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ABSTRACT

Reliable real-time estimation of the interaural time delay of
a sound source is difficult in the presence of noise and rever-
beration. However, the psychoacoustical precedence effect
suggests that accurate estimation is possible by concentrat-
ing on the first-arriving sound. This paper introduces a novel
real-time estimation method inspired by the precedence ef-
fect. First, the arrival of first-arriving sound is detected by
performing a hypothesis test based on local approximation
of the binaural signal with exponentially decaying sinusoids,
which effectively model the shape of a sound onset. After de-
tection, the interaural time delay is directly retrieved from the
phase shift of the approximating sinusoids. The local model
approximation is done with efficient recursions by parameter-
ization of the model with autonomous linear state-space mod-
els, making the algorithm implementable in real-time.

Index Terms— time delay estimation, interaural time de-
lay, sound source localization, local model approximation

1. INTRODUCTION

Given an array of microphones, sound waves propagating
through air will arrive at each microphone at a different
time depending on the environment and the distance between
the sound source and the microphone. Tracking the delay
between the time of the sound arrival at the microphones
therefore aids in the localization of the sound source.

Mammals in fact use the time delay between the sound
waves arriving at the right and left ear as a cue for sound
source localization [1]. This cue is referred to as the in-
teraural time delay (ITD) and is commonly estimated for
real-time binaural source localization. A high level of preci-
sion is needed for accurate estimation of the ITD, since for
a typical human head size, the time delay is at most 660 µs,
i.e., approximately 30 samples for a sampling frequency of
44.1 kHz [2]. However, many ITD estimation methods such
as cross-correlation [3, 4] and similar methods, e.g., the pop-
ular generalized cross-correlation method (GCC) [5] only
produce estimates from a discrete set. Moreover, reliable es-
timation without prior knowledge of the head-related impulse
response (HRIR) is made difficult by environmental noise
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Fig. 1. Sound onset in a speech signal (indicated by line).

and reverberation [3, 6, 7]. Methods such as [8, 9, 10, 3]
attempt to mitigate this problem by adaptive estimation of
the filter response between the signals of both ears or of the
HRIR. Another approach [11] selectively considers estimates
based on a interaural coherence measure.

There is evidence that humans rely on extracting cues
from the first-arriving sound, that is assumed to have travelled
the direct path from the source to the ear, for source localiza-
tion. This phenomenom, known as the precedence effect [12,
13, 14], suggests to restrict ITD estimation to first-arriving
sound segments. In an acoustic signal, the first-arriving sound
is usually visible as onsets of sound after periods of silence
(cf. Fig. 1). This paper introduces a novel method for real-
time ITD estimation based on the precedence effect. The
main idea is to first determine whether an onset is present
in the binaural signal, and estimate the ITD only if an onset
was detected. The proposed algorithm can be efficiently im-
plemented in real-time by local approximation of an appropri-
ate autonomous linear state-space model (LSSM) [15, 16, 17]
for the onset detection. A precise estimation is achieved,
since the ITD is directly computed from the phase shift be-
tween the approximated model of each channel. The paper is
structured as follows. The necessary theory on local model
approximation is summarized in Section 2 before the estima-
tion algorithm is described in Section 3. Experimental results
for datasets of speech signals in various environments are dis-
cussed in Section 4, while Section 5 concludes the paper.

2. LOCAL MODEL APPROXIMATION

In this section, we summarize the theory of local model
approximation needed for our algorithm. More on this sub-
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ject can be found in [15, 16]. Given the observations yk ∈ R
of a discrete-time signal at time steps k ∈ N, we consider
the problem of locally approximating the signal at each time
step k ≥ 1 by a function f : N0 → R, that is the impulse
response of an autonomous linear state-space model (LSSM)
of the order n with parameters {c, A, s}, i.e.,

f(`) = cA`s, ` ≥ 0 , (1)

where the initial state vector s ∈ Rn and state transition ma-
trixA ∈ Rn×n are fixed. The trajectory of f is determined by
the observation vector c ∈ R1×n. In [15], it is shown that the
set of functions produced by such LSSMs is a vector space
consisting of linear combinations and products of exponen-
tials, polynomials and sinusoids. The local approximation of
y at each time step k is done by minimizing the cost function

