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Abstract—Normals with unknown variances (NUV) representa-
tions encompass variational representations of sparsifying norms
and priors for sparse Bayesian learning. Recently, a binarizing
NUV prior has been proposed and shown to work very well on
certain approximation problems. We elaborate on this new prior
and begin to explore its use for recovery problems. Concretely, we
apply the method to the multiuser multiple-input multiple-output
(MIMO) detection problem. Empirically, the method outperforms
existing approaches based on convex relaxations and is more
robust than a method based on approximate message-passing.

I. INTRODUCTION

Many problems in signal processing amount to finding a
signal x ∈ Rn that corresponds to some given signal y ∈ Rm

through the linear relationship y ≈ Φx for a given Φ ∈ Rm×n.
A typical way of posing such problems in a formal way is

argmin
x∈On

∥y − Φx∥2, (1)

where O ⊂ R is a constraint set. If O is convex, then (1) is
convex and readily solvable with convex optimizers. In many
practical applications, however, O = {a, b} is binary. In
that case, (1) is NP-hard [1]. Finding the optimal solution is
therefore often impractical, and one resorts to approximations.

This problem characterization encompasses two fundamen-
tally different problem classes: Problems of recovery, where y
is known to have been generated by some specific x which we
aim to recover (e.g., in channel coding or detection), and
problems of approximation, where we aim to construct an x to
approximate y under the linear operator Φ (e.g., in control or
compression). It is a common experience that methods which
work well for recovery need not work well for approximation.

A new method for estimating binary input signals using a
new composite NUV (Normal with unknown variance) prior1

has been proposed in [4] and shown to work well on certain
approximation problems in a control setting.

In this paper, we assess the performance of this method
for recovery, specifically, for multiuser (MU) multiple-input
multiple-output (MIMO) detection. We find that the method
shows excellent performance and is thus suitable for problems
both of approximation and recovery. A second contribution of
the paper lies in complementing [4] with an analysis of why
the proposed method yields binary estimates.2

1NUV priors are well known to encompass variational representations of
sparsifying norms and priors for sparse Bayesian learning [2], [3].

2[4] proposes the method in two variations: “joint MAP estimation” and
“type-II estimation”. This paper only considers the latter, superior variant.

The paper is outlined as follows: In Section II, we introduce
the method from [4] in a scalar setting and analyze its ability
to yield binary estimates. Section III extends the method to
general linear systems and provides an explicit algorithm.
We also show how to adapt the method for larger discrete
constellations. In Section IV, we apply the method to the
MU-MIMO detection problem and analyze the choice of its
only hyperparameter. Section V provides an empirical compar-
ison with existing methods. Section VI concludes the paper.

II. THE BINARIZING COMPOSITE NUV PRIOR

We introduce the composite NUV prior from [4] in a simple
but illuminating scalar setting: We want to estimate x ∈ {a, b}
based on a scalar observation y such that y ≈ x.3 Specifically,
we assume a probabilistic setting where the likelihood function
p(y|x) is Gaussian with mean µ = y and variance s2,
p(y|x) = N

(
x|µ, s2

)
.4 In this scalar setting, our prior is

ρ(x, θ) ≜ N
(
x|a, σ2

a

)
N
(
x|b, σ2

b

)
, (2)

where θ = (σ2
a, σ

2
b ). We thereby interrelate the variable of

interest, x, with the two newly introduced (virtual) variances
(σ2

a, σ
2
b ) through the improper joint prior ρ(x, θ) by means

of the composition of two Normals with unknown variances
(NUVs). A factor graph [5] of the resulting statistical model

p(y|x)ρ(x, θ) = N
(
x|µ, s2

)
N
(
x|a, σ2

a

)
N
(
x|b, σ2

b

)
(3)

is shown in Fig. 1. The unknown variances θ are then obtained
by Maximum-A-Posteriori (MAP) estimation:

