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ABSTRACT
The paper derives an exact discrete-time state space realiza-
tion of the popular gammatone filter. No such realization
appears to be available in the literature. The proposed real-
ization is computationally attractive: a gammatone filter with
exponent N requires less than 6N multiplications and addi-
tions per sample. The integer coefficients of the realization
can be computed by a simple recursion. The proposed real-
ization also yields a closed-form expression for the frequency
response. The proposed primary realization is not quite in a
standard form, but it is easily transformed into another real-
ization whose state transition matrix is in Jordan canonical
form.

Index Terms— gammatone filter, auditory filter, discrete-
time IIR filter, state space representation

1. INTRODUCTION

Filter banks using gammatone filters have long been popular
in applications including mammalian cochlea modeling [1–
4], pitch extraction [5], sound source localization [6], speech
and audio coding [7–9], speech recognition and non-speech
audio classification [10, 11], speech enhancement [12], and
unsupervised signal separation [13].

Gammatone filters are traditionally defined as continuous-
time bandpass filters with a causal impulse response of the
form

g(t) = atN−1e−λt cos (2πft+ φ) (1)

for t ≥ 0 (cf. Fig. 1), which may be viewed as the product
of the Gamma distribution from statistics (tN−1e−λt) and a
cosine tone (up to a scale factor). The main parameters of
such a filter are the center frequency f , the bandwidth para-
meter λ, and the exponentN (in the literature called “order”).
The phase φ (which is often set to zero) and the scale factor
a are of secondary importance. The exponent N is often set
to 4 since values in the range 3− 5 yield a good fit to human
auditory filtering [14].

A gammatone filter bank consists of multiple gammatone
filters with different frequency and bandwidth parameters.
Typically, the frequencies are linearly spaced on the equiva-
lent rectangular bandwidth (ERB) scale [5, 15].

t [arbitrary units]

g
(t
)

Fig. 1: Impulse response of a gammatone filter with N = 4.

For digital signal processing, a discrete-time version
of the gammatone filter is needed. Clearly, finite-impulse-
response (FIR) filters (e.g., as in [16]) are not very suitable:
for a good approximation, the computational load per sample
is high and grows linearly with the sampling rate. Therefore,
a number of approximate infinite-impulse-response (IIR)
realizations of the gammatone filter have been developed.
In [5, 17, 18] approximate IIR realizations are obtained by
expressing the transfer function as a cascade of lower order
filters (with some simplifications in the case of [5, 17]) be-
fore applying a suitable transform (e.g., the impulse invariant
transform) to discrete time. Another approach begins by
sampling a complex version of (1), which is then approxi-
mately realized [19,20]. However, somewhat surprisingly, no
exact discrete-time realization of the gammatone filter seems
to be available in the literature.

In this paper, we derive an exact realization of a causal
discrete-time impulse response of the form

g[k] = g(kT ) (2)
= aTN−1kN−1e−λTk cos (2πfTk + φ) (3)

for k ≥ 0, where T > 0 is the sampling period. The proposed
realization is based on a complex state space model of di-
mension N . The resulting state space filter requires less than
6N multiplications and additions per sample, independently
of the other filter parameters and of the sampling period T .

The mathematical facts underlying this paper are basically
well known, but the apparent absence from the literature of an
exact IIR realization of the gammatone filter indicates that the
explicit derivations and results presented here may be useful.

The paper is structured as follows. The basic IIR realiza-
tion is derived in Section 2. Section 3 addresses the transfer
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function and the frequency response. Some variations of the
basic IIR realization are outlined in Section 4, and Section 5
concludes the paper.

2. A FIRST REALIZATION

2.1. On State Space Realizations

We will use complex state space models with real input u[k]
and real output y[k] of the form

x[k] = Ax[k − 1] + bu[k] (4)
y[k] = Re

(
cTx[k]

)
(5)

with x[k] ∈ CN , A ∈ CN×N , and b, c ∈ CN . Clearly, the
impulse response of such a model is

h[k] =

{
0, if k < 0

Re
(
cTAkb

)
, if k ≥ 0.