Jk(c) =

k∑
i=k−L+1

w(k − i)(yi − f(k − i))2 (2)

=

k∑
i=k−L+1

cwA
k−i
w sw(yi − cAk−is)2 , (3)

where the start of (1) is assigned to k, L ∈ N ∪ {∞} is
the length of the local window, and the fixed window weight
function w : N0 → R in (2) is also described by a LSSM (1)
of the order nw and parameters {cw, Aw, sw}. We assume
w(`) ∝ γ`, where 0 < γ < 1, making the window stable
and w(`) → 0 for ` → ∞, thereby minimizing the effect
of samples further away from k on the fit. The approximating
function value of yi at time k is thus given by ĉkAk−is, where

ĉk = argmin
c∈R1×n

Jk(c) . (4)

The summation terms in the cost (2)-(3), which refer to un-
known observations yi for i < 1, are neglected. Following the
derivation in [15, Ch. 6.2.2] (given for the case L → ∞), (3)
can be reformulated as

Jk(c) = cwχk − 2(c⊗ cw)ζk + (c⊗ cw)skc
T , (5)

where the operator ⊗ is the Kronecker product and

χk =

k∑
i=k−L+1

Ak−i
w swy

2
i ∈ Rnw (6)

ζk =

k∑
i=k−L+1

(A⊗Aw)k−i(s⊗ sw)yi ∈ Rnnw (7)

sk =

k∑
i=k−L+1

(A⊗Aw)k−i(s⊗ sw)sTA(k−i)T ∈ Rnnw×n(8)

which are computed by the recursions

χk = Awχk−1 + swy
2
k −AL

wswy
2
k−L (9)

ζk = (A⊗Aw)ζk−1 + (s⊗ sw)yk

− (A⊗Aw)L(s⊗ sw)yk−L (10)

initialized by χ0 = 0 and ζ0 = 0, while (8) can be shown to be
independent of k and the signal yi, and is thus precomputed.
The cost (5) is in fact a quadratic function in c of the form

Jk(c) = κk − 2cξk + cWkc
T (11)

with quantities κk ∈ R, ξk ∈ Rn and Wk ∈ Rn×n that are
computed from the parameters (6)-(8) according to

κk = cwχk (12)

{ξk}j,p = (P
(1,n)
p,j ⊗ cw)ζk (13)

{Wk}j′,p′ = tr
(

(P
(n,n)
p′,j′ ⊗ cw)sk

)
, (14)

where P (m,r)
i,j is the m × r-matrix with a one at index (i, j)

and zero everywhere else. The minimization (4) is thus given
by setting the derivative of (11) to zero:

ĉk = (W−1k ξk)T . (15)

Inserting (15) in (11) yields the minimal cost

min
c∈R1×n

Jk(c) = κk − tr
(
ξTkW

−1
k ξk

)
. (16)

For an infinite window, i.e., L → ∞, the recursions (9)-
(10) reduce to

χk = Awχk−1 + swy
2
k (17)

ζk = (A⊗Aw)ζk−1 + (s⊗ sw)yk (18)

while (8) can either be replaced by its steady-state value [15,
Ch. 6.2.4] (with some initialization error) or computed by the
recursion initialized by s0 = 0,

sk = (A⊗Aw)sk−1A
T + (s⊗ sw)sT . (19)

A measure for how well the assumed LSSM model (1)
matches the local signal is the local cost ratio (LCR) [15,
Ch. 7.7.2], [16], which compares the cost of local approxi-
mation with (1) and with a pure noise model

LCRk = −1

2
log

(
minc∈R1×n Jk(c)

Jk(0)

)
(20)

= −1

2
log

(
κk − ξTkW−1k ξk

κk

)
≥ 0 , (21)

where we used (11) and (16). When (1) matches well with the
signal, the fit cost is lower than that of a pure noise model. In
contrast, when (1) does not fit well, the cost is close to that
of a pure noise model. Therefore, by searching for segments
when the LCR becomes larger, one can detect events in the
form of (1) in the signal.

3. ESTIMATION ALGORITHM

The algorithm for ITD estimation is described in this sec-
tion. We denote the samples of the binaural input signal by
yEk ∈ R, k ≥ 1, where E ∈ {L,R} refers to the left or right
channel. The sampling frequency is denoted by fs.