θ̂ = θMAP ≜ argmax
θ

p̃(θ|y), (4)

where

p̃(θ|y) =
∫ ∞

−∞
p(y|x)ρ(x, θ) dx, (5)

is the (improper) posterior of θ given y. Fixing this choice of
variances θ̂, we estimate x̂ with the MAP estimate

x̂ = xMAP(θ̂) ≜ argmax
x

p(y|x)ρ(x, θ̂). (6)

Ideally, x̂ would be the member of the set O = {a, b} closer to
µ (i.e., to y). Is there any reason to think that this will be the
case? Indeed there is. To understand this, we start by defining

µθ ≜ bσ2
a + aσ2

b

σ2
a + σ2

b

and σ2
θ ≜ σ2

aσ
2
b

σ2
a + σ2

b

, (7)

3Throughout this paper, we assume without loss of generality that a < b.
4We use this notation for reasons that should become clear in Section III.
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Fig. 1: Factor graph of the statistical
model (3) for fixed observation y = µ.
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Fig. 2: Minimal s2 required for binariza-
tion as a function of µ.
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Fig. 3: The estimate xMAP(θ̂) as a func-
tion of µ.

which allows us to rewrite ρ(x, θ) as

ρ(x, θ) = p(x|θ) · ρ(θ) = N
(
x|µθ, σ

2
θ

)
· e

− (b−a)2

2(σ2
a+σ2

b
)√

2π(σ2
a + σ2

b )
. (8)

Note that ρ(x, θ) for fixed θ is Gaussian (up to the scale factor
ρ(θ)). Consequently, the MAP estimate in (6) becomes

xMAP(θ̂) =
s2µθ̂ + σ2

θ̂
µ

s2 + σ2
θ̂

. (9)

Moreover, if exactly one of the two variances θ̂ = (σ2
a, σ

2
b ) is

zero, then ρ(x, θ̂) ∝ δ(x−a) or ρ(x, θ̂) ∝ δ(x−b) (depending
on which of the variances is zero), and xMAP(θ̂) ∈ {a, b}.
Motivated by this observation, we call such a θ̂ binarizing.

To find out whether the maximization of the posterior in (5)
yields a binarizing θ̂, we rewrite the posterior p̃(θ|y) as

p̃(θ|y) = ρ(θ)N
(
µ− µθ | 0, σ2

θ + s2
)
, (10)

where we used (8) and the fact that p(y|x) = N
(
x|µ, s2

)
.

Plugging in ρ(θ), taking logarithms, changing the sign, and
dropping irrelevant constants yields the negative-log-posterior
(NLP) function, whose minima are the maxima of (10)

L(θ) ≜ log(σ2
a + σ2

b ) +
(a− b)2

σ2
a + σ2

b

+ log(σ2
θ + s2) +

(µ− µθ)
2

σ2
θ + s2

. (11)

We then have the following theorem:
Theorem 1: For µ < (a+ b)/2, the NLP L(θ) is minimized

at the binarizing point σ2
a = 0 and σ2

b = (a− b)2 and has no
other critical points, resulting in xMAP = a, if and only if

s2 >

{
(3−

√
8)(a− µ)(b− µ), if µ < a− |a−b|√

2
(a−µ)2|a−b|
(a+b)−2µ , if a− |a−b|√

2
≤ µ < a+b

2 .

Likewise, for µ > (a + b)/2, the NLP L(θ) is minimized at
the binarizing point σ2

a = (b − a)2 and σ2
b = 0 and has no

other critical points, resulting in xMAP = b, if and only if

s2 >

{
(3−

√
8)(a− µ)(b− µ), if µ > b+ |a−b|√

2
(b−µ)2|a−b|
2µ−(a+b) , if a+b

2 < µ ≤ b+ |a−b|√
2
.

Moreover, a binarizing θ can only be a minimum of L(θ) if its
positive variance equals (a− b)2, i.e., if σ2

a + σ2
b = (a− b)2.

A proof is given in [6]. Some remarks are in order:

1) For any µ ̸= (a+ b)/2, for sufficiently large s2 (i.e., for a
sufficiently noisy statistical model), the procedure naturally
yields a binary estimate xMAP(θ̂). In this respect, the
method differs from methods based on convex relaxation,
which typically require some sort of projection onto the
constraint set at the end.

