0,
determining C�(ρ) or C0-u for arbitrary DMCs is, to the best
of our knowledge, an open problem.

B. Feedback and New Results

The picture changes when there is a noiseless feedback link
from the output of the channel to the encoder. Indeed, for
channels with feedback, the zero-error capacity was proved
by Shannon [5] to be equal to the single-letter expres-
sion (36) ahead. The z.u.e. capacity with feedback was found
in [6] and [7] and can be expressed as in (61) ahead.

Encouraged by these results, we focus here on the listsize
capacity with feedback C�,fb(ρ). For channels with posi-
tive zero-error capacity we prove that C�,fb(ρ) equals the
maximum over all input distributions of the ratio of Gallager’s
E0 function ( [8, p. 138] or (190) in Appendix D) to ρ. More-
over, this maximum is always an upper bound on C�,fb(ρ):

Theorem 1.1: For any ρ > 0,

C�,fb(ρ) ≤ max
P

E0(ρ, P)

ρ
, (2)

with equality if C0 > 0.
A lower bound on C�,fb(ρ) when C0 = 0 is provided in

Section IV (Theorem 4.1). We can use Theorem 1.1 to show:
Proposition 1.2: Irrespective of ρ > 0, feedback can

increase the listsize capacity.
Proof: The channel in Figure 1 has positive zero-error

capacity, and maxP E0(ρ, P)/ρ approaches log 3 as ε tends
to zero. Consequently, by Theorem 1.1, C�,fb(ρ) approaches
log 3 as ε tends to zero. But according to Proposition 1.7
ahead we may combine the output symbols 0 and 1 without

0018-9448 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



6734 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 11, NOVEMBER 2014

Fig. 1. A channel with C�,fb(ρ) > C�(ρ).

altering C�(ρ), so C�(ρ) ≤ log 2 because the resulting output
alphabet is binary. �

We note that also C0-u,fb > C0-u for the channel in
Figure 1 [7].

The direct part of Theorem 1.1 is proved in Section III,
where we also show that the inequality (2) need not be tight
if C0 = 0. In order to derive (2), we recall [3] the following
operational meaning of the right-hand side of (2). Consider the
list of all the messages that under a uniform prior are at least
as likely as the correct one given the output of the channel.
The cutoff rate Rcutoff(ρ) is the largest rate of codes for which
the ρ-th moment of the length of this list approaches one as
the blocklength tends to infinity. Since the list of messages
that could have produced the output contains those that are at
least as likely as the correct one,

C�(ρ) ≤ Rcutoff(ρ), (3)

and, for channels with feedback,

C�,fb(ρ) ≤ Rcutoff,fb(ρ). (4)

En route to the converse part of Theorem 1.1 we prove:
Theorem 1.3: For any ρ > 0,

Rcutoff,fb(ρ) = max
P

E0(ρ, P)

ρ
. (5)

Inequality (2) follows directly from (4) and Theorem 1.3.
The converse part of Theorem 1.3 is proved in Section II. The
achievability part follows from the well-known result (see [3])

Rcutoff(ρ) = max
P

E0(ρ, P)

ρ
(6)

combined with the trivial fact that Rcutoff,fb(ρ) ≥ Rcutoff(ρ).
To keep this paper self-contained, we prove the achievability
part of (6) in Appendix B.1

As a corollary to Theorem 1.3, we obtain that feedback does
not increase the cutoff-rate:

Corollary 1.4: For any ρ > 0,

Rcutoff,fb(ρ) = Rcutoff(ρ). (7)
This paper also contains the following other contributions:
1) A generalization of Forney’s [10] lower bound on C�(1)

to C�(ρ) for all ρ > 0 and a proof that the n-letter
version of this bound becomes tight as n → ∞ even

1The case where ρ = 1 follows essentially from Gallager’s derivation of
the random coding error exponent [8, Sec. 5.6]. The general case, however,
requires a bit more work.

when the input distributions (PMFs) are restricted to
be uniform over their support; see Proposition 1.5 and
Section V.

2) Sufficient conditions for equality in C�(ρ) ≤ Rcutoff(ρ);
see Proposition 1.6.

3) A simple method to tighten the upper bounds in C�(ρ) ≤
Rcutoff(ρ) and C0-u ≤ C; see Proposition 1.7.

4) A proof that limρ→0 C�(ρ) = C0-u; see Proposition 1.9.
5) The limit of C�,fb(ρ) as ε → 0 for a class of “ε-noise”

channels; see Proposition 1.11.

C. Notation and Definitions

The cardinality of a finite set X is denoted by |X |. We use
boldface letters to denote n-tuples, e.g., x = (x1, . . . , xn),
and uppercase boldface letters for random n-tuples, e.g.,
Y = (Y1, . . . , Yn). Sometimes we use xi as shorthand for
(x1, . . . , xi ) when 0 ≤ i ≤ n, where x0 is the empty tuple.
All logarithms are natural logarithms. We adopt the convention
that a log(b/c) equals zero if a = 0; equals +∞ if a > 0,
b > 0, and c = 0; and equals −∞ if a > 0, b = 0, and
c > 0. For information-theoretic quantities like entropy and
relative entropy we follow the notation in [9]. In some of the
proofs we use basic results about types, all of which can be
found in [9, Ch. 2]. In particular, the set of all sequences
of type P is denoted by TP . The set of all sequences whose
conditional type is V given x, i.e., the V -shell of x, is denoted
by TV (x). Throughout (δn)n≥1 is used to denote sequences of
nonnegative numbers that tend to zero. We write δ′

n , δ′′
n , etc., if

we want to emphasize that different such sequences are being
used. The indicator function is denoted by 1{·}.

A discrete memoryless channel (DMC) is specified by its
transition law (channel matrix) W (y|x), x ∈ X , y ∈ Y ,
where X and Y are finite input and output alphabets. If P is
a probability mass function (PMF) on X , then PW denotes
the distribution induced on Y by P and the transition law W

(PW )(y) =
∑

x∈X
P(x)W (y|x), y ∈ Y. (8)

We write Pn for the product PMF on X n

Pn(x) =
n∏

i=1

P(xi ), x ∈ X n . (9)

The support of a PMF P is denoted by supp(P), i.e.,
supp(P) = {x ∈ X : P(x) > 0}. If A ⊆ X , we write P(A)
instead of

∑
x∈A P(x). Similarly, if B ⊆ Y , we write W (B|x)

instead of
∑

y∈B W (y|x).
In the absence of feedback, a blocklength-n rate-R encoder

is a mapping2

f : {1, . . . , enR} → X n . (10)

The domain of f is the message set and the (not necessarily
distinct) codewords f (1), . . . , f (enR) constitute the codebook.
We sometimes write xm instead of f (m) for the codeword to

2More precise would be the integer part of en R , but for typographical
reasons we write en R instead of 	en R
.
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which the encoder maps the m-th message. Sending the m-th
message induces on Yn the distribution

W n(
y
∣∣ f (m)

)
, y ∈ Yn, (11)

where

W n(y|x) =
n∏

i=1

W (yi |xi ), x ∈ X n, y ∈ Yn . (12)

We often use the notation

X (y) = {x ∈ X : W (y|x) > 0}, (13)

and

X n(y) = {x ∈ X n : W n(y|x) > 0}. (14)

Given an encoder f as in (10), we define the lists3

L(y) = {
m : W n(

y
∣∣ f (m)

)
> 0

}
, y ∈ Yn, (15)

and

L(m, y) = {
m̃ : W n(

y
∣∣ f (m̃)

) ≥ W n(
y
∣∣ f (m)

)}
. (16)

Stated differently, L(y) is the list of all messages that can
produce the output sequence y, and L(m, y) is the list of all
messages that under the uniform prior are at least as likely as
the m-th message given that y is observed at the output.

We can now give precise definitions of C�(ρ), C0-u,
and Rcutoff(ρ).

1) C�(ρ) is the supremum of all rates R for which
there exists a sequence of blocklength-n rate-R
encoders ( fn)n≥1 such that

lim
n→∞ e−nR

enR∑

m=1

∑

y∈Yn

W n(
y
∣∣ fn(m)

) |L(y)|ρ = 1. (17)

2) C0-u is the supremum of all rates R for which there exists
a sequence of blocklength-n rate-R encoders ( fn)n≥1
such that

lim
n→∞ e−nR

enR∑

m=1

∑

y:|L(y)|≥2

W n(
y
∣∣ fn(m)

) = 0. (18)

3) Rcutoff(ρ) is the supremum of all rates R for
which there exists a sequence of blocklength-n rate-R
encoders ( fn)n≥1 such that

lim
n→∞ e−nR

enR∑

m=1

∑

y∈Yn

W n(
y
∣∣ fn(m)

)|L(m, y)|ρ = 1. (19)

It follows from Gallager’s derivation of the Channel Coding
Theorem [8, Ch. 5] that the Shannon capacity C can be
achieved by strict ML-decoding, i.e., by a decoder that either
produces the unique message of maximum likelihood (if there
is one) or erases (otherwise). Consequently, we may define C
in terms of the list L(m, y) as follows.

3We use the word “list” in the sense of a set.

4. C is the supremum of all rates R for which there exists a
sequence of blocklength-n rate-R encoders ( fn)n≥1 such
that

lim
n→∞ e−nR

enR∑

m=1

∑

y:|L(m,y)|≥2

W n(
y
∣∣ fn(m)

) = 0. (20)

(The above definitions remain unchanged when the average
over the messages is replaced with the maximum. This follows
from a standard expurgation argument.)

To extend the above definitions to channels with feedback,
we replace f with an n-tuple ( f (1), . . . , f (n)), where

f (i) : {1, . . . , enR} × Y i−1 → X , i = 1, . . . , n. (21)

(By convention, Y0 contains only the empty tuple.) In this
case, sending the m-th message induces on Yn the distribution

n∏

i=1

W
(
yi

∣∣ f (i)(m, yi−1)
)
, y ∈ Yn . (22)

The definitions of L(y), L(m, y), C�,fb(ρ), C0-u,fb, and
Rcutoff,fb(ρ) are analogous to their no-feedback counterparts.