3.1. Onset Detection

We search for onsets in yk by evaluating for each channel,
the LCR (20)-(21) for local model approximation with a bank
of LSSM signal forms (1) that each resemble an onset of a
certain frequency. We choose to use a bank of Q ∈ N expo-
nentially decaying sinusoids as LSSM signals (1), where the
q-th LSSM signal, q ∈ {1, . . . , Q}, is given by

oq(`) = αqρ
`
q sin(Ωq`+ φq) ` ≥ 0, (22)

where the decay ρq ∈ (0, 1) and the normalized frequency
Ωq are fixed, while the amplitude αq ∈ R and phase φq ∈
[0, 2π] are fit to the signal. In order for the relation between
the phase shift and the time delay to be unambiguous, the
maximal possible time delay τmax must not exceed half of
the period of the frequency fq of the onset (which is related
to the normalized frequency by Ωq = 2πfq/fs), i.e.,

fq <
1

2τmax
. (23)

The LSSM of (22) is of order nq = 2 with parameters

A = ρq

[
cos(Ωq) − sin(Ωq)
sin(Ωq) cos(Ωq)

]
(24)

s =
[
1 0

]T
, (25)

while the relation between the observation vector and the fit
parameters is

c = αq

[
sin(φq) cos(φq)

]
. (26)

For the cost (2) we use an infinite gamma window (L =∞)

w(`) = γ``3, ` ≥ 0, (27)

with decay γ ∈ (0, 1), which should be larger than ρq of the
onset models (22), such that the window properly captures the
onset. The LSSM of (27) is of the order nw = 4 and

cw =
[
6 6 1 0

]
(28)

Aw = γ


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 (29)

sw =
[
0 0 0 1

]T
. (30)

The relevant recursions are (17)-(18) which are different for
each onset model and channel, while the recursion (19) is in-
dependent of the signal. We denote the fit parameters (15)
of the signal channel E and onset model q at time k by ĉEq,k.
The corresponding model fit (22) is denoted by ôEq,k and the
LCR (20) is denoted by LCRE

q,k. Fig. 2 shows an example
of the fit ôEq,k at the onset of a speech signal located at an az-
imuth of −80◦, which is indicated by a peak of LCRE

q,k. One
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Fig. 2. Top: speech signal at azimuth of −80◦. Middle:
model fit at onset indicated by vertical lines, gamma window
of cost in green. Bottom: associated LCR, onset detected at
peak. Left: close-up on onset where ITD is more visible.

can see that the ITD is represented by the phase shift between
the model fits to the signal.

We detect an onset by searching for simultaneous peaks
in the LCR of both channels of a onset model. This is done
by local approximation of each LCRE

q,k with a third degree
polynomial

p(`) = β0 + β1`+ β2`
2 + β3`

3, ` ≥ 0, (31)

whose corresponding LSSM is of the order n = 4 with pa-
rameters (cf. (1)),

A =


1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

 (32)

s =
[
0 0 0 1

]T
(33)

c =
[
β3 β2 β1 β0

]
. (34)

For the cost (2), we use a finite-length exponential window

w(`) = γ`, 0 ≤ ` ≤ L− 1, (35)

where γ ∈ (0, 1) and whose LSSM is of the order nw = 1
with

cw = sw = 1 (36)
Aw = γ . (37)

The relevant recursions are (9)-(10) while (8) is precom-
puted. We denote the estimated polynomial coefficients
(cf. (15),(34)) of LCRE

q,k by b̂Eq,k = (β̂E
q,k,0, . . . , β̂

E
q,k,3) and

the corresponding polynomial (31) is denoted by p̂Eq,k.
We aim to detect an onset at time k for onset model q

when there is an onset in both channels, which we assume is
indicated by a peak in LCRE

q,k. We thus detect an onset when
for E ∈ {L,R}

p̂Eq,k(0) > p̂Eq,k(L− 1) (38)

p̂E′q,k(j) , β̂E
q,k,1 + 2β̂E

q,k,2j + 3β̂E
q,k,3j

2 ≥ δ , (39)



where δ > 0 is a threshold on the first derivative of the poly-
nomials evaluated at j = L−1

2 .

