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Maximum Rényi Entropy Rate
Christoph Bunte and Amos Lapidoth, Fellow, IEEE

Abstract— The supremum of the Rényi entropy rate over the
class of discrete-time stationary stochastic processes, whose mar-
ginals are supported by some given set and satisfy some given cost
constraint, is computed. Unlike the Shannon entropy, the Rényi
entropy of a random vector can exceed the sum of the Rényi
entropies of its components, and the supremum is, therefore,
typically not achieved by memoryless processes. It is nonetheless
related to Shannon’s entropy: when the Rényi parameter exceeds
one, the supremum is equal to the corresponding supremum
of Shannon’s entropy, and when it is smaller than one, the
supremum equals the logarithm of the volume of the support set.
A Burg-like supremum of the Rényi entropy rate over the class
of stochastic processes, whose autocovariance function begins
with some given values, is also solved. It is not achieved by
Gauss–Markov processes, but it is nonetheless related to Burg’s
supremum: the two are equal when the Rényi parameter exceeds
one, and the former is infinite otherwise.

Index Terms— Burg’s Theorem, entropy rate, maximization,
Rényi entropy, Rényi entropy rate, spectrum estimation.

I. INTRODUCTION

THE object of our study is the supremum of the Rényi
entropy rate over the class of all stationary stochastic

processes {Zk}k∈Z whose marginals Zk satisfy

Pr[Zk ∈ S] = 1, E[r(Zk)] ≤ �, k ∈ Z. (1)

Here S is the “support set,” the mapping r : S → R is the “cost
function,” and � ∈ R is the “maximal-allowed average cost.”
The sets R, Z, and N (some of which will appear only later)
denote the reals, the integers, and the positive integers. Our
interest is in two cases: the “discrete setting” where the support
set S is finite, and the “continuous setting” where S is a
Borel measurable subset of the reals; r(·) is Borel measurable;
and we restrict attention to stochastic processes whose finite-
dimensional distributions (FDDs) have densities with respect
to the corresponding Lebesgue measures.

In the discrete setting the supremum yields worst-case
results for the “guessing problem” [1]–[5], for the
task-encoding problem [6], and for Campbell’s measure of
typical code length [7]. In the continuous setting it yields
worst-case results on the quantization of densities [8].

We shall focus on the continuous setting, because the
results and proofs for this setting can be easily translated to
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the discrete setting: Replace integrals with sums; probability
density functions with probability mass functions, and interpret
the “volume” of a set as its cardinality.

If instead of Rényi rate we had maximized the Shannon
rate, we could have limited ourselves to memoryless processes,
because the Shannon entropy of a random vector is
upper-bounded by the sum of the Shannon entropies of its
components, and this upper bound is tight when the com-
ponents are independent.1 But this bound does not hold for
Rényi entropy: the Rényi entropy of a vector with depen-
dent components can exceed the sum of the Rényi entropies
of its components. Consequently, the supremum of the
Rényi rate subject to (1) is typically not achieved by
memoryless processes. This supremum and the structure of
the stochastic processes that approach it is the subject of this
paper.

We emphasize that our focus here is on the maximization of
Rényi rate and not entropy. The latter is studied in [10]–[13].
The Rényi entropy of some specific multivariate densities
are computed in [14]. To the best of our knowledge, the
maximization of Rényi rate has not been studied before. But
the Rényi rate has been computed for some specific stochastic
processes: It was computed for finite-state Markov chains by
Rached et al. [15] with extensions to countable state space
in [16]. It was computed for stationary Gaussian processes
by Golshani and Pasha in [17]. Extensions are explored
in [18].

Another class of stochastic processes that we shall con-
sider is related to Burg’s work on spectral estimation [19],
[9, Th. 12.6.1]. It comprises all one-sided stochastic processes
{Xi }i∈N that, for some given α0, . . . , αp ∈ R, satisfy

E[Xi Xi+k ] = αk ,
(

i ∈ N, k ∈ {0, . . . , p}
)
. (2)

While Burg studied the maximum over this class of the
Shannon rate, we will study the maximum of the Rényi rate.

The rest of the paper is organized as follows. Section II con-
tains the statements of our main results along with a discussion
and the required definitions. We discuss the constraints (1) on
the marginals and the Burg-like constraints (2) separately. The
proofs pertaining to the former are in Section IV and to the
latter in Section V. Section III derives and collects some of
the results we shall need to prove the main results.

II. MAIN RESULTS AND DISCUSSION

To describe our results we need some definitions. Those are
presented next, along with the basic bounds that form their
context.

1Except in the discrete setting, in this paper “Shannon entropy” refers to
differential Shannon entropy [9, Ch. 8].
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A. Definitions and Basic Bounds

The order-α Rényi entropy hα( f ) of a probability density
function (PDF) f is

hα( f ) = 1

1 − α
log

∫ ∞

−∞
f α(x) dx, (3)

where α—the “Rényi parameter”—can be any positive number
other than one. The integrand is nonnegative, so the integral
on the RHS of (3) always exists, possibly taking on the
value +∞, in which case we define hα( f ) as +∞ if
0 < α < 1 and as −∞ if α > 1. With this convention the
Rényi entropy always exists and

hα( f ) > −∞, 0 < α < 1, (4)

hα( f ) < +∞, α > 1. (5)

When a random variable (RV) X is of density fX we
sometimes write hα(X) instead of hα( fX ).

If the support of f is contained in S, then

hα( f ) ≤ log|S|,
(
α > 0, α �= 1

)
, (6)

where |A| denotes the Lebesgue measure of the set A,
and where we interpret log|S| as +∞ when |S| is
infinite.2 (Throughout this paper we define log ∞ = ∞ and
log 0 = −∞.)

The Rényi entropy is closely related to the Shannon entropy:

h( f ) = −
∫ ∞

−∞
f (x) log f (x) dx . (7)

(The integral on the RHS of (7) need not exist. If it does
not, then we say that h( f ) does not exist.) Depending on
whether α is smaller or larger than one, the Rényi entropy
can be larger or smaller than the Shannon entropy. Indeed,
if f is of Shannon entropy h( f ) (possibly +∞), then by
[20, Lemma 5.1 (iv)]:

hα( f ) ≤ h( f ), for α > 1; (8)

hα( f ) ≥ h( f ), for 0 < α < 1. (9)

Moreover, under some mild technical conditions
[20, Lemma 5.1 (ii)]:

lim
α→1

hα( f ) = h( f ). (10)

The order-α Rényi rate hα({Xk}) of a stochastic
process (SP) {Xk} is defined as

hα({Xk}) = lim
n→∞

1

n
hα

(
Xn

1

)
(11)

whenever the limit exists.3 Here X j
i denotes the

tuple (Xi , . . . , X j ).
Notice that if each Xk takes value in S, then Xn

1 takes value
in Sn , and it then follows from (6) that hα(Xn

1 ) ≤ log|S|n and
thus

hα({Xk}) ≤ log|S|. (12)

2In the discrete setting |A| denotes the cardinality of the set A.
3We say that the limit exists and is equal to +∞ if for every M > 0 there

exists some n0 such that for all n > n0 the Rényi entropy hα(X1, . . . , Xn)
exceeds nM, possibly by being +∞.