D. Bounds—Old and New

We begin with some known lower bounds on C�(ρ)
and C0-u. Forney [10] showed that

C0-u ≥ max
P

−
∑

y∈Y
(PW )(y) log P

(X (y)
)

(23)

and

C�(1) ≥ max
P

− log
∑

y∈Y
(PW )(y)P

(X (y)
)
, (24)

where the maxima are over all PMFs on X . Forney’s bounds
can be derived using standard random coding where each com-
ponent of each codeword is drawn independently according to
a PMF P . In Section V we prove the following generalization
of (24) (also using standard random coding).

Proposition 1.5: For any ρ > 0,

C�(ρ) ≥ max
P

−ρ−1 log
∑

y∈Y
(PW )(y)P

(X (y)
)ρ

. (25)

Neither (23) nor (25) is tight in general.4 Tighter bounds
can be derived using random coding over constant composition
codes [2]–[4], [11]: The corresponding bound on C0-u is

C0-u ≥ max
P

min
V�W

PV =PW

I (P, V ), (26)

where the minimization is over all auxiliary channels V (y|x),
x ∈ X , y ∈ Y , such that V (y|x) = 0 whenever W (y|x) = 0
(i.e., V � W ) and such that the induced output distrib-
ution under P is the same as under the true channel W
(i.e., PV = PW ). The corresponding bound on C�(ρ) is

C�(ρ) ≥ max
P

min
V ,V ′

V �W
PV =PV ′

I (P, V ) + ρ−1 D(V ′||W |P). (27)

4An example where they are not tight is the Z-channel;
see [11, Example 4.1].
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It is shown in [2] and [11] that (26) is at least as tight
as (23). Appendix C contains a proof that (27) is at least
as tight as (25). (This result may not have appeared in print
before.) However, the weaker bounds are simpler because no
minimization over auxiliary channels is required.

We can tighten any of the above lower bounds by applying
them to the channel W n(y|x), x ∈ X n , y ∈ Yn and normalizing
the result by 1/n. Indeed, any blocklength-ν rate-R code for
the channel W n is a blocklength-nν rate-R/n code for the
channel W .5

To give a concrete example, the n-letter version of (25) is

C�(ρ) ≥ 1

n
max

P
−ρ−1 log

∑

y∈Yn

(PW n)(y)P
(X n(y)

)ρ
,

(28)

where the maximum is over all PMFs on X n . A numerical
evaluation in [2] of the one and two-letter versions of (26)
for a specific channel suggests that a strict improvement is
possible, and thus that (26) is not always tight. In [2] and [3]
it is shown that the n-letter versions of (26) and (27) become
tight as n → ∞. In [12] it is shown that also the n-letter
version of the weaker bound (23) becomes tight as n → ∞,
and that this is true even when the input PMFs are restricted
to be uniform over their support. In Section V we prove a
similar statement for the n-letter version of (25).

The aforementioned limits are not computable in general,
but they can be useful nonetheless. For example, in [12] the
multiletter version of (23) is used to derive an upper bound
on C0-u for the class of ε-noise channels (see below).

We now discuss upper bounds on C�(ρ) and C0-u. Specifi-
cally, recall (3) and the rightmost inequality in (1):

C0-u ≤ C and C�(ρ) ≤ Rcutoff(ρ). (29)

For a large class of channels the bounds in (29) are tight:
Proposition 1.6: The inequalities in (29) hold with equality

if there exist functions A : X → (0,∞) and B : Y → (0,∞)
such that

W (y|x) = A(x)B(y), if W (y|x) > 0. (30)
Proof: The hypothesis implies that the lists L(y) and

L(m, y) coincide whenever W n(y| f (m)) > 0 and constant
composition codes are used.6 Indeed, observe that if x and x′
are codewords of the same type, then

W n(y|x) =
( n∏

i=1

A(xi)

)( n∏

j=1

B(y j )

)

=
( n∏

i=1

A(x ′
i )

)( n∏

j=1

B(y j )

)

= W n(y|x′), (31)

5For blocklengths that are not divisible by n, we can interpolate as follows.
Suppose the blocklength is nν+� where 1 ≤ � < n. Then we use a good code
for Wn of blocklength ν and rate R, and we extend it to a blocklength-(nν+�)
code for W by padding � dummy symbols. Accordingly, the last � output
symbols are ignored at the receiver. The rate of the resulting code for W is
νR/(nν + �), and this approaches R/n as ν → ∞.

6Constant composition codes comprise codewords of the same type
[9, p. 144].

where the first and last equality hold provided that
W n(y|x) > 0 and W n(y|x′) > 0. Thus, all codewords with
positive likelihood have the same likelihood.

Since every code has a constant composition subcode of
exponentially the same size (there are only polynomially many
types), the proposition follows by comparing (17) and (19),
and (18) and (20). �

Proposition 1.6 is essentially due to Csiszár and Narayan [4]
(they considered only C0-u), who also observed that all
channels with acyclic channel graphs7 can be factorized as
in (30). This important special case had been proved earlier
by Pinsker and Sheverdyaev [13] for C0-u, and by Telatar [3]
for C�(ρ). (An intermediate result was obtained by Telatar
in [11, Sec. 4.3].) Notable examples of channels with acyclic
channel graphs are the Z-channel and the binary erasure
channel. In [4] it is conjectured that a necessary condition
for C0-u = C is that a factorization of the channel law in
the sense of (30) hold on some capacity-achieving subset of
inputs (which is clearly also sufficient).

We can sometimes tighten the bounds in (29) by judiciously
combining output symbols:

Proposition 1.7: If y, y ′ ∈ Y are such that for every x ∈ X ,
W (y|x) > 0 if, and only if, W (y ′|x) > 0, then C0-u
and C�(ρ) are unaltered when y and y′ are combined
into a single output symbol distinct from all other output
symbols.

Proof: The set L(y) remains unchanged when any
occurrence of y in y is replaced with y ′, or vice versa. �

Using Proposition 1.7 we can also reduce the size of the
output alphabet to at most 2|X | − 1 symbols while preserving
C0-u and C�(ρ) (there are 2|X | − 1 nonempty subsets of
inputs). In particular, every binary-input DMC can be reduced
to an asymmetric binary erasure channel (possibly with some
transition probabilities equal to zero). And since the channel
graph of the latter is acyclic, we can apply Proposition 1.6
to it. In this way we can determine C0-u and C�(ρ) for any
binary-input channel.

E. Relationships and Analogies

There is a remarkable similarity between the way Rcutoff(ρ)
relates to C and the way C�(ρ) relates to C0-u. The
following two propositions illustrate this. The first is
well-known [8].

Proposition 1.8: For every ρ > 0,

1) Rcutoff(ρ) ≤ C;
2) Rcutoff(ρ) > 0 ⇐⇒ C > 0 ⇐⇒ there exist x, x ′, y

such that W (y|x) �= W (y|x ′);
3) limρ→0 Rcutoff(ρ) = C;
4) and limρ→∞ Rcutoff(ρ) = − log π0, where

π0 = min
P

max
y∈Y

P
(X (y)

)
. (32)

7The channel graph of a DMC W is the undirected bipartite graph whose
two independent sets are X and Y , and where there is an edge between
x and y if W (y|x) > 0. It is customary to draw the inputs on the left and the
outputs on the right, and to label the edges with the transition probabilities.
Acyclic means that we cannot find distinct inputs x1, . . . , xn and distinct
outputs y1, . . . , yn such that W (yi |xi ) > 0 and W (yi |xi+1) > 0 for all
i ∈ {1, . . . , n} where n ≥ 2 and xn+1 = x1.
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Proof: All assertions follow from (6), the fact that
C = maxP I (P, W ), and the properties of mutual infor-
mation and Gallager’s E0 function (see [8, Th. 5.6.3] and
Appendix D). �

Proposition 1.8 remains (almost) true when Rcutoff(ρ) is
replaced with C�(ρ), and C is replaced with C0-u.

Proposition 1.9: For every ρ > 0,

1) C�(ρ) ≤ C0-u;
2) C�(ρ) > 0 ⇐⇒ C0-u > 0 ⇐⇒ there exist x, x ′, y

such that W (y|x) > W (y|x ′) = 0;
3) limρ→0 C�(ρ) = C0-u;
4) and limρ→∞ C�(ρ) = − log π0.
Proof: Part 1 follows from Markov’s inequality:

Pr
(|L(Y)| ≥ 2

) = Pr
(|L(Y)|ρ − 1 ≥ 2ρ − 1

)

≤ E[|L(Y)|ρ] − 1

2ρ − 1
, (33)

and the right-hand side of (33) tends to zero if E[|L(Y)|ρ]
tends to one.

To prove Part 2, assume that for every y ∈ Y , W (y|x) > 0
for some x ∈ X implies W (y|x ′) > 0 for all x ′ ∈ X . Then
|L(y)| = enR for all sequences y ∈ Yn that can be produced
by some (and hence all) messages. Thus, C0-u = C�(ρ) = 0.
Conversely, if there exist x, x ′, y for which W (y|x) >
W (y|x ′) = 0, then combine all outputs other than y into a
single output distinct from y, and use only the inputs x and x ′.
This reduces the channel to a Z-channel with crossover prob-
ability 1 − W (y|x). For the Z-channel we have by Proposi-
tion 1.6 that C0-u = C and C�(ρ) = Rcutoff(ρ), where both C
and Rcutoff(ρ) are positive by Proposition 1.8 Part 2.