3.2. Time Delay Estimation

We assume we detect an onset at time k for frequencies qr ∈
{1, . . . , Q}, where r ∈ {1, . . . , R}, 1 ≤ R ≤ Q. For time
delay estimation, we attempt to select the onset model of a
frequency that is similarly represented in both channels. For
this purpose, we select the onset model based on comparing
the first derivative of the polynomial fits (cf. (39)) with

q̂ = argmin
qr,r∈{1,...,R}

∣∣∣∣∣
∣∣∣∣∣ p̂L′q,k(j)

p̂R′q,k(j)

∣∣∣∣∣− 1

∣∣∣∣∣ . (40)

The phase estimate of each channel is extracted from the ob-
servation vectors ĉEq̂,k with the relation (26) according to

φ̂Eq̂,k = arctan

(
{ĉEq̂,k}1
{ĉEq̂,k}2

)
. (41)

The ITD estimate τ̂LR,k is determined from the minimal
phase shift between the local sinusoids of both ears. This is
found by first finding the phase shift of ôRq̂,k to the closest
zero-phase point, which is δR , min(−φ̂Rq̂,k, 2π − φ̂Rq̂,k).
Then, we select the nearest zero-phase point of ôLq̂,k to that
of the right ear and compute the phase shift to ôLq̂,k. This is
δL , argmind∈D |δR − d|, where D = {−φ̂Lq̂,k, 2π − φ̂Lq̂,k}.
Finally, the ITD estimate is given by

τ̂LR,k =
δR − δL

Ωq̂
. (42)

4. EXPERIMENTS

To test our algorithm, we used a dataset of speech signals with
fs = 44.1 kHz, varying by horizontal azimuth and reverbera-
tion of the environment. The dataset was generated by filter-
ing the international speech test signal (ISTS) [18] (of length
60 s) with 25 anechoic HRIRs from the CIPIC database [19]
with azimuths ±80◦,±65◦,±55◦ and from −45◦ to 45◦ in
5◦ steps. Furthermore, we used 18 HRIRs from the AIR
database [20], of which 13 were recorded in a stairway at 1 m
distance with azimuths ranging from −90◦ to 90◦ with 15◦

steps, and 5 were recorded in the Aula Carolina Aachen (a
former church) at 3 m distance with azimuths ranging from
−90◦ to 90◦ with 45◦ steps. The stairway represents an every-
day environment in terms of reverberation while the Aula is
highly reverberant. The HRIRs were downsampled to fs if
necessary.

For the algorithm, we used Q = 3 onset models with fre-
quencies 300, 400 and 500 Hz, and decays ρq = 0.99. The
decay of (27) was γ = 0.999 and that of (35) was γ = 0.9999
with window length L = 201. See Fig. 2, which shows de-
tection of an onset at 300 Hz in a CIPIC signal, for the effec-
tive window length compared to that of the onset model. The
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Fig. 3. Top: speech signals at azimuth 0◦. Middle: onset
detection via LCRs. Bottom: ITD estimates at each time step,
valid estimates at detected onsets are marked in black.
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Fig. 4. Mean estimated ITD for the speech signal dataset, the
horizontal error bars indicate the standard deviation.

threshold for (39) was δ = 1e−4 for the anechoic and stair-
way data, while for the church data, we used δ = 4e−6. This
is to account for lower peak magnitudes of the LCR due to
reverberation. A comparison of how the algorithm performs
with respect to reverberation is shown in Fig. 3 for a segment
of the ISTS signal at 0◦ azimuth where zero delay is expected.
The LCR is sparse and correctly indicates the onset positions,
where plausible ITD estimates can be attained. Also plotted
are the ITD estimates when no onset is detected. Without on-
set detection, false estimates would increase with the amount
of reverberation. The estimation results for the whole dataset
are shown in Fig. 4, where a clear trend between the azimuth
and the ITD can be seen for the three environments.

5. CONCLUSION

This paper introduces a novel approach to real-time ITD
estimation based on onset detection, which is inspired by
the precedence effect of human hearing. Experiments with
speech signal datasets show that the algorithm is capable of
estimating the ITD even in highly reverberant environments.
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