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Abstract— Eye movements reveal a great wealth of informa-
tion about the visual system and the brain. Therefore, eye move-
ments can serve as diagnostic markers for various neurological
disorders. For an objective analysis, it is crucial to have an au-
tomatic and robust procedure to extract relevant eye movement
parameters. An essential step towards this goal is to detect and
separate different types of eye movements such as fixations,
saccades and smooth pursuit. We have developed a model-
based approach to perform signal detection and separation on
eye movement recordings, using source separation techniques
from sparse Bayesian learning. The key idea is to model the
oculomotor system with a state space model and to perform
signal separation in the neural domain by estimating sparse
inputs which trigger saccades. The algorithm was evaluated
on synthetic data, neural recordings from rhesus monkeys and
on manually annotated human eye movement recordings with
different smooth pursuit paradigms. The developed approach
shows a high noise-robustness, provides saccade and smooth
pursuit parameters, as well as estimates of the position, velocity
and acceleration profiles. In addition, by estimating the input
to the oculomotor system, we obtain an estimate of the neural
inputs to the oculomotor muscles.

I. INTRODUCTION

The eyes are, metaphorically speaking, a window to the
soul. Similarly, eye movements can be seen as a window to
the brain [1]. In this work, we will focus on smooth pursuit
eye movements (SPEM), fixations and saccades. During
fixations, information is gathered from a detail (the target)
in the visual environment. Fast, jerky eye movements known
as saccades, separate phases of fixation and guide the gaze
from one detail of interest to the next [2]. If the target starts
moving, SPEM will try to keep it in the center of gaze.
Interestingly, if the motion pattern is predictable, humans can
(almost) completely overcome the latency of the oculomotor
system and perfectly follow the target [3]. This suggests the
creation of an internal representation of the target motion.
All goal-directed eye movements described above involve
brain-wide control networks, making their study valuable
in diverse fields ranging from marketing to neuroscience to
clinical applications [1]. Especially in the latter setting, the
precise temporal profiles of eye movements are of interest as
several neurodegenerative diseases affect parameters such as
saccadic peak velocity [4]. The tight relationship between
saccade amplitude, duration and peak velocity, known as
the main sequence [5], has diagnostic value for various
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neurological disorders. Similarly, the quality of SPEM is
indicative of a patient’s motion processing ability.

To compute such parameters, event detection algorithms
have to extract saccades, fixations and SPEM from eye
movement recordings. This is not a simple task due to various
artefacts, like blinks, baseline drift and sensor noise. Unwary
filtering of the signal to remove noise, can severely degrade
the quality of the extracted parameters [6]. The velocity
profile is commonly obtained by numerical differentiation,
which inevitably amplifies noise. To distinguish different
types of eye movements, various event detection algorithms
have been proposed [7], [8]. Since saccades are much faster
than other eye movements, the simplest detection algorithms
are based on thresholding of the velocity (or acceleration)
profile to tell saccades and non-saccades apart –an approach
known as IVT [7]. Due to their simplicity, IVT variants are
still regularly in use [9]. Such approaches, however, have
difficulties in the presence of high or varying noise levels
and during SPEM.

In this paper we present a model-based approach,
grounded in oculomotor physiology, for the estimation of
neural inputs, detection of saccades, fixations and SPEM. A
minimal working example of the code is made available1.
The oculomotor plant is modeled via a linear state space
model, whose (sparse) inputs trigger the neural control
signals generating the forces of the oculomotor muscles.
Relying on techniques from sparse Bayesian learning [10],
[11], the algorithm can detect these triggers and separate
saccades from SPEM.

II. MODEL OF THE OCULOMOTOR SYSTEM

The model consists of two parts: The oculomotor plant
and the two neural input systems (see Fig. 1). The complete
model and each subsystem will be described with a linear
state space model (SSM) of the form:

xk = Axk−1 +Buk−1

yk = Cxk + zk, (1)

with k ∈ {1, ..., N}, where N � 1 denotes the duration of
the recording, uk the input, zk the measurement noise and
yk the output of the system.