As to Part 3, since C�(ρ) is clearly nonincreasing in ρ,
the limit exists and is upper-bounded by C0-u on account
of Part 1. On the other hand, it follows from the proof of
[2, Th. 1] that for every rate R < C0-u the probability that
|L(Y)| exceeds one can be driven to zero exponentially in
the blocklength, i.e., we can find a sequence of blocklength-n
rate-R encoders ( fn)n≥1 for which this probability is bounded
by e−nδ for some (possibly very small) δ > 0. For this
sequence of encoders,

1

enR

enR∑

m=1

∑

y∈Yn

W n(
y
∣∣ fn(m)

)|L(y)|ρ

≤ 1 + enρR 1

enR

enR∑

m=1

∑

y:|L(y)|≥2

W n(
y
∣∣ fn(m)

)
(34)

≤ 1 + enρRe−nδ, (35)

where (34) follows by splitting the sum over y ∈ Yn into
a sum over all y for which |L(y)| = 1 and a sum over all
other y, and by using |L(y)| ≤ enR to bound the latter. Part 3
follows by noting that the right-hand side of (35) tends to one
as n tends to infinity if ρ < δ/R.

As to Part 4, since C�(ρ) ≤ Rcutoff(ρ), we have
limρ→∞ C�(ρ) ≤ − log π0 by Proposition 1.8 Part 4. On the
other hand, it follows from (25) by replacing the average over
y ∈ Y with the maximum that C�(ρ) ≥ − log π0 for all
ρ > 0. �

Proposition 1.10: Propositions 1.8 and 1.9 are true also for
channels with feedback. In particular, if C�(ρ), C�,fb(ρ), C0-u,
or C0-u,fb is positive, then they all are.

Proof: In the case of Proposition 1.8 this follows from the
fact that feedback does not increase the Shannon capacity or
the cutoff rate (Corollary 1.4). In the case of Proposition 1.9
the original proof goes through except for Part 3. This part,
however, is contained in Corollary 4.2 ahead. �

The quantity − log π0 appearing in Propositions 1.8 and 1.9
has the following operational significance. Shannon [5] proved
that the zero-error capacity with feedback C0,fb can be
expressed as

C0,fb =
{

− log π0 if C0 > 0,

0 otherwise.
(36)

He further conjectured that

− log π0 = min
V �W

C(V ), (37)

where C(V ) denotes the Shannon capacity of the channel
V (y|x), x ∈ X , y ∈ Y , and where, as above, V � W means
that V (y|x) = 0 whenever W (y|x) = 0. Ahlswede proved
this conjecture in [14]. Using the multiletter version of (27),
Telatar [3] showed that

lim
ρ→∞ C�(ρ) = min

V �W
C(V ). (38)

Combining (38) with Part 4 of Proposition 1.9 furnishes an
alternative proof of (37).

F. Sperner Capacity and ε-Noise Channels

There is an interesting relationship between the listsize
capacity, the z.u.e. capacity, and the Sperner capacity of
directed graphs [12]. We say that a DMC is ε-noise if X ⊆ Y
and

W (x |x) ≥ 1 − ε, for all x ∈ X . (39)

A natural way to associate a directed graph G with an ε-noise
channel W is to take X as the vertex set and to introduce an
edge from x to y if x �= y and W (y|x) > 0. It can be shown
that [2], [12]

lim
ε→0

C0-u = lim
ε→0

C�(ρ) = �(G), (40)

where �(G) denotes the Sperner capacity of G. (The limits
are to be understood in a uniform sense with respect to all
ε-noise channels with given graph G.)

As a corollary to Theorem 4.1 ahead, we can show:
Proposition 1.11: For any ε-noise channel with X = Y and

C�(ρ) > 0,

lim
ε→0

C�,fb(ρ) = log|X |. (41)

The proof of Proposition 1.11 is postponed until Section IV.



6738 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 11, NOVEMBER 2014

G. A Dual Source-Coding Problem

A source coding analog to the listsize capacity has recently
been studied in [15]. There, the encoder uses n R bits to
describe a sequence of length n emitted by an IID source PX .
Based on this description, the decoder produces a list of
sequences that is guaranteed to contain the one emitted by
the source. It is shown that the smallest rate R achievable in
the sense that the ρ-th moment of the length of this list tends
to one as n tends to infinity is given by the Rényi entropy of
order 1/(1 + ρ)

H 1
1+ρ

(X) = 1

ρ
log

(∑

x∈X
PX (x)

1
1+ρ

)1+ρ

. (42)

It is also shown that if the source produces pairs (X, Y ) and
the Y -sequence is known as side-information at the encoder
and decoder, then the smallest achievable rate is given by a
conditional version of Rényi entropy

H 1
1+ρ

(X |Y ) = 1

ρ
log

∑

y∈Y

(∑

x∈X
PX,Y (x, y)

1
1+ρ

)1+ρ

. (43)

This definition of conditional Rényi entropy was proposed by
Arimoto [16], who showed that

max
P

E0(ρ, P)

ρ
= max

P
H 1

1+ρ
(X) − H 1

1+ρ
(X |Y ), (44)

where (X, Y ) ∼ P(x)W (y|x). Thus, at least for channels
whose channel law factorizes in the Csiszár-Narayan
sense (30), Rényi entropy plays a role in channel and source
coding with lists that is reminiscent of the role played by
Shannon entropy in channel and source coding with the usual
probability of error criteria.

II. THE CONVERSE PART OF THEOREM 1.3

In this section we prove the converse part of Theorem 1.3,
i.e., we prove

Rcutoff,fb(ρ) ≤ max
P

E0(ρ, P)

ρ
. (45)

We need the following lemmas.
Lemma 2.1 ( [17, Th. 1]): If the pair (X, Y ) ∈ X × Y

(where X and Y are finite sets) has PMF PX,Y , and if the
function G : X×Y → {1, . . . , |X |} is one-to-one as a function
of x ∈ X for every y ∈ Y , then

E[G(X, Y )ρ] ≥ 1

(1 + log|X |)ρ
∑

y∈Y

(∑

x∈X
PX,Y (x, y)

1
1+ρ

)1+ρ
.

(46)
Lemma 2.2 ( [8, Th. 5.6.5]): A Necessary and sufficient

condition for a PMF P to minimize
∑

y∈Y

(∑

x∈X
P(x)W (y|x)

1
1+ρ

)1+ρ
(47)

(and hence maximize E0(ρ, P)) is
∑

y∈Y
W (y|x)

1
1+ρ αy(P)ρ ≥

∑

y∈Y
αy(P)1+ρ, (48)

for all x ∈ X , with equality if P(x) > 0. Here,

αy(P) =
∑

x∈X
P(x)W (y|x)

1
1+ρ . (49)

Equipped with these lemmas, we can now prove (45). Fix
a sequence of rate-R blocklength-n encoders as in (21). For
each y ∈ Yn list the messages in decreasing order of their
likelihood (resolving ties arbitrarily)

n∏

i=1

W
(
yi

∣∣ f (i)
n (m, yi−1)

)
, 1 ≤ m ≤ enR . (50)

Let G(m, y) denote the position of the m-th message in this
list. Then G(·, y) is one-to-one for every y ∈ Yn , and

G(m, y) ≤ |L(m, y)|, 1 ≤ m ≤ enR. (51)

(Equality holds in (51) if no message other than m has the
same likelihood as m.) By Lemma 2.1,

(1 + n R)ρ

enR

enR∑

m=1

∑

y∈Yn

G(m, y)ρ
n∏

i=1

W
(
yi

∣∣ f (i)
n (m, yi−1)

)

≥
∑

y∈Yn

( enR∑

m=1

(
1

enR

n∏

i=1

W
(
yi

∣∣ f (i)
n (m, yi−1)

)) 1
1+ρ

)1+ρ

= enρR
∑

y∈Yn

(∑

f∈F
P̃(f)W̃n(y|f) 1

1+ρ

)1+ρ

, (52)

where W̃n is the channel whose input alphabet F is the set of
all n-tuples f = ( f (1), . . . , f (n)) of functions of the form

f (i) : Y i−1 → X , i = 1, . . . , n; (53)

whose output alphabet is Yn ; and whose transition law is

W̃n(y|f) =
n∏

i=1

W
(
yi

∣∣ f (i)(yi−1)
)
, y ∈ Yn, f ∈ F , (54)

and where P̃ is the PMF on F induced by uniform messages
and the encoding functions:

P̃(f) =
∣∣{m : (

f (1)
n (m), . . . , f (n)

n (m, ·)) = f
}∣∣

enR
. (55)

The proof is complete once we establish that

∑

y∈Yn

(∑

f∈F
P̃(f)W̃n(y|f) 1

1+ρ

)1+ρ

≥ e−n maxP E0(ρ,P), (56)

because it will then follow using (51) and (52) that
the ρ-th moment of |L(M, Y)| cannot tend to one
unless R ≤ maxP E0(ρ, P)/ρ . To establish (56), let P
 be
a PMF on X that minimizes

∑

y∈Y

(∑

x∈X
P(x)W (y|x)

1
1+ρ

)1+ρ

(57)

and hence achieves the maximum of E0(ρ, P). We use
Lemma 2.2 (applied to the channel W̃n) to show that the
PMF P̃
 on F given by

P̃
(f) =
{∏n

i=1 P
(xi ) f (1) ≡ x1, . . . , f (n) ≡ xn,

0 otherwise,
(58)
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minimizes the left-hand side of (56) over all PMFs on F .
The notation f (i) ≡ xi means that f (i)(yi−1) = xi for all
yi−1 ∈ Y i−1. To verify that P̃
 satisfies the conditions of
Lemma 2.2 for the channel W̃n , observe that

∑

y∈Yn

W̃n(y|f) 1
1+ρ

(∑

f ′∈F
P̃
(f ′)W̃n(y|f ′)

1
1+ρ

)ρ

=
∑

y∈Yn

W̃n(y|f) 1
1+ρ

( ∑

x∈X n

(P
)n(x)W n(y|x)
1

1+ρ

)ρ

=
∑

y1

W (y1| f (1))
1

1+ρ αy1(P
)ρ

× · · · ×
∑

yn

W
(
yn

∣∣ f (n)(yn−1)
) 1

1+ρ αyn (P
)ρ. (59)

Applying (48) (with P replaced by P
) to the innermost of the
nested sums on the right-hand side of (59) (the sum over yn),
then to the second innermost (the sum over yn−1), and so on,
we obtain