Another upper bound on hα({Xk}), one that is valid for α > 1,
can be obtained by noting that when α > 1 we can use (8) to
obtain

hα(Xn
1 ) ≤ h(Xn

1 ) (13)

≤
n∑

i=1

h(Xi ), (14)

and thus, by (13),

hα({Xk}) ≤ h({Xk}), α > 1, (15)

whenever both hα({Xk}) and the Shannon rate h({Xk}) exist.

B. Constrained Marginals

To describe our results on the maximum Rényi rate subject
to the constraint (1) we need one more definition. We define
h�(�) to be the supremum of h( fX ) over all densities fX

under which

Pr[X ∈ S] = 1 and E[r(X)] ≤ �. (16)

Here and throughout the supremum should be interpreted as
−∞ if (16) does not hold under any probability distribution
that is absolutely continuous with respect to the Lebesgue
measure. Thus, if no density satisfies (16), then h�(�) is −∞.
We shall assume that S and r(·) are such that for some �0 ∈ R

h�(�0) > −∞, (17a)

and

h�(�) < ∞ for every �0 ≤ � < ∞. (17b)

For example, if r(x) is x2 and S is the reals, then this
conditions holds whenever �0 is positive; h�(�) equals

1

2
log(2πe�), � > 0; (18)

and h�(�) is achieved by a variance-� centered Gaussian
f � ∼ N (0, �) [9, Th. 8.6.5].

1) The Case of α > 1: For α > 1 we note that (11), (14),
and the definition of h�(�) imply that for every SP {Zk}
satisfying (1)

hα({Zk}) ≤ h�(�), α > 1, (19)

and consequently,

sup hα({Zk}) ≤ h�(�), α > 1, (20)

where the supremum is over all SPs satisfying (1). Perhaps
surprisingly, this bound is tight:

Theorem 1 (Max Rényi Rate for α > 1): Suppose that
α > 1, and that � > �0, where �0 satisfies (17). Then for
every ε̃ > 0 there exists a stationary SP {Zk} satisfying (1)
whose Rényi rate exists and exceeds h�(�) − ε̃.

Proof: See Section IV. �
As the following heuristic argument demonstrates, one

has to walk a fine line in order to achieve the supremum
promised in Theorem 1. To see why, let us focus on the
case where h�(·) is strictly increasing and where there exist
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real constants λ0, λ1 ∈ R for which the function f �(x) =
exp

(
λ0 + λ1r(x)

)
I{x ∈ S} is a density achieving h�(�). For

any other density g supported on S and satisfying
∫

S
g(x) r(x) dx = � (21)

we then have (as in the proof of [9, Th. 12.1.1])

h(g) = h( f �) − D(g‖ f �) (22)

= h�(�) − D(g‖ f �), (23)

where D(g‖ f �) denotes relative entropy [9, Sec. 8.5].
Using this and (14) we thus obtain that if {Zk} is a stationary

SP and if fZ is the density of Z1 and
∫

S
fZ (x) r(x) dx = �, (24)

then

hα({Zk}) ≤ h�(�) − D( fZ ‖ f �), α > 1. (25)

Thus, for hα({Zk}) to be close to h�(�), the density of Z1
must be “close” (in relative-entropy) to f �.4 We can repeat
this argument for the joint density of Z1, Z2 to infer that
Z1 and Z2 must be “nearly independent” with each being of
density “nearly” f �. More generally, for every fixed m ∈ N

the joint density of Z1, . . . , Zm must be nearly of a product
form. But, of course choosing {Zk} IID will not work, because
this choice would lead to a Rényi rate equal to hα( fZ1), which
is typically smaller than h(Z1) (unless Z1 is uniform); see (8).

2) The Case of 0 < α < 1: For 0 < α < 1 we can use (12)
to obtain for the same supremum

sup hα({Zk}) ≤ log|S|, 0 < α < 1. (26)

This seemingly crude bound is tight:
Theorem 2 (Max Rényi Rate for 0 < α < 1): Suppose that

0 < α < 1 and that � > �0, where �0 satisfies (17).
• If |S| = ∞, then for every M ∈ R there exists a

stationary SP {Zk} satisfying (1) whose Rényi rate exists
and exceeds M.

• If |S| < ∞, then for every ε̃ > 0 there exists a stationary
SP {Zk} satisfying (1) whose Rényi rate exists and exceeds
log |S| − ε̃.

Proof: See Section IV. �
Remark 3: Theorems 1 and 2 can be generalized in a

straightforward fashion to account for multiple constraints:

E[ri (Zk)] ≤ �i , i = 1, . . . , m. (27)

The proofs require only slight modifications, but to ease the
presentation we focus on the case of a single constraint.

3) A Second-Moment Constraint: A special case of
Theorems 1 and 2 is when the cost is quadratic, i.e., r(x) = x2

and where there are no restrictions on the support, i.e., S = R.
In this case we can slightly strengthen the results of the above
theorems: When we consider the proofs of these theorems for

4We are ignoring here the fact that one might consider approaching the
supremum with (24) only being an inequality.

this case, we see that the proposed distributions are radially-
symmetric.5 We can thus establish that the constructed SP is
centered and uncorrelated:

Proposition 4 (A Second-Moment Constraint):

1) For every α > 1, every σ > 0, and every ε̃ > 0 there
exists a centered stationary SP {Yk} whose Rényi rate
exists and exceeds 1

2 log(2πeσ 2) − ε̃ and for which

E[Yk Yk′ ] = σ 2 I{k = k ′}. (28)

(Here I{statement} is one when the statement is true and
zero otherwise.)

2) For every 0 < α < 1, every σ > 0, and every M ∈ R

there exists a centered stationary SP {Yk} whose Rényi
rate exists and exceeds M and for which (28) holds.

This proposition will be the key to the proof of Theorem 5
ahead.

C. A Burg-Like Constraint

We next present our result for the constraint (2) on the
values of the autocovariance function at the lags 0, . . . , p.
Given α0, . . . , αp ∈ R, we consider the family of all one-sided
stochastic processes X1, X2, . . . satisfying (2). We assume that
the (p +1)× (p +1) matrix whose Row-	 Column-m element
is α|	−m| is positive definite.

Theorem 5: Let p be a nonnegative integer, and let the p+1
constants α0, . . . , αp ∈ R be such that the (p + 1) × (p + 1)
matrix whose Row-	 Column-m element is α|	−m| is positive
definite. The supremum of the order-α Rényi rate over all
one-sided stochastic processes satisfying (2) is +∞ for
0 < α < 1 and is equal to the Shannon rate of the p-th
order Gauss-Markov process for α > 1.