A. Mechanistic Oculomotor Plant Model

Bahill [12] developed a physiological oculomotor plant
model for horizontal eye movements. The model describes

1https://bitbucket.org/FedericoW/embc18_saccade_
spem_code
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Fig. 1: Neural systems feeding into the oculomotor plant. The
(noise-free) output is the angular position θ of the eye (=̂ xPlant
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of oculomotor plant SSM).

the interaction of the bulbus oculi (mass) with two extra-
ocular muscles (medial and lateral rectus) via a mass-spring-
damper system of the form:

xPlant
k = APlant · xPlant

k−1 +BPlant · uNeural
k−1 (2)

yk = CPlant · xPlant
k + zk, (3)

where APlant and BPlant are obtained by discretizing the 6th
order continuous-time SSM from [12]. The neural input
uNeural (=̂ output of neural control system) is responsible for
generating the force of the agonist and antagonist muscles.
The output of the oculomotor plant state space model yk is
the (noisy) eye position measured by eye tracker at time k.
The first four components of the state vector xk ∈ R6 are the
horizontal eye position, the (effective) agonist and antagonist
muscle length and the velocity of the eye. Since the output
of the model is the eye position, the read-out matrix is
CPlant = (1, 0, 0, 0, 0, 0). The active state tension (force [12])
of the agonist and antagonist muscles are represented by the
last two components x(5)k and x(6)k . Since only the combined
effect of the agonist and antagonist muscle can be estimated,
we reduced the model to a 5th order SSM by merging
the agonist and antagonist dynamics. The new state x

(5)
k

represents the difference in active state tension between the
agonist and antagonist muscle pair.

B. Neural Input Model

Depending on the neural input uNeural, the oculomotor
plant (2) can realize fixations, saccades and SPEM. In the
following, we will introduce the two subsystems generating
the neural inputs for saccades, fixations (with random jitter)
and SPEM.

1) Saccades and Fixations Model: Saccades are thought
to be generated by exciting the extra-ocular muscles with
a pulse-step firing pattern [13]. A pulse-step signal can be
modeled with a first-order hold state [10], which is triggered
by sparse inputs uSacc:

xSacc
k = xSacc

k−1 + uSacc
k−1 (4)

ySacc
k = xSacc

k (5)

Figure 2 shows a simulated pulse-step neural input signal
uNeural = ySacc that is integrated by the oculomotor plant. This
results in the depicted saccade position θ and velocity θ̇
profiles (cf. Fig. 2 top and center).
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Fig. 2: Top: Simulated 10◦ saccade with additive Gaussian noise
and estimated position profile. The dots and triangles indicate the
start and end of the saccade. Center: Simulated velocity (noise-
free) and estimated velocity from noisy position profile. Bottom:
Simulated and estimated neural input triggering the saccade. The
neural inputs to the muscles are in force units (g = grams) as in
[12] to avoid a cumbersome conversion to spike rates.

2) SPEM Models: SPEM can be induced by controlled
experiments in which a subject is instructed to visually
follow a moving target. To achieve low latency tracking, the
brain builds an internal representation of the target motion.
We account for this internal representation by the following
SPEM model:

xSPEM
k = ASPEM · xSPEM

k−1 +BSPEM · uSPEM
k−1 (6)

ySPEM
k = CSPEM · xSPEM

k (7)

Different motion profiles of the target: Sinusoidal (Fig. 3),
ramp (Fig. 4), parabolic, etc., can be realized with suitable
system matrices. To be agnostic about the type of elicited
SPEM, one can use a random walk on the velocity [10] with