∑

y∈Yn

W̃n(y|f) 1
1+ρ

(∑

f ′∈F
P̃
(f ′)W̃n(y|f ′)

1
1+ρ

)ρ

≥
(∑

y∈Y

(∑

x∈X
P
(x)W (y|x)

1
1+ρ

)1+ρ
)n

=
∑

y∈Yn

( ∑

x∈X n

(P
)n(x)W n(y|x)
1

1+ρ

)1+ρ

=
∑

y∈Yn

(∑

f ′∈F
P̃
(f ′)W̃n(y|f ′)

1
1+ρ

)1+ρ

, (60)

with equality if f (1) ≡ x1, . . . , f (n) ≡ xn and P
(xi ) > 0
for all i ∈ {1, . . . , n}, i.e., with equality if P̃
(f) > 0. The
PMF P̃
 thus satisfies the conditions of Lemma 2.2 (for the
channel W̃n) for minimizing the left-hand side of (56), and
the value of this minimum is equal to the right-hand side
of (56). �

III. THE DIRECT PART OF THEOREM 1.1

Before presenting the proof of the direct part of
Theorem 1.1, we comment on the necessity of the assump-
tion C0 > 0. Since the z.u.e. capacity with feedback is given
by [6], [7]

C0-u,fb =
{

C if C0-u > 0,

0 otherwise,
(61)

one might suspect that for equality in (2) it suffices that C�(ρ)
be positive (and not necessarily C0). This, however, is not true:

Proposition 3.1: A positive value of C�(ρ) does not
guarantee equality in (2).

Proof: A counterexample is the channel in Figure 2. For
this channel C0 = 0, C�(ρ) > 0, and maxP E0(ρ, P)/ρ is
at least close to log 2 for small ε. But even with feedback, if
the received sequence contains only the symbols 0 and 1, then
the decoder cannot rule out any of the messages and the list it
produces is of size enR . And regardless of what is fed to the
channel, the probability of observing only the symbols 0 and 1

Fig. 2. A channel with 0 < C�,fb(ρ) < maxP E0(ρ, P)/ρ.

at the output is at least (1−δ)n. Consequently, the ρ-th moment
of the length of the list produced by the decoder is at least

enρ(R+ρ−1 log(1−δ)), (62)

and C�,fb(ρ) must thus be bounded by −ρ−1 log(1−δ), which
is close to zero for very small δ > 0 and hence smaller than
maxP E0(ρ, P)/ρ if ε > 0 is sufficiently small. �

To prove the direct part of Theorem 1.1, we propose the
following coding scheme. Let P
 be a PMF on X that achieves
the maximum of E0(ρ, P). Select a sequence of types (Pn)n≥1
with Pn → P
 as n → ∞, where each Pn is a type
in X n .8 In the first phase, we send one of enR messages
using the length-n type-Pn codewords x1, . . . , xenR . (We will
generate the codebook at random later on). In the second
phase, after the output sequence y ∈ Yn has been observed
through the feedback link, we use a zero-error code (of rate
at least log 2) to describe the conditional type V of y given
the codeword.9 Since the number of conditional types is
polynomial in n, this requires at most o(n) additional channel
uses. Let M(y, V ) ⊆ {1, . . . , enR} denote the set of all
messages that are mapped to codewords given which y has
conditional type V , i.e.,

M(y, V ) = {1 ≤ m ≤ enR : y ∈ TV (xm)}. (63)

At the end of the second phase both the encoder and the
decoder know M(y, V ) and the decoder knows that the
transmitted message is an element of it. We fix some (small)
α > 0 and partition M(y, V ) into enα lists of lengths at most

⌈
e−nα|M(y, V )|⌉. (64)

In the third phase, we send the index of the list containing
the correct message using a zero-error code (of rate at least
log 2). This requires at most �nα/ log 2� additional channel
uses. Note that the length of this list is determined by the
codeword and the first n channel outputs. We can upper-bound
its ρ-th moment by

e−nR
enR∑

m=1

∑

y∈Yn

W n(y|xm)
⌈

e−nα|M(y, Py|xm)|⌉ρ
, (65)

8This is possible because the set of PMFs with rational components is dense
in the set of all PMFs.

9To avoid uniqueness issues, we define the conditional type V (y|x) only
for x ∈ X with Pn(x) > 0. Also, when the zero-error capacity is positive,
then it is at least log 2.



6740 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 11, NOVEMBER 2014

where Py|xm denotes the conditional type of y given xm . Using
the inequality

�ξ�ρ < 1 + 2ρξρ, ξ ≥ 0, (66)

we can upper-bound (65) by

1 + 2ρe−n(R+ρα)
enR∑

m=1

∑

y∈Yn

W n(y|xm)
∣∣M(y, Py|xm )

∣∣ρ. (67)

Changing the order of summation, we can rewrite (67) as

1 + 2ρe−n(R+ρα)

×
∑

y∈Yn

∑

V

∑

m∈M(y,V )

W n(y|xm)
∣∣M(y, V )

∣∣ρ, (68)

where the middle sum extends over conditional types V . Using
the identity

W n(y|xm) = e−n(D(V ||W |Pn)+H(V |Pn)), if m ∈ M(y, V ),

and the fact that M(y, V ) can be nonempty only if y has
type Pn V , we can rewrite (68) as

1 + 2ρe−n(R+ρα)

×
∑

V

∑

y∈TPnV

e−n(D(V ||W |Pn)+H(V |Pn))|M(y, V )|1+ρ. (69)

Next, we average the upper bound (69) over all realizations of
a random codebook X1, . . . , XenR in which each codeword is
drawn independently and uniformly from TPn . This average is

1 + 2ρe−n(R+ρα)

×
∑

V

∑

y∈TPn V

e−n(D(V ||W |Pn)+H(V |Pn)) E
[|M(y, V )|1+ρ

]
.

(70)

We now upper-bound the (1 + ρ)-th moment of |M(y, V )|.
Under the given distribution of the codebook,

|M(y, V )| =
enR∑

m=1

1
{
y ∈ TV (Xm)

}
(71)

is a sum of IID Bernoulli random variables (RVs). To compute
the probability of the event {y ∈ TV (Xm)} observe that if
xm ∈ TPn and y ∈ TPn V , then y is in the V -shell of xm if,
and only if, xm is in the Ṽ -shell of y, where

Ṽ (x |y) = V (y|x)Pn(x)

(Pn V )(y)
, x ∈ X , y ∈ supp(Pn V ). (72)

Consequently, if y ∈ TPn V , then

Pr
(
y ∈ TV (Xm)

) = Pr
(
Xm ∈ TṼ (y)

)

= |TṼ (y)|
|TPn |

(73)

≤ e−n(H(Pn)−H(Ṽ |Pn V )−δn) (74)

= e−n(I (Pn ,V )−δn), (75)

where (73) follows because TṼ (y) ⊆ TPn when y ∈ TPn V ,
and because Xm is drawn uniformly at random from TPn ;
where (74) follows because |TṼ (y)| ≤ enH(Ṽ |Pn V ) when

y ∈ TPn V , and because |TPn | ≥ en(H(Pn)−δn); and where (75)
follows by noting that

H (Pn) − H (Ṽ |PnV ) = H (PnV ) − H (V |Pn)

= I (Pn, V ). (76)

It is important to note that the δn appearing in (75) does not
depend on V . In fact, it can be taken as

δn = |X | log(n + 1)

n
. (77)

To bound the (1 + ρ)-th moment of a binomial RV with
exponential parameters, we use Lemma 1.1 (Appendix A),
specifically (126). This yields for every y ∈ TPn V

E
[|M(y, V )|1+ρ

]

≤ γ en(R−I (Pn,V )+δn) + γ en(1+ρ)(R−I (Pn,V )+δn). (78)

Using (78), the fact that |TPn V | ≤ enH(Pn V ), and (76), we can
upper-bound (70) by

1 + γ 2ρ
∑

V

e−n(ρα+D(V ||W |Pn)−δn )

+γ 2ρ
∑

V

e−n(ρα−ρR+D(V ||W |Pn)+ρ I (Pn ,V )−(1+ρ)δn). (79)

Since D(V ||W |Pn) is nonnegative, and since the number
of conditional types V is polynomial in n, we can upper-
bound (79) by

1 + γ 2ρe−n(ρα−δ′
n)

+γ 2ρe−n(ρα−ρR+minV D(V ||W |Pn)+ρ I (Pn ,V )−δ′
n), (80)

where the minimum is over all channels V (y|x), x ∈ X ,
y ∈ Y . The first exponential term tends to zero as n tends
to infinity if α > 0. The second exponential term tends to
zero if

R < α + lim
n→∞

min
V

I (Pn , V ) + ρ−1 D(V ||W |Pn). (81)

The rate of the coding scheme approaches R/(1+α/ log 2) as
n tends to infinity. Letting α tend to zero, it thus follows that
any rate below

lim
n→∞

min
V

I (Pn , V ) + ρ−1 D(V ||W |Pn) (82)

is achievable. And since by [9, Exercise 10.24]

I (Pn, V ) + ρ−1 D(V ||W |Pn) ≥ E0(ρ, Pn)

ρ
, (83)

it follows from the continuity of E0(ρ, P) in P that all rates
below E0(ρ, P
)/ρ are achievable. �

IV. A LOWER BOUND ON THE LISTSIZE

CAPACITY WITH FEEDBACK

The direct part of Theorem 1.1 is useless when C0 = 0.
With this case in mind, we propose

Theorem 4.1: If C�(ρ) > 0, then

C�,fb(ρ) ≥ R
(ρ)

1 + ρR
(ρ)

log 1
1−q


, (84)
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where

R
(ρ) = sup
ξ>0

max
P

E0(ξ, P)

ξ + ρ
, (85)

and where q
 is the maximum of W (Y0|x1) taken over all
x1 ∈ X and over all the subsets Y0 ⊂ Y for which there
exists some x0 ∈ X with W (Y0|x0) = 0. If C0 > 0, i.e., if the
zero-error capacity is positive, then q
 = 1, and we interpret
the right-hand side of (84) as R
(ρ).