Proof: See Section V. �
Theorem 5 has bearing on the spectral estimation problem,

i.e., the problem of extrapolating the values of the autocovari-
ance sequence from its first p + 1 values. One approach is
to choose the extrapolated sequence to be the autocovariance
sequence of the stochastic process that—among all stochastic
processes that have an autocovariance sequence that starts with
these p + 1 values—maximizes the Shannon rate, namely the
p-th order Gauss-Markov process (Burg’s theorem).

A different approach might be to choose some α > 1 and
to replace the maximization of the Shannon rate with that
of the order-α Rényi rate. As we next argue, Theorem 5
shows that this would result in the same extrapolated sequence.
Indeed, inspecting the proof of the theorem we see that the
stochastic process {Xi } that we construct, while not a Gauss-
Markov process, has the same autocovariance sequence as the
p-th order Gauss-Markov process that satisfies the constraints.
Moreover, for α > 1 the supremum can only be achieved
by a stochastic process of this autocovariance sequence: for
any other autocovariance function the Rényi rate is upper
bounded by the Shannon rate (because α > 1), and the latter
is upper bounded by the Shannon rate of the Gaussian process,

5For the case at hand f � is a centered Gaussian, S is R, and r : x �→ x2,
so by (37) and (40) T ε

n ( f �) ∩ Gε
n( f �) is the intersection of two rings and is

thus also a ring. Consequently, by (75), fn is uniform over a ring and hence
radially symmetric.



1196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 3, MARCH 2016

which, unless the autocovariance sequence is that of the
p-th order Gauss-Markov process, is strictly smaller than the
supremum (Burg’s theorem).

As in the proofs of Theorems 1 and 2, the lion’s share of
the proof of Theorem 5 is dedicated to the construction of
stochastic processes that approach the promised suprema.
We construct these processes by filtering the stochastic
process {Yk} of Corollary 4 with carefully-chosen initial con-
ditions, which allow us to relate the Rényi rate of the filter’s
output to that of its input. A different approach might have
been to further generalize the constraints in (27) so as to
allow for constraints such as those of (2), which cannot be
expressed as constraints on the marginals. But this would have
complicated the weak-typicality arguments and would have
made the stationarization more difficult.

III. PRELIMINARIES

A. On the Max Shannon Entropy h�(Γ )

We collect here some of the results on h�(�) that will be
needed to prove Theorem 1. These hardly require proof in the
discrete setting.

Proposition 6: Let �0 satisfy (17). Then over the interval
[�0,∞) the function h�(·) is finite, nondecreasing, and con-
cave. It is continuous over (�0,∞), and

lim
�→∞ h�(�) = log|S|. (29)

Proof: Monotonicity is immediate from the definition
because increasing � enlarges the set of densities that
satisfy (16). Concavity follows from the concavity of Shannon
entropy, and continuity follows from concavity. It remains to
establish (29). To this end we first argue that for every �,

h�(�) ≤ log|S|. (30)

When |S| is infinite this is trivial, and when |S| is finite this
follows by noting that h�(�) cannot exceed the maximum of
the Shannon entropy in the absence of cost constraints, and
the latter is achieved by a uniform distribution on S and is
equal to log |S|. In view of (30), our claim (29) will follow
once we establish that

lim
�→∞

h�(�) ≥ log|S|, (31)

which is what we set out to prove next.
We first note that for every � ∈ R

h�(�) ≥ log|{x ∈ S : r(x) ≤ �}| (32)

because when the RHS is finite it can be achieved by a uniform
distribution on the set {x ∈ S : r(x) ≤ �}, a distribution under
which (16) clearly holds, and when it is infinite, it can be
approached by uniform distributions on ever-increasing com-
pact subsets of this set. We next note that, by the Monotone
Convergence Theorem (MCT),

lim
�→∞|{x ∈ S : r(x) ≤ �}| = |S|. (33)

Combining (32) and (33) establishes (31) and hence completes
the proof of (29). �

The following proposition demonstrates that h� can be
approached by bounded densities.

Proposition 7: Suppose that � ∈ (�0,∞), where �0
satisfies (17). Then for every δ > 0 there exists some bounded
density f � supported by S such that

∫
f �(x)r(x) dx < � + δ, (34a)

h( f �) > h�(�) − δ. (34b)
Proof: See the appendix. �

B. Weak Typicality

Given a density f on S of finite Shannon entropy

−∞ < h( f ) < ∞, (35)

a positive integer n, and some ε > 0, we follow [9, Sec. 8.2]
and denote by T ε

n ( f ) the set of ε-weakly-typical sequences of
length n with respect to f :

T ε
n ( f ) =

{
xn

1 ∈ Sn : 2−n(h( f )+ε) ≤
n∏

k=1

f (xk) ≤ 2−n(h( f )−ε)

}
.

(36)

For example, if f is a centered Gaussian and S is R, then
T ε

n ( f ) is a “ring”

T ε
n ( f ) = {

x ∈ R
n : a ≤ n−1‖x‖2 ≤ b

}
, f ∼ N

(
0, σ 2

)
,

(37)

where x stands for xn
1 , and where a and b are determined by

the variance of f and by ε.
By the AEP, if X1, . . . , Xn are drawn IID according to some

such f , then the probability of (X1, . . . , Xn) being in T ε
n ( f )

tends to 1 as n → ∞ (with ε held fixed) [9, Th. 8.2.2].
Given some measurable function r : S → R, some

density f that is supported on S and that satisfies
∫

S
f (x)|r(x)| dx < ∞, (38)

and given some n ∈ N and ε > 0, we define

Gε
n( f ) =

{
xn

1 ∈ Sn :
∣∣∣∣
1

n

n∑
k=1

r(xk) −
∫

S
f (x)r(x) dx

∣∣∣∣ < ε

}
.

(39)

For example, if r(x) is x2 and S is R, then Gε
n( f ) is the ring

Gε
n( f ) =

{
x ∈ R

n :
∣∣∣∣
1

n
‖x‖2 −

∫
f (x)x2 dx

∣∣∣∣ < ε

}
,

r : x �→ x2. (40)

By the Law of Large Numbers (LLN), if X1, . . . , Xn are
drawn IID according to some density f that satisfies the
above conditions, then the probability of (X1, . . . , Xn) being
in Gε

n( f ) tends to 1 as n → ∞ (with ε held fixed).
From the above observations on T ε

n ( f ) and Gε
n( f ) we

conclude that if X1, . . . , Xn are drawn IID according to
some density f that is supported by S and that satisfies
(35) and (38), then the probability of (X1, . . . , Xn) being in
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the intersection T ε
n ( f ) ∩ Gε

n( f ) tends to 1 as n → ∞. Thus,
for all sufficiently large n,

1 − ε ≤
∫

T ε
n ( f )∩Gε

n( f )

n∏
k=1

f (xk) dxn

≤ |T ε
n ( f ) ∩ Gε

n( f )|2−n(h( f )−ε),

where the second inequality holds by (36). We thus conclude
that if the support of f is contained in S, the expectation of
|r(X)| under f is finite, and h( f ) is defined and is finite, then

|T ε
n ( f ) ∩ Gε

n( f )| ≥ (1 − ε)2n(h( f )−ε), n large. (41)

Note that if f is a centered Gaussian, S is R, and r : x �→ x2,
then (37) and (40) imply that T ε

n ( f )∩Gε
n( f ) is the intersection

of two rings and is thus also a ring.