2) For any given µ ̸= (a+b)/2 (and sufficiently large s2), only
the constellation member closer to µ is a (global or local)
minimum of L(θ). In this respect, the method differs from
simple concave regularization as in [7], which may induce
a local optimum also at the farther constellation member.

3) The optimization problem (4) is not convex. However,
thanks to the guarantees of Theorem 1, even a local
optimization procedure (such as EM, see Section III) is
guaranteed to converge to the desired binary solution.

The behavior is further illustrated with Figs. 2–4, all of
which use {a, b} = {−1,+1}: Fig. 2 depicts the minimal s2

satisfying the conditions of Theorem 1 as a function of µ.
Fig. 3 depicts the estimate xMAP(θ̂) as a function of µ for
different values of s2, also showing the method’s behavior
when s2 is too small to enforce binarization. Fig. 4 shows
contour plots of L(θ) for a fixed observation µ and two choices
of s2, one of which is large enough for binarization while the
other is not. The figure highlights the smooth profile of L(θ).

III. FROM THE SCALAR CASE TO LINEAR SYSTEMS

The extension from the scalar case to general linear sys-
tems is straightforward and enables tackling the problem
(1) for binary constellations O = {a, b}. In this case, the
prior is ρ(x,θ) =

∏
k ρ(xk, θk) with parameters (variances)

θ = (θ1, . . . , θn), θk = (σ2
a,k, σ

2
b,k), and with ρ(xk, θk) as

in (2). The likelihood changes from p(y|x) = N
(
x|µ, s2

)
to

p(y|x) = N (Φx |y, σ2I), where σ2 is a hyperparameter.
We remark that, for fixed θ, the whole model is essentially

Gaussian (up to a scale factor). This means that from any “in-
put terminal” xk of x, the local observation corresponds to the
model from Section II, where the local mean µk and variance
s2k are functions of y, σ2, and the remaining xk′ , k′ ̸= k. If
µk ̸= (a+b)/2 and if the local variance s2k at the input terminal
(which is a monotonous function of σ2) is large enough, we
may therefore expect to observe binarization.
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Fig. 4: Contour plot of L(θ) for µ = −0.4 and two different
choices of s2. The white dot indicates the minimum.

The MAP estimate (4) becomes

θMAP = argmax
θ

p̃(θ|y) = argmax
θ

∫
x

p(y|x)ρ(x,θ) dx. (12)

Due to the Gaussian form of ρ(x,θ), the integral in (12) is
tractable, but solving the resulting non-convex optimization
problem is hard. An obvious candidate for obtaining a surro-
gate estimate θ̂ of θMAP in iterative fashion is the Expectation
Maximization (EM) algorithm [4], [8]. The updates are

θ(i+1) = argmax
θ

Ep(x|y,θ(i))[log p(X,y|θ)] (13)

= argmax
θ

Ep(x|y,θ(i))[log p(X|θ)]. (14)

This optimization problem separates nicely into the individual
σ2
a,k and σ2

b,k, yielding the updates(
σ2
a,k

)(i+1)
= Ep(x|y,θ(i))

[
(Xk − a)2

]
(15a)(

σ2
b,k

)(i+1)
= Ep(x|y,θ(i))

[
(Xk − b)2

]
. (15b)

The quantities on the Right-Hand-Side (RHS) of (15) can be
conveniently calculated with Gaussian message passing [9].