Note that the assumption C�(ρ) > 0 implies q
 > 0. Indeed,
if C�(ρ) > 0, then, by Proposition 1.9 Part 2, we can find
x0, x1, y0 such that W (y0|x0) = 0 and W (y0|x1) > 0. Taking
Y0 = {y0} thus shows that q
 ≥ W (Y0|x1) > 0. Also note
that, in view of Theorem 1.1 and Proposition 1.6, the lower
bound in (84) is interesting only when C0 = 0 and the channel
law does not factorize in the Csiszár-Narayan sense (30).

Before presenting a proof of Theorem 4.1, we use it to
provide a proof of Proposition 1.11, and we give another
corollary to Theorem 4.1, Corollary 4.2, which contains the
earlier result (61).

As to the proof of Proposition 1.11, in the notation of
Theorem 4.1 we have q
 ≥ 1 − ε if W is ε-noise and
C�(ρ) > 0. Indeed, C�(ρ) > 0 implies that there exist x0
and y0 such that W (y0|x0) = 0 (Proposition 1.9 Part 2),
and the ε-noise property implies that W (y0|y0) ≥ 1 − ε.
Consequently, Y0 = {y0}, x1 = y0 is a feasible choice in the
definition of q
. Moreover, if P is the uniform PMF on X ,
then

E0(ξ, P)

= (1 + ξ) log|X | − log
∑

y∈X

(∑

x∈X
W (y|x)

1
1+ξ

)1+ξ

≥ (1 + ξ) log|X | − log
∑

y∈X

(
1 + (|X | − 1

)
ε

1
1+ξ

)1+ξ

= ξ log|X | − (1 + ξ) log
(

1 + (|X | − 1
)
ε

1
1+ξ

)
. (86)

Now fix δ > 0 and choose ξ > 0 large enough such that
ξ/(ξ + ρ) > 1 − δ. Then from (85) and (86) it follows that

R
(ρ) ≥ (1 − δ) log|X | − 1 + ξ

ξ + ρ
log

(
1 + (|X | − 1

)
ε

1
1+ξ

)
,

(87)

and since the second term on the right-hand side tends to zero
as ε → 0, it follows from (84) that

lim inf
ε→0

C�,fb(ρ) ≥ (1 − δ) log|X |. (88)

Letting δ → 0 thus proves (41). �
Corollary 4.2:

lim
ρ→0

C�,fb(ρ) = C0-u,fb =
{

C if C0-u > 0,

0 otherwise.
(89)

Proof: If C0-u = 0, then by Proposition 1.10 also
C0-u,fb = 0 and C�,fb(ρ) = 0 for all ρ > 0. If C0-u > 0,
then C�(ρ) > 0 and (84) holds for all ρ > 0. Moreover,

from (85) we have

lim
ρ→0

R
(ρ) = sup
ρ>0

sup
ξ>0

max
P

E0(ξ, P)

ξ + ρ

= max
P

sup
ξ>0

E0(ξ, P)

ξ

= max
P

I (P, W ) (90)

= C, (91)

where (90) follows because E0(ξ, P)/ξ is nonincreasing
in ξ > 0, E0(0, P) = 0, and ∂ E0(ξ, P)/∂ξ |ξ=0 =
I (P, W ) (see [8, Th. 5.6.3]). Consequently, by (84), limρ→0
C�,fb(ρ) ≥ C . And since C�,fb(ρ) ≤ C0-u,fb ≤ C , it follows
that limρ→0 C�,fb(ρ) = C0-u,fb = C . �

To prove Theorem 4.1, we propose the following coding
scheme. Select a positive integer � and let x0, x1,Y0
achieve q
. In the first phase, we use a blocklength-n rate-R
encoder paired with a decoder that produces a list of the � most
likely messages given the output of the channel (resolving
ties arbitrarily). As shown in [8, Exercise 5.20], for every
PMF P on X we can find a sequence of such encoders
(indexed by the blocklength n) such that the probability of the
correct message not being on the list is at most e−n(E0(ξ,P)−ξ R)

for every 0 ≤ ξ ≤ �.
Thanks to the feedback, the transmitter knows which

messages are on the decoder’s list, and in the second phase it
tries to tell the receiver whether the correct message is among
them. To indicate that the correct message is on the list, it
sends n′ times the symbol x1; otherwise it sends n′ times the
symbol x0. Accordingly, if the receiver observes at least one
symbol in Y0 during the second phase, it knows with certainty
that the correct message is on the list (because W (Y0|x0) = 0);
otherwise it assumes that the correct message is not on the list,
it ignores the third phase, and it produces a final list containing
all enR messages.

If the first two phases are successful, i.e., if the list contains
the correct message and the receiver is aware of it, then the
third phase is used to transmit the position of the correct
message in the list. To this end, we construct � auxiliary
codewords x1, . . . , x� of length k�, where k is a fixed positive
integer, as follows. The components (i − 1)k + 1, . . . , ik
of xi equal x1 and all its other components equal x0. The
receiver can identify the correct auxiliary codeword, and thus
produce the correct message, if at least one symbol in Y0
is observed at the output during the third phase (because
W (Y0|x0) = 0 and the x1-patterns are disjoint). If no symbol
in Y0 is observed during the third phase, it produces the list
of size � (which is guaranteed to contain the correct message).
If the first or the second phase is unsuccessful, then it does
not matter what the transmitter does in the third phase. For
concreteness, it sends k� times the symbol x0.

To analyze the performance of this coding scheme, define
the events

E1 = {correct message not on the list after 1st phase},
E2 = {no symbol in Y0 is observed in 2nd phase},
E3 = {no symbol in Y0 is observed in 3rd phase}.
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Let L be the length of the list produced by the receiver. The
ρ-th moment of L is upper-bounded by

1 + E[Lρ |E1] Pr(E1) + E[Lρ |Ec
1 ∩ E2] Pr(Ec

1 ∩ E2)

+ E[Lρ |Ec
1 ∩ Ec

2 ∩ E3] Pr(Ec
1 ∩ Ec

2 ∩ E3). (92)

We upper-bound the right-hand side of (92) term by term,
beginning with

E[Lρ |E1] Pr(E1) ≤ enρRe−n(E0(ξ,P)−ξ R)

= e−n(ξ+ρ)
(

E0(ξ,P)
ξ+ρ −R

)
, 0 ≤ ξ ≤ �. (93)

The right-hand side of (93) approaches zero as n tends to
infinity provided that R < R
(ρ) and � is large enough so
that we can pick a ξ in the interval [0, �] and a PMF P that
achieve a value of E0(ξ, P)/(ξ + ρ) close enough to R
(ρ).
The next term on the right-hand side of (92) can be upper-
bounded as follows.

E[Lρ |Ec
1 ∩ E2] Pr(Ec

1 ∩ E2) ≤ enρR(1 − q
)n′

= e
n
(
ρR− n′

n log 1
1−q


)
. (94)

The right-hand side of (94) approaches zero as n tends to
infinity if we choose

n′ = n(1 + δ)
ρR

log 1
1−q


(95)

for an arbitrarily small δ > 0. (If C0 > 0, and hence q
 = 1,
then we may take n′ = 1.) Finally,

E[Lρ |Ec
1 ∩ Ec

2 ∩ E3] Pr(Ec
1 ∩ Ec

2 ∩ E3) ≤ �(1 − q
)k, (96)

and the right-hand side can be made arbitrarily small by
choosing k sufficiently large. (If C0 > 0, we may take k = 1.)
The rate of the coding scheme is

R

1 + n′
n + k�

n

. (97)

Choosing first � sufficiently large, then R close to R
(ρ),
then n′ as in (95) with δ sufficiently small, then k suffi-
ciently large, and finally n sufficiently large shows that that
all rates strictly less than the right-hand side of (84) are
achievable. �

V. A PROOF OF PROPOSITION 1.5 AND

THE ASYMPTOTIC TIGHTNESS OF (28)

In this section we derive the lower bound (25) and show that
its n-letter version (28) becomes tight as n tends to infinity
even when P is restricted to be uniform over its support.

We begin with a proof of (25). Given a blocklength-n
rate-R codebook x1, . . . , xenR , we can write the ρ-th moment
of |L(Y)| as

1

enR

enR∑

m=1

∑

y∈Yn

W n(y|xm)

(
1 +

∑

m′ �=m

Zm′(y)

)ρ

, (98)

where we define

Zm(y) = 1
{
W n(y|xm) > 0

}
, 1 ≤ m ≤ enR. (99)

If the codebook is generated at random by drawing each
component of each codeword independently according to
a PMF P on X , then the expectation of (98) (over the
codebook) is

∑

y∈Yn

(PW )n(y) E

[(
1 +

enR∑

m=2

Zm(y)

)ρ]
, (100)

where for every y ∈ Yn the RVs Z1(y), . . . , ZenR (y) are IID
Bernoulli. Note that

Pr
(
Zm(y) = 1

) =
n∏

i=1

P
(X (yi )

)

=
∏

y∈Y
P

(X (y)
)n Py(y)

= en
∑

y∈Y Py(y) log P(X (y))

= e−nF(Py), (101)

where Py is the type of y, and where we define

F(Q) = −
∑

y∈Y
Q(y) log P

(X (y)
)
. (102)

To prove (25) it suffices to show that (100) tends to one as
n tends to infinity whenever

R < −ρ−1 log
∑

y∈Y
(PW )(y)P

(X (y)
)ρ

. (103)

We first show that (103) is equivalent to

R < min
Q

F(Q) + ρ−1 D(Q||PW ). (104)

where the minimum is over all PMFs Q on Y . Indeed, observe
that

F(Q) + ρ−1 D(Q||PW )

= −ρ−1
∑

y∈Y
Q(y) log

(PW )(y)P(X (y))ρ

Q(y)