C. On the Rényi Entropy of Mixtures

To construct stationary processes from random vectors we
shall concatenate independent replicas of the vectors and then
introduce a random jitter to stationarize the result. To control
the behavior of the Rényi entropy under this jitter, we need
some results on the Rényi entropy of mixtures. Those are
presented here.

The following lemma provides a lower bound on the Rényi
entropy of a mixture of densities in terms of the Rényi entropy
of the individual densities.

Lemma 8: Let f1, . . . , f p be probability density functions
on R

n and let the nonnegative numbers q1, . . . , qp ≥ 0 sum
to one. Let f be the mixture density

f (x) =
p∑

	=1

q	 f	(x), x ∈ R
n.

Then

hα( f ) ≥ min
1≤	≤p

hα( f	).

Proof: For 0 < α < 1 this follows by the concavity of
Rényi entropy. Consider now α > 1:

log
∫

f α(x) dx = log
∫ ( p∑

	=1

q	 f	(x)

)α

dx

≤ log
∫ p∑

	=1

q	 f α
	 (x) dx

= log

( p∑
	=1

q	

∫
f α
	 (x) dx

)

≤ log max
1≤	≤p

∫
f α
	 (x) dx

= max
1≤	≤p

log
∫

f α
	 (x) dx,

from which the claim follows because 1/(1 − α) is negative.
Here the first inequality follows from the convexity of the
mapping ξ �→ ξα (for α > 1), and the second inequality
follows by upper-bounding the average by the maximum. �

We next turn to upper bounds.

Lemma 9: Consider the setup of Lemma 8.

1) If α > 1 then

hα( f ) ≤ min
1≤	≤p

{ α

1 − α
log q	 + hα( f	)

}
. (42)

2) If 0 < α < 1 then

hα( f ) ≤ 1

1 − α
log p + max

1≤	≤p
hα( f	). (43)

Proof: We begin with the case where α > 1. Since the
densities and weights are nonnegative,

( p∑
	=1

q	 f	(x)

)α

≥ (
q	′ f	′(x)

)α
, 	′ ∈ {1, . . . , p}. (44)

Integrating this inequality; taking logarithms, and dividing
by 1 − α (which is negative) we obtain

hα( f ) ≤ α

1 − α
log q	′ + hα( f	′), 	′ ∈ {1, . . . , p}. (45)

Since this holds for every 	′ ∈ {1, . . . , p}, we can minimize
over 	′ to obtain (42).

We next turn to the case where 0 < α < 1.

log
∫ ( p∑

	=1

q	 f	(x)
)α

dx ≤ log
∫

max
1≤	≤p

f α
	 (x) dx

≤ log
∫ p∑

	=1

f α
	 (x) dx

= log
p∑

	=1

∫
f α
	 (x) dx

≤ log

(
p max

1≤	≤p

∫
f α
	 (x)

)
dx

= log p + log max
1≤	≤p

∫
f α
	 (x) dx

= log p + max
1≤	≤p

log
∫

f α
	 (x) dx.

Dividing this inequality by 1 − α (positive) yields (43). �

D. Bounded Densities

Proposition 10: If a density f is bounded, and if α > 1,
then hα( f ) > −∞.

Proof: Let f be a density that is upper-bounded by the
constant M (which must therefore be positive), and suppose
that α > 1. In this case

f α(x) = f α−1(x) f (x) ≤ Mα−1 f (x),

because ξ �→ ξα−1 is monotonically increasing when α > 1.
Integrating over x we obtain∫

f α(x) dx ≤ Mα−1 < ∞.

Since α > 1, this implies that

1

1 − α
log

∫ ∞

−∞
f α(x) dx > −∞. �
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E. The Marginals of the Uniform Density on T ε
n ( f ) ∩ Gε

n( f )

Lemma 11: Let f � be a density on S having finite order-α
Rényi entropy

hα( f �) > −∞ (46)

for some

α > 1 (47)

and satisfying (35) and (38) (with f � substituted for f ). For
every n ∈ N, let (X1, . . . , Xn) be drawn uniformly from the
set T ε

n ( f �) ∩ Gε
n( f �), where ε is some fixed positive number.

Then for every sufficiently large n the following holds: for any
ρ ∈ {1, . . . , n} the ρ-tuple (X1, . . . , Xρ) has finite order-α
Rényi entropy

hα(X1, . . . , Xρ) > −∞,
(
ρ ∈ {1, . . . , n}, α > 1

)
. (48)

Proof: Denote the uniform density over T ε
n ( f �)∩Gε

n( f �)
by fn , and let qn be the product density

qn(x) =
n∏

k=1

f �(xk), x ∈ Sn . (49)

Henceforth let n be sufficiently large for (41) to hold.
Consequently,

fn(x) ≤ 1

1 − ε
2−n(h( f �)−ε), x ∈ Sn . (50)

Using this inequality and the definition in (36) of T ε
n ( f �), we

can upper-bound fn in terms of qn for tuples in T ε
n ( f �):

fn(x) ≤ 1

1 − ε
22nεqn(x), x ∈ T ε

n ( f �). (51)

For every ρ ∈ {1, . . . , n} we can obtain the density
fn(x1, . . . , xρ) of (X1, . . . , Xρ) by integrating fn(x1, . . . , xn)
over xρ+1, . . . , xn:

fn(x1, . . . , xρ)

=
∫

fn(x) dxρ+1 · · · dxn

=
∫

fn(x) I
{
x ∈ T ε

n ( f �) ∩ Gε
n( f �)

}
dxρ+1 · · · dxn

≤ 1

1 − ε
22nε

∫
qn(x) I

{
x ∈ T ε

n ( f �) ∩ Gε
n( f �)

}
dxρ+1 ···dxn

≤ 1

1 − ε
22nε

∫
qn(x) dxρ+1 · · · dxn

= 1

1 − ε
22nε f �(x1) · · · f �(xρ), x1, . . . , xρ ∈ S, (52)

where I{·} denotes the indicator function, and the first inequal-
ity follows from (51); the second by increasing the range of
integration; and the final equality follows from (49).

Using (52) we can now lower-bound hα(X1, . . . , Xρ) as
follows. If a density f is upper-bounded by Kg, where g is
some other density and K is some positive constant, and if
α > 1, then

hα( f ) = 1

1 − α
log

∫
f α(x) dx

≥ 1

1 − α
log

∫
Kαgα(x) dx

= α

1 − α
log K + hα(g), (53)

where the inequality holds because α > 1 so the pre-log is
negative. Using this and (52) we obtain

hα(X1, . . . , Xρ) ≥ α

1 − α
log

(
1

1 − ε
22nε

)
+ ρhα( f �) > −∞.