For a given estimate θ̂, the MAP estimate of x is

xMAP(θ̂) = argmax
x

p(y|x) ρ(x, θ̂) (16)

=
(
Σ−1

θ̂
+ σ−2ΦTΦ

)−1(
Σ−1

θ̂
µθ̂ + σ−2ΦTy

)
, (17)

where µθ̂ ≜ (µθ̂1, . . . , µθ̂,n)
T, σ2

θ̂
≜ (σθ̂,1, . . . , σθ̂,n)

T,Σθ̂ ≜
diag

(
σ2
θ̂

)
. This MAP estimate is obtained as a byproduct (mX

in Algorithm 1) of the EM algorithm. The resulting algorithm
is called BiNUV-EM and outlined in Algorithm 1 (“⊙” and
“./” denote pointwise multiplication and division, respec-
tively). It may not be entirely obvious from the equations, but
if the k-th component of θ is binarizing, θk = (0, (b−a)2) or
θk = ((b− a)2, 0), then the corresponding entry of the MAP
estimate mX[k] will be a or b as a result, respectively.5

As argued above, if σ2 is large, then the final mX should
contain (almost) binary entries. But to guarantee the syntactic
correctness of our result, we ultimately apply a rounding step.

5Strictly speaking, the quantities (17), ĹWX, tξX,VX,mX are undefined
if any θk is binarizing. A mathematically rigorous treatment would consider
these expressions under limits to zero. This is irrelevant in practice, as the
variances obtained with Algorithm 1 will not converge to exactly zero in a
finite number of iterations.

Algorithm 1 BiNUV-EM

1: Input: y,Φ, σ2,θ(0), T
2: ĹWX = σ−2 ΦTΦ, tξX = σ−2 ΦTy
3: (σ2

a,k)
(0), (σ2

b,k)
(0) ← θ(0), k = 1, . . . , n

4: for t = 0, . . . , T − 1 do
5: γ = σ2

a ⊙ σ2
b ./(σ

2
a + σ2

b )
6: µ = (bσ2

a + aσ2
b )./(σ

2
a + σ2

a)

7: ĹWX = diag(1./γ), tξX = ĹWXµ

8: VX = (ĹWX + ĹWX)−1, mX = VX(tξX + tξX)
9: (σ2

a,k)
(t+1) = (mX[k]−a)2+VX[k, k], k = 1, . . . , n

10: (σ2
b,k)

(t+1) = (mX[k]− b)2+VX[k, k], k = 1, . . . , n

11: Output: x̂ = round(mX)

A drawback of BiNUV-EM as outlined in Algorithm 1 is
the high complexity of the matrix inversion in line 8, which
may be unattractive for certain practical applications. In many
applications, however, the linear operator Φ exhibits a structure
which makes it possible to avoid the calculation of this inverse,
as for instance in linear state-space models [4], [5].

A. Towards larger constellations
So far, the entire discussion pertains to binary constellations.

We now discuss how the method can also be used for larger
constellations. While it is tempting to simply extend the binary
prior (2) to ρ(xk, θk)=

∏
q∈ON (xk|q, σ2

q ), this does not work
well: It leads to uneven preference of the constellation points,
with edge points discouraged and central points preferred.
Instead, we propose to restrict ourselves to constellations of
the form O = {c+ ℓ · d : ℓ = 0, . . . , L}. Any x ∈ O can be
represented as x = c+

∑L
ℓ=1 x

(ℓ), where the x(ℓ) take value in
{0, d}. This representation is not unique, which is unproblem-
atic as the tuple (c, x(1), . . . , x(L)) is of interest only via its
sum x. In fact, the redundant representation makes inference
more robust. The original problem (1) can then be restated as

argmin
x̃∈{0,d}nL

∥ỹ − Φ̃x̃∥2, (18)

where ỹ ≜ y − c
∑n

k=1 ϕk, and Φ̃ ≜ Φ ⊗ 11×L, yielding an
nL-dimensional binary input estimation problem. The peculiar
structure of Φ̃ (L identical copies of every column) should
be exploited for simplifying the computations of the EM
algorithm, but poses no problem, as the measurement matrix is
not required to have distinct columns. The remaining question
is how to break the symmetry in the iterative algorithm. We
propose to do this by initializing the variances (σ

2,(ℓ)
0,k , σ

2,(ℓ)
d,k )

with different values for the different ℓ, which works well.