≥ −ρ−1 log
∑

y∈Y
(PW )(y)P(X (y))ρ , (105)

where (105) follows from Jensen’s Inequality. The choice

Q(y) = (PW )(y)P(X (y))ρ∑
y′∈Y (PW )(y ′)P(X (y ′))ρ

, y ∈ Y, (106)

achieves equality in (105).
Using Lemma 1.1 (Appendix A), specifically (125), we can

upper-bound (100) by

1 + γ
∑

y∈Yn

(PW )n (y)
(

en(R−F(Py))1{R ≤ F(Py)}

+ enρ(R−F(Py))1{R > F(Py)}
)
. (107)

Since (PW )n(TQ) ≤ e−nD(Q||PW ), we can upper-bound the
sum in (107) by

∑

Q:R≤F(Q)

en(R−F(Q)−D(Q||PW ))

+
∑

Q:R>F(Q)

enρ(R−F(Q)−ρ−1 D(Q||PW )), (108)
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where Q runs over all types in Yn . Next, we show that if
the rate R satisfies (104), then (108) tends to zero as n tends
to infinity. Assume therefore that (104) holds and define the
positive number

δ = min
Q

F(Q) + ρ−1 D(Q||PW ) − R. (109)

The second sum in (108) tends to zero as n tends to infinity
because the summand is upper-bounded by e−nρδ and the
number of different types is polynomial in n. To show that
the first sum in (108) tends to zero, we consider separately
the cases ρ ≥ 1 and ρ < 1. In the former case, the
summand is upper-bounded by e−nδ because D(Q||PW ) ≥
ρ−1 D(Q||PW ). In the latter case, the summand is upper-
bounded by e−nρδ because R − F(Q) ≤ ρ(R − F(Q)) when
R ≤ F(Q). We conclude that (108) tends to zero as n
tends to infinity for all rates R satisfying (104). In view of
the equivalence of (103) and (104), this completes the proof
of (25).

To prove that (28) is asymptotically tight even when P is
restricted to be uniform over its support, we define

Jn(ρ, P) = − 1

nρ
log

∑

y∈Y
(PW n )(y)P

(X n(y)
)ρ

. (110)

Since (28) holds for every n, and since restricting the feasible
set cannot help,

C�(ρ) ≥ lim
n→∞ max

P∈Un

Jn(ρ, P), (111)

where Un denotes the set of PMFs on X n that are uniform
over their support. It remains to show that

C�(ρ) ≤ lim
n→∞

max
P∈Un

Jn(ρ, P). (112)

To this end, fix a sequence of rate-R blocklength-n
encoders ( fn)n≥1 with

e−nR
enR∑

m=1

∑

y∈Yn

W n(
y| fn(m)

)|L(y)|ρ ≤ 1 + εn, (113)

where εn → 0 as n → ∞. We first argue that the number of
codewords to which only one message is mapped by fn is at
least en(R−δn). Indeed, if m �= m′ and fn(m) = fn(m′), then
|L(y)| ≥ 2 whenever W n(y| fn(m)) > 0 (because then also
W n(y| fn(m′)) > 0), and hence

∑

y∈Yn

W n(
y| fn(m)

)|L(y)|ρ ≥ 2ρ. (114)

If we define

Mn = {
1 ≤ m ≤ enR : fn(m′) �= fn(m) for all m′ �= m

}
,

then it follows from (113) and (114) that

e−nR |Mc
n|2ρ ≤ e−nR

enR∑

m=1

∑

y∈Yn

W n(
y| fn(m)

)|L(y)|ρ

≤ 1 + εn, (115)

where Mc
n denotes the set complement of Mn in {1, . . . , enR}.

Rearranging (115) gives

|Mc
n| ≤ enR2−ρ(1 + εn). (116)

Since εn → 0 as n → ∞, there exists n0 such that 2−ρ

(1 + εn) < 1 for all n ≥ n0. Henceforth assume that n ≥ n0.
Since |Mn| + |Mc

n| = enR , it follows from (116) that

|Mn| ≥ enR(
1 − 2−ρ(1 + εn)

)

= en(R−δn). (117)

Since 1+εn < 2ρ , restricting the message set to Mn can only
decrease the ρ-th moment of the length of the list, so

1

|Mn|
∑

m∈Mn

∑

y∈Yn

W n(
y| fn(m)

)|L̃(y)|ρ ≤ 1 + εn, (118)

where

L̃(y) = {
m ∈ Mn : W n(y| fn(m)) > 0

}
. (119)

Let Pn be the uniform PMF on the set { fn(m) : m ∈ Mn}.
Then Pn ∈ Un and

Pn
(X n(y)

) = |L̃(y)|
|Mn|

≤ e−n(R−δn )|L̃(y)|, (120)

where (120) follows from (117). Rearranging (120) gives

|L̃(y)| ≥ en(R−δn) Pn
(X n(y)

)
. (121)

Combining (121) and (118), and taking logarithms, we obtain

log(1 + εn) ≥ nρ(R − δn) − nρ Jn(ρ, Pn). (122)

Dividing by nρ and letting n → ∞ shows that

R ≤ lim
n→∞

Jn(ρ, Pn). (123)

The right-hand side of (123) is upper-bounded by the right-
hand side of (112) because Pn ∈ Un . �

APPENDIX A
EXPONENTIAL UPPER BOUNDS ON THE ρ-TH

MOMENT OF BINOMIAL RVS

Lemma 1.1: Let X1, . . . , Xenα be IID Bernoulli RVs with
success probability

pn = Pr(Xi = 1) = 1 − Pr(Xi = 0) ≤ e−nβ, (124)

where n ∈ N, α > 0 and β ≥ 0. Let ρ > 0. Then

E

[(
1 +

enα∑

i=1

Xi

)ρ]
≤

{
1 + γ en(α−β) if β ≥ α,

γ enρ(α−β) if β < α,
(125)

and

E

[( enα∑

i=1

Xi

)ρ]
≤

{
γ en(α−β) if β ≥ α,

γ enρ(α−β) if β < α,
(126)

where

γ = max
{
eeρ−1, (�ρ�!)2�ρ�}. (127)

Proof: We use the inequalities

ξ < 1 + ξ ≤ eξ , ξ ∈ R, (128)

and

eηξ ≤ 1 + ξ(eη − 1), 0 ≤ ξ ≤ 1, η > 0. (129)
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(The inequality (129) is a consequence of the convexity of the
function ξ �→ eηξ .)

We begin with a proof of (125). Consider first the case
β ≥ α and observe that

E

[(
1 +

enα∑

i=1

Xi

)ρ]
≤ E

[
exp

(
ρ

enα∑

i=1

Xi

)]
(130)

= E
[
eρX1

]enα

(131)

= (
1 + pn(e

ρ − 1)
)enα

≤ exp
(

pnenα(eρ − 1)
)

(132)

≤ exp
(
en(α−β)(eρ − 1)

)
(133)

≤ 1 + en(α−β)(eeρ−1 − 1) (134)

≤ 1 + γ en(α−β), (135)

where (130) and (132) follow from (128); where (131) follows
because the Xi ’s are IID; where (133) follows from (124);
where (134) follows from (129) with η = eρ − 1 and
ξ = en(α−β); and where (135) follows from (127).

Now consider the case β < α and observe that

E

[(
1 +

enα∑

i=1

Xi

)ρ]

= enρ(α−β) E

[(
e−n(α−β) + e−n(α−β)

enα∑

i=1

Xi

)ρ]

≤ enρ(α−β) E

[(
1 + e−n(α−β)

enα∑

i=1

Xi

)ρ]
(136)

≤ enρ(α−β) E

[
exp

(
ρe−n(α−β)

enα∑

i=1

Xi

)]
(137)

= enρ(α−β) E
[
exp(ρe−n(α−β)X1)

]enα

= enρ(α−β)
(

1 + pn
(
exp(ρe−n(α−β)) − 1

))enα

≤ enρ(α−β) exp
(

pnenα
(
exp(ρe−n(α−β)) − 1

))
(138)

≤ enρ(α−β) exp
(

en(α−β)
(
exp(ρe−n(α−β)) − 1

))
(139)

≤ enρ(α−β)eeρ−1 (140)

≤ γ enρ(α−β), (141)

where (136) follows because e−n(α−β) ≤ 1; where (137)
and (138) follow from (128); where (139) follows from (124);
where (140) follows from (129) with η = ρ and ξ = e−n(α−β);
and where (141) follows from (127).

We now prove (126). The case β < α is implied by (125),
and we only need to treat the case β ≥ α. We first show
that (126) holds when ρ is an arbitrary positive integer, which
we denote by k. For any such k,

( enα∑

i=1

Xi

)k

=
∑(

k

k1, . . . , kenα

) enα∏

i=1

Xki
i , (142)

where the sum on the right-hand side extends over all possible
choices of nonnegative integers k1, . . . , kenα that sum up to k.

Taking the expectation on both sides of (142) yields

E

[( enα∑

i=1

Xi

)k]
=

∑(
k

k1, . . . , kenα

) enα∏

i=1

E
[
Xki

i

]
, (143)

where we used the independence of the Xi ’s. Since the Xi ’s
are 0–1 valued, we have Xki

i = Xi if ki ≥ 1, and Xki
i = 1

if ki = 0. Since the Xi ’s have identical distributions, we thus
have

enα∏

i=1

E
[
Xki

i

] = E[X1]|{i:ki ≥1}|. (144)

Using the trivial upper bound

(
k

k1, . . . , kenα

)
≤ k!, (145)

and substituting (144) into (143), we obtain

E

[( enα∑

i=1

Xi

)k]
≤ k!