�

F. Stationarization and Rényi Entropy

The following proposition is useful for the construction of
a stationary process from a distribution on R

n .
Proposition 12: Let fn be some density on Sn having

order-α Rényi entropy hα( fn) and satisfying
n∑

k=1

E[r(Xk)] ≤ n�, (X1, . . . , Xn) ∼ fn . (54)

Then there exists a stationary SP {Zk} satisfying (1) for which
the following holds:

• If

hα(X1, . . . , Xρ), hα(Xn−ρ′+1, . . . , Xn) > −∞,

ρ, ρ′ ∈ {1, . . . , n − 1}, (55)

whenever (X1, . . . , Xn) ∼ fn and ρ, ρ′ ∈ {1, . . . , n − 1},
then

lim
m→∞

1

m
hα(Z1, . . . , Zm) ≥ 1

n
hα( fn). (56)

• If

hα(X1, . . . , Xρ), hα(Xn−ρ′+1, . . . , Xn) < +∞,

ρ, ρ′ ∈ {1, . . . , n − 1}, (57)

whenever (X1, . . . , Xn) ∼ fn and ρ, ρ′ ∈ {1, . . . , n − 1},
then

lim
m→∞

1

m
hα(Z1, . . . , Zm) ≤ 1

n
hα( fn). (58)

• And if both (55) and (57) hold, then

lim
m→∞

1

m
hα(Z1, . . . , Zm) = 1

n
hα( fn). (59)

Proof: Consider first the (nonstationary) SP {Yk} that we
construct by drawing

. . . , Y 0−n+1, Y n
1 , Y 2n

n+1, . . . ∼ IID fn .

To stationarize it, let T be drawn uniformly over {0, . . . , n−1}
independently of {Yk}, and define the stationary SP

Zk = Yk+T , k ∈ Z. (60)

It satisfies (1). Consider now any m larger than 2n, and express
Zm

1 in one of two different way depending on whether T is
zero or not. For T = 0

Zm
1 = Y n

1 , . . . , Y ν̃n
ν̃n−n+1︸ ︷︷ ︸

ν̃ = 
m/n� n-tuples

, Yν̃n+1, . . . , Ym︸ ︷︷ ︸
ρ̃ = m − n
m/n� terms

(61)

where

ν̃ =
⌊m

n

⌋
, (62a)

ρ̃ = m − n
⌊m

n

⌋
∈ {0, . . . , n − 1}. (62b)
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And for T ∈ {1, . . . , n − 1}
Zm

1 = YT +1, . . . , Yn︸ ︷︷ ︸
ρ′ = n − T terms

, Y 2n
n+1, . . . ,Y

(ν+1)n
νn+1︸ ︷︷ ︸

ν n-tuples

, Y(ν+1)n+1, . . . ,Ym+T︸ ︷︷ ︸
ρ terms

(63)

where

ρ′ = n − T ∈ {1, . . . , n − 1}, (64a)

ν =
⌊

m − n + T

n

⌋
, (64b)

ρ = m − n + T − n

⌊
m − n + T

n

⌋
∈ {0, . . . , n − 1}. (64c)

Denote the density of Zm
1 by fZ and its conditional density

given T = t by fZ|T =t .
To establish (56) we use Lemma 8, which implies that

hα

(
fZ

) ≥ min
0≤t≤n−1

hα

(
fZ|T =t

)
. (65)

To compute hα

(
fZ|T =0

)
we use (61) to obtain

hα

(
fZ|T =0

) =
⌊m

n

⌋
hα( fn) + hα(X1, . . . , X ρ̃ ) (66)

≥
⌊m

n

⌋
hα( fn) + 0∧ min

1≤ρ≤n−1

{
hα(X1, . . . , Xρ)

}
,

(67)

where the second term on the RHS of (66) should be inter-
preted as zero when ρ̃ is zero, and where a ∧ b denotes the
minimum of a and b.

And to compute hα

(
fZ|T =t

)
for t ∈ {1, . . . , n − 1} we

use (63) to obtain

hα

(
fZ|T =t

) = hα(Xn−ρ′+1, . . . , Xn) +
⌊

m − n + t

n

⌋
hα( fn)

+ hα(X1, . . . , Xρ), (68)

where ρ, ρ′ are obtained from (64) by substituting t for T ,
and the last term on the RHS should be interpreted as zero
when ρ is zero.

It thus follows from (65), (67), (68), and the above inter-
pretation that

hα

(
fZ

) ≥ 0 ∧ min
1≤ρ′≤n−1

{
hα(Xn−ρ′+1, . . . , Xn)

}

+ 0 ∧ min
1≤ρ≤n−1

{
hα(X1, . . . , Xρ)

}

+ min
1≤t≤n

{⌊
m − n + t

n

⌋
hα( fn)

}
. (69)

The first two terms do not depend on m and are greater than
−∞ whenever (55) holds. Dividing (69) by m and letting m
tend to infinity (with n held fixed), establishes (56).

To establish (58) we need an upper bound on hα

(
fZ

)
. Such

a bound can be obtained from Lemma 9. The exact form of
the bound depends on whether α exceeds 1 or not. But either
form leads to (58) upon dividing by m and letting it tend to
infinity.

To conclude the proof we note that (59) follows from
(58) and (56). �

IV. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1: Since h�(·) is continuous on the
ray (�0,∞), and since � > �0 by the theorem’s hypotheses,
h�(·) is continuous at �. Consequently, we can find some �′
for which

�′ < � (70a)

h�(�′) > h�(�) − ε̃. (70b)

These inequalities imply that we can find some δ > 0 small
enough so that

�′ + δ < � (71a)

h�(�′) − δ > h�(�) − ε̃. (71b)

By Proposition 7, there exists some bounded density f �

supported by S such that
∫

f �(x)r(x) dx < �′ + δ, (72a)

h( f �) > h�(�′) − δ. (72b)

Moreover, the boundedness of f �, the hypothesis that α > 1,
and Proposition 10 imply that

hα( f �) > −∞. (72c)

These inequalities combine with (71) to imply
∫

f �(x)r(x) dx < � (73a)

h( f �) > h�(�) − ε̃. (73b)

We can hence choose ε > 0 small enough so that
∫

f �(x)r(x) dx < � − ε (74a)

h( f �) > h�(�) − ε̃ + ε. (74b)

Let fn be the uniform density over T ε
n ( f �) ∩ Gε

n( f �)

fn ∼ Unif
(
T ε

n ( f �) ∩ Gε
n( f �)

)
. (75)

The cost of fn can be bounded by noting that its support is
contained in Gε

n( f �), and

xn
1 ∈ Gε

n( f �) �⇒ 1

n

n∑
k=1

r(xk) <

∫
f �(x)r(x) dx + ε

�⇒ 1

n

n∑
k=1

r(xk) < �,

where the second implication follows from (74a). Thus,
∫

Sn
fn(x)

n∑
i=1

r(xi ) dx ≤ n�. (76)

To lower-bound its Rényi entropy, we note that by the LLN
(in combination with (74a)) and the AEP (see Section III-B)

|T ε
n ( f �) ∩ Gε

n( f �)| ≥ (1 − ε)2n(h( f �)−ε), n large. (77)

Consequently,

hα( fn) ≥ n
(
h( f �) − ε

) + log(1 − ε) n large,
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or, upon dividing by n,

1

n
hα( fn) ≥ h( f �) − ε + 1

n
log(1 − ε) (78)

for all sufficiently large n. We now choose n large enough so
that not only will (78) hold but also its RHS satisfy

h( f �) − ε + 1

n
log(1 − ε) > h�(�) − ε̃.