IV. APPLICATION TO MU-MIMO DETECTION

We now discuss the application of our method to the MU-
MIMO detection problem. In this problem, an m-antenna base
station observes the vector

y = Φx+ z, (19)

where Φ ∈ Cm×n is the channel matrix, x is the OC-valued
vector of complex symbols transmitted by n users, and z

IID∼
NC(0,N0) is noise. Φ is assumed to be known at the base



Re

Im

constellation point

nonbinarized entry

(a) σ2 = N0 and T = 80 iterations.

Re

Im

(b) σ2 = 5N0 and T = 80 iterations.

Re

Im

converged to wrong value

(c) σ2 = 100N0 and T = 40’000 iterations.

Fig. 5: Trajectory of the posterior means xMAP(θ̂) (= mX in Algorithm 1) for the iterative EM estimates θ̂ = θ(i), i = 1, 2, . . . .

station. For applying our method, we require thatOC is a QAM
constellation and transform the problem to the real domain via

yR =

[
R(y)
I(y)

]
, ΦR =

[
R(Φ) −I(Φ)
I(Φ) R(Φ)

]
, xR =

[
R(x)
I(x)

]
. (20)

We then consider the problem minxR∈O2n ∥yR − ΦRxR∥22,
where O = R(OC). If the constellation OC is QPSK, the en-
tries of xR are representable by independent binary variables.
If OC is 16QAM, they can be represented independently as
sums of three binary variables. After making a choice for σ2,
setting the initialization point6 θ(0) and the number of itera-
tions T , one can execute BiNUV-EM on (yR,ΦR, σ

2,θ(0), T ).
We note that the computational complexity of BiNUV-EM

as outlined in Algorithm 1 is not feasible for MU-MIMO
detection in practice. However, the focus of our current study
lies primarily in evaluating the performance of the composite
NUV prior on a practical recovery problem. We note that, for
the application of MU-MIMO detection, experiments suggest
that an approximation of Algorithm 1 based on iterative scalar
message-passing can be used for reducing the complexity
without significantly affecting the performance.

A. How to choose σ2

Theorem 1 shows that the proposed method enforces bina-
rization as long as the variances at the local terminals are large
enough. Since these variances are monotonously increasing in
σ2, it may seem obvious that one should choose σ2 very large.
But this would be a premature conclusion—there are two good
reasons for not choosing σ2 too large:

The first reason is that EM needs longer to converge for
large σ2, so a large σ2 increases the computational burden.

The second reason is subtler: It can be shown that a
binarizing θ with {0, (a − b)2}-valued components θk is a
local minimum of L(θ) if and only if for every k ∈ [1 : n],

ϕT
k

[
ϕk −

2

c+,k − c0,k
(y − Φµθ)

]
≥ [ϕT

k(y − Φµθ)]
2

σ2
, (21)

where c+,k − c0,k should be understood as either b − a (if
(σ2

a,k, σ
2
b,k) = (0, (b−a)2)), or (if (σ2

a,k, σ
2
b,k) = ((b−a)2, 0))

as a − b. It is evident that this criterion is the stricter, the

6The initializtion point θ(0) can be chosen such that the first iteration of
Algorithm 1 corresponds to the LMMSE estimate.

smaller σ2 is. As a consequence, while a too small σ2 may
not enforce the desired binarization, it seems that an overly
large σ2 may lead to an increased number of (spurious) local
minima at binarizing points θ.

This behaviour is illustrated in Fig. 5 at the example of a
MIMO detection problem with n = m = 32. The constellation
is QPSK, the entries of Φ are drawn IID from NC

(
0, 1

m

)
. The

signal-to-noise-ratio (SNR) is 12dB. All subfigures of Fig. 5
represent the same problem instance. They show the trajectory
of the MAP estimate (17) for θ̂ = θ(i), i = 1, 2, . . . obtained
in the EM iterations (14), starting from the LMMSE configu-
ration. The colors correspond to the different true input values.
In Fig. 5(c), only the iterations 1, 4, 9, 16, . . . are displayed.

In Fig. 5(a), σ2 equals the physical noise energy N0. After
80 iterations the algorithm has converged and most—but not
all—entries of x have binarized (i.e., have converged to con-
stellation points). But after rounding, the estimate is error-free.