∑

k1+...+kenα =k

E[X1]|{i:ki ≥1}|. (146)

For any choice of nonnegative integers k1, . . . , kenα that sum
up to k, the number of indices i for which ki ≥ 1 must be
between 1 and k, so we may rewrite (146) as

E

[( enα∑

i=1

Xi

)k]
≤ k!

k∑

�=1

(
enα

�

)(
k − 1

� − 1

)
E[X1]�, (147)

where the first binomial coefficient accounts for the number of
ways we can choose exactly � of the enα integers k1, . . . , kenα

to be positive, and where the second binomial coefficient
accounts for the number of ways we can choose the values
of � positive integers that sum up to k. Upper-bounding

(k−1
�−1

)

by k! and upper-bounding
(enα

�

)
by en�α, (147) becomes

E

[( enα∑

i=1

Xi

)k]
≤ (k!)2

k∑

�=1

en�α E[X1]�

≤ (k!)2
k∑

�=1

en�(α−β)

≤ en(α−β)(k!)2k. (148)

This proves (126) for β ≥ α and all nonnegative integer values
of ρ. If β ≥ α but ρ is not an integer, then

E

[( enα∑

i=1

Xi

)ρ]
≤ E

[( enα∑

i=1

Xi

)�ρ�]

≤ en(α−β)(�ρ�!)2�ρ�, (149)

≤ γ en(α−β), (150)

where (149) follows from (148), and where (150) follows
from (127). This completes the proof of (126). �
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APPENDIX B
A PROOF OF THE DIRECT PART OF (6)

Here we prove the achievability part of (6), i.e., we prove
that for all ρ > 0,

Rcutoff(ρ) ≥ max
P

E0(ρ, P)

ρ
. (151)

Fix ρ > 0 and a PMF P on X . Generate a random
blocklength-n rate-R codebook X1, . . . , XenR by drawing each
component of each codeword independently according to P .
It suffices to show that the expectation of

1

enR

∑

1≤m≤enR

∑

y∈Yn

W n(y|Xm)|L(m, y)|ρ (152)

(with respect to the distribution of the codebook) tends to one
as n tends to infinity when R < E0(ρ, P)/ρ. This expectation
can be expressed as

∑

y∈Yn

∑

x1∈X n

W n(y|x1)Pn(x1) E

[(
1 +

enR∑

m=2

Bm(y, x1)

)ρ]
,

(153)

where we define the RVs

Bm(y, x) = 1
{
W n(y|Xm) ≥ W n(y|x)

}
. (154)

Note that the distribution of Bm(y, x) depends on x and y only
via their joint type. Moreover, if x ∈ TQ and y ∈ TV (x), then

W n(y|x) = e−n(D(V ||W |Q)+H(V |Q)). (155)

Thus, by introducing for every type Q, every conditional
type V , and every m ∈ {1, . . . , enR} the RV

B̃m(Q, V ) = 1
{
W n(yQV |Xm) ≥ e−n(D(V ||W |Q)+H(V |Q))

}
,

(156)

where yQV is an arbitrary sequence in Yn of type QV , we
can rewrite (153) as

∑

Q,V

(P ◦ W )n(TQ◦V ) E

[(
1 +

enR∑

m=2

B̃m(Q, V )

)ρ ]
, (157)

where the sum extends over all types Q and all conditional
types V , and where P ◦ W denotes the distribution on X ×Y
induced by P and W

(P ◦ W )(x, y) = P(x)W (y|x), x ∈ X , y ∈ Y. (158)

Next, we derive an upper-bound on (157). To this end, note
that for fixed Q and V the RVs

B̃1(Q, V ), . . . , B̃enR (Q, V ) (159)

are IID Bernoulli. We can upper-bound their probability of
success as follows.

Pr(B̃m(Q, V ) = 1)

= Pr
(
W n(yQV |Xm) ≥ e−n(D(V ||W |Q)+H(V |Q))

)

= Pr
(
W n(yQV |Xm)

1
1+ρ ≥ e− n

1+ρ (D(V ||W |Q)+H(V |Q)))

≤ e
n

1+ρ (D(V ||W |Q)+H(V |Q)) E
[
W n(yQV |Xm)

1
1+ρ

]
, (160)

where (160) follows from Markov’s inequality. As to the
expectation on the right-hand side of (160),

E
[
W n(yQV |Xm)

1
1+ρ

]

=
n∏

i=1

E
[
W (yQV ,i |Xm,i )

1
1+ρ

]
(161)

=
∏

y∈Y

(∑

x∈X
P(x)W (y|x)

1
1+ρ

)n(QV )(y)

= en
∑

y∈Y (QV )(y) log
∑

x∈X P(x)W (y|x)
1

1+ρ

= e−nK (QV ), (162)

where (161) follows from the independence of the components
of the codewords, and where we define for every PMF P̃ on Y

K (P̃) = −
∑

y∈Y
P̃(y) log

∑

x∈X
P(x)W (y|x)

1
1+ρ . (163)

Substituting (162) into (160),

Pr(B̃m(Q, V ) =1)≤ e−n
(

K (QV )− D(V ||W |Q)+H (V |Q)
1+ρ

)
. (164)

Having bounded the probability of success of B̃(Q, V ), we
next use Lemma 1.1 (Appendix A), specifically (125), to
conclude that the ρ-th moment in (157) is bounded by

1 + γ en(R−K (QV )+ D(V ||W |Q)+H (V |Q)
1+ρ ) (165)

if (Q, V ) ∈ G(R), where

G(R)

=
{
(Q, V ) : K (QV ) − D(V ||W |Q) + H (V |Q)

1 + ρ
≥ R

}
,

and otherwise is bounded by

γ enρ(R−K (QV )+ D(V ||W |Q)+H (V |Q)
1+ρ )

. (166)

The other term in (157) can be bounded as

(P ◦ W )n(TQ◦V ) ≤ e−nD(Q◦V ||P◦W )

= e−n(D(Q||P)+D(V ||W |Q)). (167)

Using (165), (166) and (167), we can bound the summand
in (157). We treat separately the cases (Q, V ) /∈ G(R) and
(Q, V ) ∈ G(R). In the former case, (166) and (167) give

(P ◦ W )n(TQ◦V ) E

[(
1 +

enR∑

m=2

B̃m(Q, V )

)ρ]

≤ γ enρ
(

R−K (QV )−ρ−1 D(Q||P)+ H (V |Q)−ρ−1 D(V ||W |Q)
1+ρ

)
,

(Q, V ) /∈ G(R). (168)

We upper-bound the right-hand side of (168) in terms of R,
n, ρ, and E0(ρ, P) by showing that

min
Q,V

{
K (QV ) + ρ−1 D(Q||P)

− H (V |Q) − ρ−1 D(V ||W |Q)

1 + ρ

}
= E0(ρ, P)

ρ
, (169)
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where the minimum is over all PMFs Q on X and all auxiliary
channels V (y|x), x ∈ X , y ∈ Y . To establish (169), define

α(y) =
(∑

x∈X
P(x)W (y|x)

1
1+ρ

)ρ

, (170)

and observe that

K (QV ) + ρ−1 D(Q||P) − H (V |Q) − ρ−1 D(V ||W |Q)

1 + ρ

= − 1

ρ

∑

y∈Y

∑

x∈X
Q(x)V (y|x) log

P(x)W (y|x)
1

1+ρ α(y)

Q(x)V (y|x)

≥ − 1

ρ
log

∑

y∈Y

∑

x∈X
P(x)W (y|x)

1
1+ρ α(y) (171)

= − 1

ρ
log

∑

y∈Y

(∑

x∈X
P(x)W (y|x)

1
1+ρ

)1+ρ

= E0(ρ, P)

ρ
, (172)

where (171) follows from Jensen’s Inequality. The proof
of (169) is completed by noting that the choice

Q(x)V (y|x) = P(x)W (y|x)
1

1+ρ α(y)
∑

x ′∈X ,y′∈Y P(x ′)W (y ′|x ′)
1

1+ρ α(y ′)

achieves equality in (171).
Combining (168) with (169) shows that

(P ◦ W )n(TQ◦V ) E

[(
1 +

enR∑

m=2

B̃m(Q, V )

)ρ]

≤ γ enρ
(

R− E0(ρ,P)
ρ

)
, (Q, V ) /∈ G(R), ρ > 0. (173)

We now turn to the case where (Q, V ) ∈ G(R). We treat
separately the subcases ρ ≥ 1 and 0 < ρ < 1, beginning with
the former. From (167) and the fact that relative entropies are
nonnegative, it follows that

(P ◦ W )n(TQ◦V ) ≤ e−nρ−1(D(Q||P)+D(V ||W |Q)), ρ ≥ 1.

(174)

Combining (174) with (165) and (169) gives

(P ◦ W )n(TQ◦V ) E

[(
1 +

enR∑

m=2

B̃m(Q, V )

)ρ]

≤ (P ◦ W )n(TQ◦V ) + γ en
(

R− E0(ρ,P)
ρ

)
,

(Q, V ) ∈ G(R), ρ ≥ 1. (175)

It remains to treat the case where (Q, V ) ∈ G(R) and
0 < ρ < 1. In this case,

R − K (QV ) + D(V ||W |Q) + H (V |Q)

1 + ρ

≤ ρ
(

R − K (QV ) + D(V ||W |Q) + H (V |Q)

1 + ρ

)
,

(Q, V ) ∈ G(R), 0 < ρ < 1. (176)

Using (176) to upper-bound the right-hand side of (165), we
obtain

E

[(
1 +

enR∑

m=2

B̃m(Q, V )

)ρ]

≤ 1 + γ enρ
(

R−K (QV )+ D(V ||W |Q)+H (V |Q)
1+ρ

)
,

(Q, V ) ∈ G(R), 0 < ρ < 1. (177)

Combining (177) with (167) and (169) yields

(P ◦ W )n(TQ◦V ) E

[(
1 +

enR∑

m=2

B̃m(Q, V )

)ρ]

≤ (P ◦ W )n(TQ◦V ) + γ enρ
(

R− E0(ρ,P)
ρ

)
,

(Q, V ) ∈ G(R), 0 < ρ < 1. (178)

Combining (175) with (173) and using the fact that the number
of types and conditional types is polynomial in n, we obtain

∑

Q,V

(P ◦ W )n(TQ◦V ) E

[(
1 +

enR∑

m=2

B̃m(Q, V )

)ρ]

≤ 1 + en
(

R− E0(ρ,P)
ρ +δn

)
+ enρ

(
R− E0(ρ,P)