(This is possible by (74b).) For this n we thus have

1

n
hα( fn) > h�(�) − ε̃. (79)

The inequalities (79) and (76) indicate that fn is a good
candidate for the application of Proposition 12. We hence
proceed to check its hypotheses.

By Lemma 11 and (72c), if X1, . . . , Xn ∼ fn then

hα(X1, . . . , Xρ) > −∞, ρ ∈ {1, . . . , n − 1}, (80)

and, since fn is permutation invariant, we also infer

hα(Xn−ρ′+1, . . . , Xn) > −∞, ρ′ ∈ {1, . . . , n − 1} (81)

so (55) holds. And, since α > 1, it follows from (5) that (57)
also holds. We can thus apply Proposition 12 to conclude
the proof. �

Proof of Theorem 2: We first prove the theorem when
|S| = ∞. We distinguish between two cases. The first case,
which is the case with which we begin, is when there exists
some n ∈ N and a density f �

n on X1, . . . , Xn such that

Pr[Xi ∈ S] = 1, E[r(Xi )] ≤ �, i ∈ {1, . . . , n} (82)

and

hα(X1, . . . , Xn) = +∞. (83)

To apply Proposition 12 to this density, we note that, since
0 < α < 1, Inequality (4) implies (55), and the proposi-
tion thus guarantees the existence of a stationary SP {Zk}
satisfying (1) and (56) so

lim
m→∞

1

m
hα(Z1, . . . , Zm) = +∞. (84)

This concludes the proof for the case at hand.
We next turn to the second case where |S| is still infinite,

but any tuple whose components satisfy the constraints has
Rényi entropy smaller than ∞:

(
Pr[Xi ∈ S] = 1, E[r(Xi )] ≤ �, i ∈ {ν1, . . . , ν2}

)

�⇒
(

hα(Xν1, . . . , Xν2) < ∞
)

. (85)

Since |S| is infinite, it follows from Proposition 6 that
h�(�) → ∞ as � → ∞. Consequently, there exists some
�1 such that

h�(�1) > M. (86)

Since h� is monotonic, there is no loss in generality in
assuming, as we shall, that

�1 > �. (87)

Let ε ∈ (0, 1) be small enough so that

h�(�1) > M + 3ε (88)

�0 + ε < � < �1 − ε. (89)

Let the densities f (0) and f (1) be within ε of achieving h�(�0)
and h�(�1) in the sense that their support is contained in S
and (∫

S
f (	)(x)r(x) dx ≤ �	, h

(
f (	)

)
> h�(�	) − ε

)
,

	 ∈ {0, 1}. (90)

For every n ∈ N, define

S	 = T ε
n

(
f (	)

) ∩ Gε
n( f (	)), 	 ∈ {0, 1}. (91)

It follows from the LLN and AEP that, for all sufficiently
large n,

|S	| ≥ (1 − ε)2n(h( f (	))−ε), 	 ∈ {0, 1}. (92)

Assume now that n is large enough for this to hold. Let δ > 0
be small enough so that

(1 − δ) (�0 + ε) + δ (�1 + ε) ≤ �. (93)

(Such a δ can be found in view of (89).)
Consider now the mixture density

fn(xn
1 ) = (1 − δ)

1

|S0| I{xn
1 ∈ S0} + δ

1

|S1| I{xn
1 ∈ S1}. (94)

Let Xn
1 be of density fn . Using (93) and an argument similar

to the one leading to (76) we obtain

n∑
k=1

E[r(Xk)] ≤ n�. (95)

In fact, the permutation invariance of fn implies the stronger
statement

E[r(Xk)] ≤ �, k = 1, . . . , n. (96)

We next lower-bound hα(Xn
1 ). To this end, we first argue

that the sets S0 and S1 are disjoint. To see this, note that by
the definition of the sets Gε

n( f (0)), Gε
n( f (1)) and by (90)

xn
1 ∈ Gε

n( f (0)) �⇒ 1

n

n∑
k=1

r(xk) <

∫
f (0)(x)r(x) dx + ε

�⇒ 1

n

n∑
k=1

r(xk) < �0 + ε, (97)

and

xn
1 ∈ Gε

n( f (1)) �⇒ 1

n

n∑
k=1

r(xk) >

∫
f (1)(x)r(x) dx − ε

�⇒ 1

n

n∑
k=1

r(xk) > �1 − ε. (98)

From (89), (97), and (98) we now conclude that Gε
n( f (0)) and

Gε
n( f (1)) are disjoint and hence also S0 and S1.
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Having established that S0 and S1 are disjoint, we can now
compute hα( fn) directly to obtain:

hα(Xn
1 )

n
= 1

n(1 − α)
log

(
(1 − δ)α|S0|1−α + δα|S1|1−α

)

≥ 1

n(1 − α)
log

(
δα|S1|1−α

)
. (99)

From this, (92), (90), and (88) it now follows that we can find
some sufficiently large n for which

hα(Xn
1 )

n
> M. (100)

To apply Proposition 12 we note that (96) and (85) imply
that (57) holds. And the fact that α ∈ (0, 1) implies by (4)
that (55) holds. Hence, by the proposition, there exists a
stationary SP satisfying the constraints and whose Rényi rate
is n−1hα(Xn

1 ) and thus exceeds M. This concludes the proof
when |S| = ∞.

The proof when |S| < ∞ is very similar. In fact, it is
a bit simpler because |S| < ∞ implies (85). We begin the
proof by noting that, since |S| < ∞, Proposition 6 implies
that h�(�) → log|S| as � → ∞. Consequently, there exists
some �1 such that

h�(�1) > log|S| − ε̃. (101)

Replacing M with log|S| − ε̃ in the derivation that leads
from (86) to (100), we obtain a density fn for which

hα(Xn
1 )

n
> log|S| − ε̃. (102)

The result then follows from Proposition 12 by noting that
the LHS of (57) is upper bounded by n log|S| and by noting
that (55) holds by (4) because 0 < α < 1. �

V. PROOF OF THEOREM 5

Proof of Theorem 5: Recall the assumption that the (p +
1)×(p+1) matrix whose Row-	 Column-m element is α|	−m|
is positive definite. This implies [21] that there exist constants
a1, . . . , ap, σ

2 and a p×p positive definite matrix Kp such that
the following holds6: if the random p-vector (W1−p, . . . , W0)
is of second-moment matrix Kp (not necessarily centered) and
if {Zi}∞i=1 are independent of (W1−p, . . . , W0) with

E[Zi ] = 0, i ∈ N, (103a)

E[Zi Z j ] = σ 2 I{i = j}, i, j ∈ N, (103b)

then the stochastic process defined inductively via

Xi =
p∑

k=1

ai Xi−k + Zi , i ∈ N (104)

with the initialization

(X1−p, . . . , X0) = (W1−p, . . . , W0) (105)

satisfies the constraints (2).