In Fig. 5(b), σ2 is five times larger than N0. After 80
iterations the algorithm has converged, and here all entries
of x have binarized. The estimate contains no errors.

In Fig. 5(c), σ2 is much larger than N0. EM now needs
roughly 40’000 iterations to converge. And while all entries of
x have binarized, some have converged to the wrong value—
the algorithm has converged to a spurious local minimum.

The optimal value of σ2 for a given setting can be deter-
mined experimentally. The choice of a good σ2 appears to be
quite robust to changes of the SNR (e.g., σ2 = 2N0 works
well for a wide range of SNR) or the problem dimension.

V. EMPIRICAL EVALUATION

We evaluate BiNUV-EM empirically in comparison with
existing approaches for MU-MIMO detection. The channel
model is as in (19), and the matrix Φ is either drawn IID
from NC

(
0, 1

m

)
, or it is constructed according to the Jakes

model [10] (with antennas spaced at half the wavelength) for
correlated channels: In that case, Φ = R

1
2
mΦIIDR

1
2
n , where

ΦIID
IID∼NC

(
0, 1

m

)
and where Rm, Rn are given by [Rm]i,j =

[Rn]i,j = J0(|i−j|·π), with J0 being the zero-order first-kind
Bessel function. The number of users and of base station an-
tennas are both set to 32 (but the method works also for under-
and overdetermined problems). For QPSK, we set σ2 = 2N0,
and for 16QAM, we set σ2 = N0. We use T = 50 iterations.
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(b) QPSK, 32x32 system, Jakes model.
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Fig. 6: Uncoded bit error-rate (BER) vs. average signal-to-noise ratio (SNR) for different MIMO detection methods.

We compare BiNUV-EM with an LMMSE baseline and
methods that rely on convex relaxation: the semidefinite re-
laxation (SDR) based methods TASER [11] and RBR [12],
and the box-constrained methods ADMIN [13] and OCD BOX
[14]. We also compare with the approximate message passing
(AMP) based algorithm LAMA [15], which is provably opti-
mal for large IID Gaussian matrices.

Fig. 6 shows the uncoded bit error-rate (BER) as a function
of the average signal-to-noise ratio (SNR) for three different
setups: Figs. 6(a) and 6(b) use a QPSK constellation, where
Fig. 6(a) uses IID channel matrices and Fig. 6(b) uses the
correlated channel matrices of the Jakes model. Fig. 6(c) uses
a 16QAM constellation and IID channel matrices.

BiNUV-EM outperforms the convex-relaxation-based meth-
ods in all the settings. (TASER and RBR do not support larger
constellations than QPSK.) For QPSK in an IID Gaussian
setting (Fig. 6(a)), it performs on par with LAMA. For the cor-
related channel matrices (Fig. 6(b)) of the Jakes model, LAMA
breaks down completely (even with damping), while BiNUV-
EM continues to perform well. When using the approach
of Section III-A for larger constellations such as 16QAM
(Fig. 6(c)), BiNUV-EM loses 0.5dB at BER=10−3 compared to
LAMA, but clearly outperforms the box-constrained methods.
Note that BiNUV-EM—unlike LAMA—shows no signs of
an error floor. Furthermore, switching to correlated channel
matrices would lead to a breakdown of LAMA as in Fig. 6(b).

We conclude that BiNUV-EM can show excellent empirical
performance in binary recovery problems, and that our pro-
posed approach to larger constellations also works quite well,
at least for constellations of moderate size.

VI. CONCLUSION

We have provided an analysis of the method proposed in
[4] for the estimation of binary input signals that explains why
the method produces binary estimates. We have then adopted
the method to the MU-MIMO detection problem and com-
pared it with existing methods. We found that it outperforms
methods based on convex relaxations and that it works better
for correlated matrices than an AMP-based method. Future
work will be aimed at exploring and improving the complex-
ity/performance tradeoff of composite-NUV based methods for
MU-MIMO detection to obtain a practical algorithm.
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