(6)

The same impulse response (6) can also be realized in the
more standard form

ξ[k + 1] = Aξ[k] + b̃u[k] (7)

y[k] = Re
(
c̃Tξ[k] + d̃u[k]

)
(8)

with d̃ = cTb and either with b̃ = Ab and c̃ = c or with b̃ = b
and c̃T = cTA. However, the derivation below is more easily
expressed in terms of (4) and (5).

2.2. The Realization

We begin by noting that the impulse response (3) of the
gammatone filter can be written as

g[k] = Re
(
αkN−1γk

)
(9)

(for k ≥ 0) with complex parameters

α = aTN−1eiφ (10)

and
γ = e−λT ei2πfT . (11)

In (9), for N = 1 and k = 0, we define kN−1 = 1, in agree-
ment with (1).

For the following theorem, we define β(n)
` (for integers n

and `) as

β
(n)
1 =

{
1, if n = 0
0, if n > 0, (12)

β
(n)
` =

n−1∑
ν=0

(
n

ν

)
β

(ν)
`−1 (13)

for 1 < ` ≤ n+ 1, and β(n)
` = 0 otherwise.

` 1 2 3 4 5

β
(0)
` 1 0 0 0 0

β
(1)
` 0 1 0 0 0

β
(2)
` 0 1 2 0 0

β
(3)
` 0 1 6 6 0

β
(4)
` 0 1 14 36 24

Table 1: Coefficients β(n)
` according to (12) and (13).

Theorem 1 The impulse response (6) of the state space
model (4), (5) with

A = γ



1 1 0 . . . 0

0 1 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1 1

0 . . . . . . 0 1


, (14)

cT = [1, 0, . . . , 0], and b = [b1, . . . , bN ]
T with

b` = αβ
(N−1)
` (15)

is (9).

A block diagram of the state space model of Theorem 1
is given in Fig. 2. The coefficients β(N−1)

` up to N = 5 are
listed in Table 1. Note that these integer coefficients do not
depend on any parameters of the gammatone filter except the
exponent N .

2.3. Proof of Theorem 1

Without loss of generality, we assume α = 1 and γ 6= 0.

Lemma Let the input to the system in Fig. 2 be u[k] = δ[k]
(the Kronecker delta). For any fixed n ∈ Z with 0 ≤ n < N ,
let b` = β

(n)
` (implying b` = 0 for n+ 1 < ` ≤ N ). Then

x1[k] = knγk (16)

for k ≥ 0.

Note that specializing this lemma to n = N − 1 yields
Theorem 1.

For n = 0, b = [1, 0, . . . , 0]T (cf. Table 1), and x1[k] =
γk = knγk (for k ≥ 0) is obvious from Fig. 2. For n > 0,
we prove the lemma by induction. For the induction step, we
assume

b =
[
β

(ν)
1 , . . . , β

(ν)
ν+1, 0, . . . , 0

]T
yields x1[k] = kνγk

(17)
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Fig. 2: Block diagram of the complex state space realization according to Theorem 1 for N = 3. The boxes labeled z−1 are
unit-delay cells. (The contents of these delay cells are the state variables in (7) and (8).)

for k ≥ 0 and 0 ≤ ν < n. We then show that (17) holds
also for ν = n. A key point in the proof is the fact (which is
obvious from Fig. 2) that (17) implies

b =
[
0, β

(ν)
1 , . . . , β

(ν)
ν+1, 0, . . . , 0

]T
yields x2[k] = kνγk

(18)
for k ≥ 0 and 0 ≤ ν < n.