6The Row-	 Column-m element of the matrix Kp is α|	−m|. This matrix is
thus the result of deleting the last column and last row of the (p+1)×(p+1)
matrix that we assumed was positive definite.

(By Burg’s maximum entropy theorem [9, Th. 12.6.1], of all
stochastic processes satisfying (2) the one of highest Shannon
rate is the p-th order Gauss-Markov process. It is obtained
when (W1−p, . . . , W0) is a centered Gaussian and {Zi}
are IID ∼ N

(
0, σ 2

)
. Its Shannon entropy rate is

(1/2) log(2πeσ 2).)
We first consider the case where α > 1. Let a1, . . . , ap,

σ 2 and Kp be as above, and let ε > 0 be arbitrarily small.
By Proposition 4 there exists a SP {Zi } such that (103a) holds
and such that

lim
n→∞

1

n
hα(Z1, . . . , Zn) ≥ 1

2
log(2πeσ 2) − ε. (106)

The matrix Kp is positive definite, so by the spectral repre-
sentation theorem we can find vectors w1, . . . , wp ∈ R

p and
constants q1, . . . , qp > 0 with q1 + · · · + qp = 1 such that

Kp =
p∑

	=1

q	w	wT
	. (107)

(The vectors are eigenvectors of Kp , and the constants
q1, . . . , qp are the scaled eigenvalues of Kp .) Draw the random
vector W independently of {Zi} with

Pr[W = w	] = q	, 	 = 1, . . . , p

so that, by (107),

E[WWT] = Kp. (108)

Construct now the stochastic process {Xi } using (104) initial-
ized with (X1−p, . . . , X0)

T being set to W.
By (108), the resulting SP satisfies (2). We next study its

Rényi rate. To that end, we study the Rényi entropy of the
vector Xn

1 for n ∈ N. Let fX denote its density, and let fX|w	

denote its conditional density given W = w	, so

fX(x) =
p∑

	=1

q	 fX|w	(x), x ∈ R
n.

Consequently, by Lemma 8,

hα( fX) ≥ min
1≤	≤p

hα( fX|w	 ), (109)

and by Lemma 9

hα( fX) ≤ min
1≤	≤p

{ α

1 − α
log q	 + hα( fX|w	)

}
. (110)

We next study hα( fX|w	 ) for any given 	 ∈ {1, . . . , p}.
Recalling that W and {Zi } are independent, we conclude that,
conditional on W = w	, the random variables X1, . . . , Xn are
generated inductively via (104) with the initialization

(X1−p, . . . , X0)
T = w	.

Conditionally on W = w	, the random variables X1, . . . , Xn

are thus an affine transformation of Z1, . . . , Zn . The trans-
formation is of unit Jacobian (because the partial-derivatives
matrix has 1’s on the diagonal and 0’s on the upper triangle),
and thus

hα( fX|w	 ) = hα(Z1, . . . , Zn), 	 ∈ {1, . . . , p}. (111)
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From this, (109), and (110) it follows that

hα(Zn
1 ) ≤ hα( fX) ≤ min

1≤	≤p

{ α

1 − α
log q	

}
+ hα(Zn

1 ).

Dividing by n and using (106) establishes the result.
We next turn to the case 0 < α < 1. For every M > 0

arbitrarily large, we use Proposition 4 to construct {Zi} as
above but with

lim
n→∞

1

n
hα(Z1, . . . , Zn) ≥ M.

The proof continues as for the case where α exceeds one. �

APPENDIX

In this appendix we present two lemmas, which we then use
to prove Proposition 7 on approaching h�(�) using bounded
densities.

Lemma 13: Let f be a density supported by S for which
h( f ) is defined; ∫

f (x)|r(x)| dx < ∞; (112)

and for which ∫
f (x)r(x) dx ≤ � (113)

for some � ∈ R. Then for every δ > 0 there exists a density f̃
that is bounded, supported by S, and that satisfies∫

f̃ (x)r(x) dx ≤ � + δ (114)

and

h( f̃ ) ≥ h( f ) − δ. (115)

Proof: Let 0 < ε < 1 be fixed (small), with its choice
specified later. It follows from (112) and the MCT that there
exists some M1 sufficiently large so that∫ (

f (x) − (
f (x) ∧ M1

))|r(x)| dx < ε,

where we recall that a ∧ b stands for min{a, b}. Since the
density f integrates to 1, we can find some M2 sufficiently
large so that ∫ (

f (x) ∧ M2
)

dx > 1 − ε.

Define now

M = max{1, M1, M2}. (116)

For this M we have:∫ (
f (x) ∧ M

)
dx > 1 − ε, (117a)

∫ (
f (x) − (

f (x) ∧ M
))|r(x)| dx < ε, (117b)

(
f (x) ≥ 1

)
�⇒

(
f (x) ∧ M ≥ 1

)
. (117c)

Consider now the bounded density

f̃ (x) = 1

β

(
f (x) ∧ M

)
, (118a)

where

β =
∫ (

f (x̃) ∧ M
)

dx̃ . (118b)

Note that because f (x)∧M is upper-bounded by f (x), which
integrates to one, and because of (117a)

1 − ε ≤ β ≤ 1, (119)

so

(
f (x) ∧ M

) ≤ f̃ (x) ≤ 1

1 − ε

(
f (x) ∧ M

)
. (120)

Moreover, f̃ is supported by S.
Given δ > 0 we next show that by choosing ε sufficiently

small we can guarantee that both (114) and (115) hold.
We begin with the former. Starting with (118a) we have

∫
f̃ (x)r(x) dx

= 1

β

∫ (
f (x) ∧ M

)
r(x) dx

= 1

β

∫ (
f (x) − (

f (x) − f (x) ∧ M
))

r(x) dx

= 1

β

∫
f (x)r(x) dx

+ 1

β

∫ (
f (x) − (

f (x) ∧ M
))(−r(x)

)
dx

≤ 1

β
� + 1

β

∫ (
f (x) − (

f (x) ∧ M
))|r(x)| dx

≤ 1

β
� + 1

β
ε

≤ � + ε

1 − ε
|�| + ε

1 − ε
, (121)

where the first inequality follows from (113); the second
from (117b); and the last from (119).