ρ +δn

)
,

ρ ≥ 1. (179)

Similarly, combining (178) with (173), we obtain

∑

Q,V

(P ◦ W )n(TQ◦V ) E

[(
1 +

enR∑

m=2

B̃m(Q, V )

)ρ]

≤ 1 + enρ
(

R− E0(ρ,P)
ρ +δn

)
, 0 < ρ < 1. (180)

This completes the proof of (151) because the right-hand sides
of (179) and (180) tend to one as n tends to infinity provided
that R < E0(ρ, P)/ρ, and we may choose a P that maximizes
the right-hand side. �

APPENDIX C
A PROOF THAT (27) IS AT LEAST AS TIGHT AS (25)

As pointed out in [3], we may add the constraint V ′ � W
in the minimization in (27) without increasing the value of
the minimum. For any input PMF P and any two auxiliary
channels V , V ′ � W satisfying PV = PV ′,

−ρ−1 log
∑

y∈Y
(PW )(y)P(X (y))ρ

≤ −ρ−1 log
∑

y∈supp(PV ′)
(PW )(y)P(X (y))ρ (181)

= −ρ−1 log
∑

y∈supp(PV ′)
(PV ′)(y)

(PW )(y)P(X (y))ρ

(PV ′)(y)

(182)

≤ −ρ−1
∑

y∈supp(PV ′)
(PV ′)(y) log

(PW )(y)P(X (y))ρ

(PV ′)(y)

(183)

= ρ−1 D(PV ′||PW ) +
∑

y∈supp(PV ′)
(PV ′)(y) log

1

P(X (y))
,

(184)
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where (181) follows because the support of PV ′ is a subset of
the support of PW (because V ′ � W ); where (182) follows
by multiplying and dividing the summand by (PV ′)(y); and
where (183) follows from Jensen’s Inequality. By the Log-Sum
Inequality [9, Lemma 3.1]

D(PV ′||PW ) ≤ D(V ′||W |P). (185)

The second term on the right-hand side of (184) can be upper-
bounded as follows.

∑

y∈supp(PV ′)
(PV ′)(y) log

1

P(X (y))

=
∑

y∈supp(PV )

(PV )(y) log
1

P(X (y))
(186)

=
∑

y∈supp(PV )

(PV )(y) log
(PV )(y)

(PV )(y)P(X (y))

≤
∑

y∈supp(PV )

(PV )(y) log
(PV )(y)

(PV )(y)
∑

x :V (y|x)>0 P(x)

(187)

≤
∑

y∈supp(PV )

∑

x :V (y|x)>0

P(x)V (y|x) log
V (y|x)

(PV )(y)
(188)

= I (P, V ), (189)

where (186) follows because PV = PV ′; where (187) follows
because V � W ; and where (188) follows from the Log-Sum
Inequality. Combining (184) with (185) and (189) shows that
the right-hand side of (25) never exceeds the right-hand side
of (27). �

APPENDIX D
A PROPERTY OF GALLAGER’S E0 FUNCTION

Gallager [8] defined the function

E0(ρ, P) = − log
∑

y∈Y

(∑

x∈X
P(x)W (y|x)

1
1+ρ

)1+ρ

, (190)

for all ρ ≥ 0 and all PMFs P on X . Here we show that

lim
ρ→∞ max

P

E0(ρ, P)

ρ
= − log π0, (191)

where π0 is defined in (32). This identity is noted without
proof in [8]. To establish (191), we first show that for any P

lim
ρ→∞

E0(ρ, P)

ρ
= − log max

y∈Y
P(X (y)). (192)

We then use Lemma 5.1 (Appendix E) to justify the inter-
change of limit and maximization. The lemma applies because
E0(ρ, P)/ρ is nonincreasing and continuous in ρ > 0 and
continuous on the set of all PMFs on X (a compact subset
of R

|X |).
To prove (192) for a given P , we distinguish two cases:

Assume first that there exists y0 ∈ Y such that W (y0|x) > 0
for all x ∈ X with P(x) > 0. In this case, the right-hand side
of (192) is equal to zero because P(X (y0)) = 1. As to the left-
hand side of (192), note that replacing the sum over all y ∈ Y

on the right-hand side of (190) with the term corresponding
to y0 shows that

E0(ρ, P) ≤ −(1 + ρ) log
∑

x∈X
P(x)W (y0|x)

1
1+ρ . (193)

Using L’Hospital’s Rule,

lim
ρ→∞(1 + ρ) log

∑

x∈X
P(x)W (y0|x)

1
1+ρ

= lim
ξ↘0

log
∑

x∈X P(x)W (y0|x)ξ

ξ

=
∑

x∈X
P(x) log W (y0|x). (194)

Combining (194) and (193),

lim
ρ→∞ E0(ρ, P) ≤ −

∑

x∈X
P(x) log W (y0|x). (195)

Since the right-hand side of (195) is a finite number, and
E0(ρ, P) ≥ 0, it follows that

lim
ρ→∞

E0(ρ, P)

ρ
= 0. (196)

This establishes (192) for the first case. It remains to check
the case where for every y ∈ Y there is some xy ∈ X for
which P(xy) > 0 and W (y|xy) = 0. In this case, for every
y ∈ Y ,

(∑

x∈X
P(x)W (y|x)

1
1+ρ

)1+ρ

≤ (
1 − P(xy)

)1+ρ

→ 0, (ρ → ∞). (197)

Consequently, E0(ρ, P) → ∞ as ρ → ∞, so by L’Hospital’s
Rule

lim
ρ→∞

E0(ρ, P)

ρ
= lim

ρ→∞
∂ E0(ρ, P)

∂ρ
. (198)

Straightforward computations show that

∂ E0(ρ, P)

∂ρ
= −

∑

y∈Y

(∑
x∈X P(x)W (y|x)

1
1+ρ

)1+ρ

∑
y′∈Y

(∑
x ′∈X P(x ′)W (y ′|x ′)

1
1+ρ

)1+ρ

×
(
ε(ρ) + log

∑

x ′′∈X
P(x ′′)W (y|x ′′)

1
1+ρ

)
,

(199)

where ε(ρ) → 0 as ρ → ∞. For each y ∈ Y , the expression
(∑

x∈X
P(x)W (y|x)

1
1+ρ

)1+ρ

= e(1+ρ) log
∑

x∈X P(x)W (y|x)
1

1+ρ

(200)

is either zero for all ρ > 0 or decays exponentially with ρ.
Noting that

lim
ρ→∞

∑

x∈X
P(x)W (y|x)

1
1+ρ = P

(X (y)
)
, (201)

we see that the slowest decay in (200) occurs for those y ∈ Y
that maximize P(X (y)). This implies that the right-hand side
of (199) approaches the right-hand side of (192) as ρ tends
to infinity. �
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APPENDIX E
A MINIMAX LEMMA

Lemma 5.1: Let C be a compact subset of R
n, let

I = [α,∞) for some α ∈ R, and let f : I × C → R be
such that f (·, π) is nonincreasing and continuous for every
π ∈ C and f (ρ, ·) is continuous for every ρ ∈ I. Then

lim
ρ→∞ max

π∈C
f (ρ, π) = max

π∈C
lim

ρ→∞ f (ρ, π). (202)

Proof: We first show that the maximum on the right-hand
side of (202) is attained. Select a sequence π1, π2, . . . in C
such that

lim
n→∞ lim

ρ→∞ f (ρ, πn) = sup
π∈C

lim
ρ→∞ f (ρ, π). (203)

By compactness of C, we can find a convergent subsequence
πnk → π∞ ∈ C as k → ∞. By continuity and monotonicity
we have for every ρ0 ∈ I that

f (ρ0, π∞) = lim
k→∞ f (ρ0, πnk )

≥ lim
k→∞ lim

ρ→∞ f (ρ, πnk )

= sup
π∈C

lim
ρ→∞ f (ρ, π). (204)

Taking ρ0 → ∞ thus shows that π∞ attains the maximum on
the right-hand side of (202).

To prove that equality holds in (202), first note that the left-
hand side is clearly never smaller than the right-hand side, so
it remains to prove the reverse inequality. If the left-hand side
equals −∞, then there is nothing left to prove. Otherwise
select real numbers a and b such that

a < b < lim
ρ→∞ max

π∈C
f (ρ, π) (205)

and define the sets

A(π) = {ρ ∈ I : f (ρ, π) ≤ a}, (206a)

B(π) = {ρ ∈ I : f (ρ, π) ≤ b}. (206b)

Our choice of a and b implies that A(π) ⊆ B(π) and⋂
π∈C B(π) = ∅. For a fixed π ∈ C, the set B(π) is

either empty or, by monotonicity and continuity, an interval
of the form [λ,∞). If B(π0) = ∅ for some π0 ∈ C, then
f (ρ, π0) > b for every ρ ∈ I, so limρ→∞ f (ρ, π0) ≥ b,
and hence maxπ∈C limρ→∞ f (ρ, π) ≥ b > a. If B(π) �= ∅
for every π ∈ C, then, since

⋂
π∈C B(π) = ∅, we can

find a sequence π1, π2, . . . in C such that B(πn) = [λn,∞)
where λn → ∞ as n → ∞. By compactness of C, we
can then find a convergent subsequence πnk → π∞ ∈ C
as k → ∞. We claim that A(π∞) = ∅. Indeed, for if
ρ0 ∈ A(π∞), i.e., if f (ρ0, π∞) ≤ a, then by continuity
f (ρ0, πnk ) ≤ b for all sufficiently large k, i.e., ρ0 ∈ B(πnk )
for all sufficiently large k. This leads to a contradiction
because B(πnk ) = [λnk ,∞) and λnk → ∞ as k → ∞ so
λnk > ρ0 for sufficiently large k. Thus, A(π∞) = ∅ and
hence limρ→∞ f (ρ, π∞) ≥ a, so maxπ∈C limρ→∞ f (ρ, π) ≥
a. Letting a ↗ limρ→∞ maxπ∈C f (ρ, π) completes the
proof. �
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