ASPEM =

[
1 Ts
0 1

]
, BSPEM =

[
0
1

]
, (8)

driven by an i.i.d. Gaussian input uSPEM and a read-out
matrix CSPEM = (1, 0). For a sinusoidal pattern with target
frequency ωSPEM = 2πfSPEM and sampling period Ts, we use
the following system matrices:

ASPEM =

1 Ts 0
0 cos(ωSPEMTs) sin(ωSPEMTs)
0 − sin(ωSPEMTs) cos(ωSPEMTs)

, BSPEM =

0 0
1 0
0 1

 (9)

and CSPEM = (1, 0, 0). In this case, the state vector of the
SPEM system can be seen as a rotating phasor. Figure 3
shows the signal separation results on real eye tracker data
in which a human subject was instructed to visually follow
a sinusoidally moving target (a bright dot that moves from
the left to the right side of the screen).

3) Force Input: The neural input to the oculomotor plant
(2) is the sum of the output signals of the SPEM and saccade
subsystems:

uNeural
k = ySacc

k + ySPEM
k . (10)

III. ESTIMATION OF NEURAL INPUTS

The interconnected system, consisting of the oculomotor
plant and the SPEM/saccade subsystems (in total three



SSMs), can compactly be written as a single SSM of the form
(1). When the inputs to the SSM are given (in terms of their
means and variances), state estimates, i.e. the (adaptively
filtered) position, velocity and force profiles, can readily be
obtained via Kalman smoothing [14]. In this paper, however,
the inputs are unknown and have to be estimated too.
For non-sparse inputs, the maximum a posteriori estimate
(MAP) can be obtained by Kalman smoothing or equivalently
Gaussian message passing [15], [16]. For this, we model the
SPEM input uSPEM as i.i.d. Gaussians with unknown means,
but fixed variance. The MAP estimate ûSPEM is the mean of
the posterior distribution p(uSPEM|y1:N ), which can easily be
computed by Kalman smoothing [10], [15].

Saccades in contrast, are triggered by sparse inputs uSacc.
To model such sparse inputs, we resort to the main idea from
sparse Bayesian learning [11]: Unknown sparse quantities are
modeled as zero-mean Gaussians with unknown variance:

uSacc
k ∼ N (0, σ2

uSacc
k

), k ∈ {1, ..., N}. (11)

Maximum likelihood estimation (or MAP with a suitable
prior) of the unknown variances is known to be sparsi-
fying [10], [11]. The unknown parameters (here unknown
variances σ2

uSacc ) can be estimated via the expectation maxi-
mization (EM) algorithm [17], where the E-step of the EM-
algorithm boils down to Kalman smoothing. In the M-step,
the parameters of the unknown inputs uSPEM and uSacc are
iteratively updated using first and second moments (means
and variances) computed in the E-step [10], [11].

Saccade and SPEM Parameter Extraction: The estimated
position θ and velocity θ̇ profiles (cf. Fig. 2) can be used
to detect saccade onsets and endings, e.g., using an IVT
algorithm. Given the saccadic onsets and endings as well as
the estimated velocity profile, the saccadic main sequence
parameters can be computed. From the estimated SPEM
signal ySPEM (cf. Fig. 3) parameters such as the instantaneous
phase and amplitude can be obtained.

IV. RESULTS

We evaluated the presented algorithm on synthetic data
as well as on real data from humans and rhesus monkeys.
All procedures followed the guidelines set by the National
Institutes of Health and national law and were approved by
local ethics committees.

Simulated Data: Table I shows the saccade detection
performance (precision and recall) of our algorithm on
synthetic data. The data was generated with the oculomotor
plant model presented in sec. II under varying measurement
noise noise levels σZ . In addition, we assessed how well
parameters of interest such as the saccadic peak velocity are
captured.