We next study h( f̃ ). Starting with the definition of f̃ ,

h( f̃ ) =
∫

1

β

(
f (x) ∧ M

)
log

β

f (x) ∧ M
dx

= log β + 1

β

∫ (
f (x) ∧ M

)
log

1

f (x) ∧ M
dx

= log β + 1

β

∫

x : f (x)≤1

(
f (x) ∧ M

)
log

1

f (x) ∧ M
dx

+ 1

β

∫

x : f (x)>1

(
f (x) ∧ M

)
log

1

f (x) ∧ M
dx . (122)

By (116), f (x) ∧ M = f (x) whenever f (x) ≤ 1, so
∫

x : f (x)≤1

(
f (x) ∧ M

)
log

1

f (x) ∧ M
dx

=
∫

x : f (x)≤1
f (x) log

1

f (x)
dx . (123)

Since ξ log ξ−1 is decreasing for ξ > 1, and since f (x) > 1
implies f (x) ∧ M > 1 (by (117c)),

(
f (x) ∧ M

)
log

1

f (x) ∧ M
≥ f (x) log

1

f (x)
,

(
f (x) > 1

)
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and hence∫

x : f (x)>1

(
f (x) ∧ M

)
log

1

f (x) ∧ M
dx

≥
∫

x : f (x)>1
f (x) log

1

f (x)
dx . (124)

Summing (123) and (124) we obtain
∫ (

f (x) ∧ M
)

log
1

f (x) ∧ M
dx ≥ h( f ). (125)

Using this, (122), and (119) we conclude that

h( f̃ ) = h( f ), whenever h( f ) = ∞
and

h( f̃ ) ≥ log(1 − ε) + h( f ) − ε

1 − ε
|h( f )|,

whenever |h( f )| < ∞. (126)

And obviously h( f̃ ) ≥ h( f ) whenever h( f ) = −∞.
The result now follows by choosing ε small enough to

guarantee that the RHS of (121) does not exceed �+δ and—if
h( f ) is finite—that the RHS of (126) exceeds h( f ) − δ. �

The following lemma addresses the case where (112) does
not hold.

Lemma 14: Let the density f supported by S be such that
∫

f (x)r(x) dx = −∞ (127)

and h( f ) is defined and exceeds −∞
h( f ) > −∞. (128)

Then there exists a sequence of densities { f̃k} supported
by S for which

∫
f̃k(x)|r(x)| dx < ∞,

lim
k→∞ h( f̃k) = h( f ),

and

lim
k→∞

∫
f̃k(x)r(x) dx = −∞.

Proof: Define r+ � max{r, 0} and r− � max{−r, 0}, so
r = r+ − r− with r+(x), r−(x) ≥ 0. By (127),

∫
f (x)r−(x) dx = ∞, (129a)

∫
f (x)r+(x) dx < ∞. (129b)

Define for every k ∈ N

Dk �
{
x : r−(x) ≤ k

}
. (130)

By the MCT

lim
k→∞

∫

Dk

f (x)r+(x) dx =
∫

f (x)r+(x) dx < ∞ (131a)

and

lim
k→∞

∫
f (x)r−(x) I{x ∈ Dk} dx = ∞. (131b)

Consequently,

lim
k→∞

∫

Dk

f (x)r(x) dx = −∞. (132)

The lemma’s hypotheses guarantee that h( f ) is defined and
exceeds −∞. Consequently,

h( f ) = h+( f ) − h−( f ),

with

h−( f ) < ∞, h+( f ) ≤ ∞, (133)

where,

h+( f ) �
∫

f (x) log
1

f (x)
I{ f (x) ≤ 1} dx,

h−( f ) �
∫

f (x) log f (x) I{ f (x) > 1} dx .

By the MCT
∫

Dk

f (x) log
1

f (x)
I{ f (x) ≤ 1} dx ↑ h+( f )

and ∫

Dk

f (x) log f (x) I{ f (x) > 1} dx ↑ h−( f )

so, upon subtracting (and recalling h−( f ) < ∞)

lim
k→∞

∫

Dk

f (x) log
1

f (x)
dx = h( f ). (134)

Define

βk �
∫

Dk

f (x) dx .

Note that since f is a density,

βk ≤ 1

and (by the MCT)

βk ↑ 1. (135)

Consequently,

0 < βk ≤ 1, k large. (136)

For every such sufficiently large k, define the density

f̃k(x) � β−1
k f (x) I{x ∈ Dk}.

It is supported by S, and its entropy h( f̃k) can be expressed as

h( f̃k) =
∫

f̃k(x) log
1

f̃k(x)
dx

=
∫

Dk

f̃k(x) log
1

f̃k(x)
dx

=
∫

Dk

1

βk
f (x) log

βk

f (x)
dx

= log βk + 1

βk

∫

Dk

f (x) log
1

f (x)
dx .

From this, (134), and (135) we obtain

lim
k→∞ h( f̃k) = h( f ). (137)
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And as to the expectation of r(x) under f̃k :
∫

f̃k(x)r(x) dx

= 1

βk

∫

Dk

f (x)r(x) dx

= 1

βk

∫

Dk

f (x)r+(x) dx − 1

βk

∫

Dk

f (x)r−(x) dx .

The first term on the RHS is finite by (136) and (129b).
Moreover, its limsup as k → ∞ is finite by (135) and (131a).
The second term tends to −∞ by (135) and (132). Hence,

lim
k→∞

∫
f̃k(x)r(x) dx = −∞. (138)

Moreover,∫
f̃k(x)|r(x)| dx

= 1

βk

∫

Dk

f (x)r+(x) dx + 1

βk

∫

Dk

f (x)r−(x) dx

≤ 1

βk

∫
f (x)r+(x) dx + k

< ∞, (139)

where the first inequality follows from the nonnegativity of r+
and from the definition of the set Dk (130), and the second
inequality follows from (129b) and (136).

The lemma now follows from (139), (137), and (138). �
Proof of Proposition 7: Since � exceeds �0, it follows

from (17) that

−∞ < h�(�) < ∞. (140)

Let the density f nearly achieve h�(�) in the sense that it is
supported by S and that

∫
f (x) r(x) dx ≤ �, and h( f ) > h�(�) − δ

2
. (141)

By (140), (141), and the definition of h�(�),

−∞ < h( f ) < ∞. (142)

If
∫

f (x)|r(x)| dx is finite, then the result follows directly
from Lemma 13. It remains to prove the result when this
integral is infinite. In this case

∫
f (x)r(x) dx = −∞ by (141)

(because � < ∞). Using this, the finiteness of h( f ) (142), and
Lemma 14, we infer the existence of a density f̃ that supported
by S and for which

∫
f̃ (x)|r(x)| dx < ∞, (143a)

h( f̃ ) > h( f ) − δ

2
, (143b)

∫
f̃ (x)r(x) dx < �. (143c)

Applying Lemma 13 to the density f̃ , we conclude that there
exists a bounded density f � that is supported by S and that
satisfies

h( f �) > h( f̃ ) − δ

2
and

∫
f �(x)r(x) dx ≤ � + δ (144)

and hence, in view of (143) and (141),

h( f �) > h�(�) − δ and
∫

f �(x)r(x) dx ≤ � + δ. (145)

The existence of f � concludes the proof of the proposition for
the case where

∫
f (x)|r(x)| dx is infinite. �
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