Now assume (17) holds for fixed n > 0 and all k ≥ 0
and 0 ≤ ν < n. We prove the validity of (17) for ν = n by
induction over k. Let

b =
[
β

(n)
1 , . . . , β

(n)
n+1, 0, . . . , 0

]T
. (19)

For k = 0, we then clearly have x1[k] = 0 (cf. Table 1),
in agreement with (17). Assuming that (17) holds for some
k ≥ 0, we have

x1[k + 1] = γ
(
x1[k] + x2[k]

)
(20)

= γknγk + γx2[k]. (21)

Thus (17) holds for ν = n if and only if

(k + 1)nγk+1 = γknγk + γx2[k], (22)

i.e., if and only if

x2[k] =
(
(k + 1)n − kn

)
γk (23)

=

n−1∑
ν=0

(
n

ν

)
kνγk. (24)

But inserting (12) and (13) in (19) yields

b =

n−1∑
ν=0

(
n

ν

)[
0, β

(ν)
1 , . . . , β

(ν)
ν+1, 0, . . . , 0

]T
. (25)

Using (18), we then see that (24) indeed holds.

2.4. Computational Cost

The required numbers of multiplications and additions per
sample are easily seen from Fig. 2: for general α ∈ C (and

multiplications additions
general φ 6N − 2 6N − 4
φ ∈ {0, π,±π/2} 5N − 1 5N − 3

Table 2: Computations per sample (assuming N > 1). In the
second row, α is real or purely imaginary.

noting that b1 = 0), we have N complex multiplications (by
γ), N − 1 real-times-complex multiplications, and 2(N − 1)
complex additions, amounting to 6N − 2 real multiplications
and 6N−4 real additions. In the important special case where
α is real or imaginary, the numbers are slightly smaller, cf.
Table 2. Further simplifications may be achieved on some
processors by noting that the entries in Table 1 are small inte-
gers rather than general floating-point numbers.

3. TRANSFER FUNCTION AND FREQUENCY
RESPONSE

The transfer function

G(z) =

∞∑
k=0

g[k]z−k (26)

is easily obtained from Theorem 1 as follows. By inspection
of Fig. 2, we find the transfer function of the complex part
(from u[k] to x1[k]) to be

Gc(z) =

N∑
`=1

b`(γz
−1)`−1

(1− γz−1)`
(27)

=

∑N
`=1 b`(γz

−1)`−1(1− γz−1)N−`

(1− γz−1)N
(28)

=

∑N−1
k=0 λkz

−k

(1− γz−1)N
(29)

with coefficients

λk = γk
k+1∑
`=1

b`

(
N − `

k − `+ 1

)
(−1)k−`+1. (30)
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Fig. 3: The transpose realization according to Section 4.1 for N = 3.
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Fig. 4: A realization (4), (5) with state transition matrix A in Jordan form. The contents of the delay cells are the state variables
in (7) and (8).

The overall transfer function (26) is thus

G(z) =
1

2

∞∑
k=0

(
gc[k] + gc[k]

)
z−k, (31)

from which we obtain the frequency response

G(eiΩ) =
1

2

(
Gc(e

iΩ) +Gc(e−iΩ)
)
. (32)

4. ALTERNATIVE REALIZATIONS

4.1. Transpose Realization

Since
cTAkb = bT(AT)kc, (33)

the impulse response (6) remains unchanged if we exchange
c and b, and change A into AT. Fig. 2 is thus changed into
Fig. 3. The computational effort (as in Table 2) turns out to
remain the same.

4.2. Realizations in Jordan Canonical Form

The matrix (14) is almost in Jordan canonical form [21], but
not quite. However, the realization according to Theorem 1 is

easily modified so that the state transition matrix is indeed in
the Jordan form

A =



γ 1 0 . . . 0

0 γ 1
. . .

...
...

. . . . . . . . . 0
...

. . . . . . γ 1
0 . . . . . . 0 γ


. (34)

As illustrated in Fig. 4, the modification consists of moving
the multiplications by γ in Fig. 2 behind the adders, which is
compensated by extra powers of γ in the input vector b. (By
contrast, the vector b in Fig. 2 does not depend on γ.)

Of course, the realization of Fig. 4 can also be transposed
as in Section 4.1.

5. CONCLUSION

An exact discrete-time realization of the gammatone filter
appears to be missing in the literature. We derived such a
realization and outlined some variations of it. The proposed
realization (Fig. 2) appears to be new and attractive.
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