Human Subjects: Figure 3 and 4 show the separation of
saccades and SPEM for a sinusoidally moving target and
for a ramp paradigm. The estimated amplitude and phase
of the SPEM could serve as diagnostic markers, since in
many neurodegenerative diseases the relevant neural control
networks are impaired such that zero-latency tracking is not

Noise level Precision Recall Rel. peak vel.
σZ = 0.05◦ 1 1 0.99
σZ = 0.2◦ 1 1 0.91
σZ = 0.8◦ 1 0.76 0.77
σZ = 3.2◦ 0.96 0.46 0.87

TABLE I: Precision, recall and rel. peak velocity vest
max/v

sim
max es-

timated on synthetic data with varying noise levels. The data
consists of sinusoidal SPEM and 50 saccades whose amplitudes
are logarithmically distributed between 0.5◦ and 30◦.
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Fig. 3: Separation of SPEM and (catch-up) saccades in real eye
tracking data from [18] with model (9). In the experiment a
sinusoidally moving target was shown (viewing distance: 57 cm,
amplitude: 10 ◦, frequency: 0.5 Hz). The data were recorded at
1 kHz using a limbustracker (Skalar IRIS, Skalar Medical B.V.,
Delft, Netherlands).

possible anymore. Furthermore, we evaluated the signal sep-
aration and saccade detection performance of our algorithm
on 19 recordings of horizontal eye movements from [8]. In
this experiment subjects were instructed to follow a ramp
paradigm as shown in Fig. 4. Table II shows the performance
of the algorithm against expert manual annotations from [8].

Estimation of Neural Signals in Monkeys: Previously
published neuronal data from rhesus monkeys [19] was used
to test the quality of the estimated neural inputs. The data
consists of eye position recordings sampled at 1 kHz with
simultaneously recorded firing rates of single neurons of the
abducens nucleus. For the estimation, we used the oculomo-
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Fig. 4: Separation of SPEM and (catch-up) saccades in real eye
tracking data taken from [8] with model (8).



# Recordings Cohen’s κ Precision Recall
19 0.76 0.94 0.94

TABLE II: Cohen’s κ, precision and recall on real data with manual
annotations of saccades from [8] as baseline. The total number of
annotated saccades was 60, of which 58 were detected.

Fig. 5: Top and bottom: Low-noise recording of eye position (scleral
search coil) and neural firing rate from single abducens motoneuron
(tungsten microelectrodes, FHC Inc.) in a rhesus monkey during a
saccade. Top to bottom: Estimated position, velocity, acceleration
and neural input signal. As in [20] the neural firing rate is converted
to the force unit (N = Newton).

tor plant parameters for rhesus monkeys described in [20].
From Fig. 5 we see that the shape (especially the decay) of
the estimated neural input matches well the real recordings.
Note that the recording is from a single motoneuron, whereas
the estimated input represent the aggregated neural input of
many motoneurons to the oculomotor plant. To compare the
shape, we rescaled the neural recording to fit the magnitude
of the estimated neural input as done in [20].

V. DISCUSSION AND CONCLUSION

We have presented a model-based approach that relies on
sparse input estimation to separate saccades, fixations and
smooth pursuit eye movements. In addition to smoothed po-
sition, velocity, acceleration and force profiles, the algorithm
is capable of estimating the neural input to the oculomotor
muscles. The algorithm is robust against noise and, due
to the model-based approach, highly accurate in detecting
saccades. The current model considers each eye separately
and its model parameters are tailored to the horizontal gazing
direction. A natural extension would include a system iden-
tification step, where patient-specific parameters of the ocu-
lomotor plant are learned directly from the recordings. For
this, an EM algorithm akin to the one described for learning
input variances, can be envisioned. Similarly, using the same
framework, blinks which are currently not accounted for,
could be modeled with an outlier noise source [21]. Finally,
due to the modular structure of the approach, a further natural
extension is to build a model that captures both eyes and
both gaze directions simultaneously. A starting point could
be the 2D oculomotor plant model [22]. Further interesting
investigations include the evaluation of the discriminative

power of the extracted saccade and SPEM parameters, in
particular for detecting neurodegenerative diseases.
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