
High-level Comparison of Control-Bounded A/D
Converters and Continuous-Time Sigma-Delta

Modulators
Fredrik Feyling1, Hampus Malmberg2, Carsten Wulff1, Hans-Andrea Loeliger2, Trond Ytterdal1

Dept. of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway1

Dept. of Information Technology & Electrical Engineering, ETH Zürich, Zürich, Switzerland2

Abstract—In this paper, behavioural circuit simulations are
used to compare the leapfrog control-bounded analog-to-digital
converter to relevant continuous-time sigma-delta modulators
in terms of nominal performance and sensitivity to component
variations, clock jitter and finite gain-bandwidth product. Sim-
ulations show that the nominal performance of the leapfrog is
similar to that of a continuous-time sigma-delta modulator of the
same loop filter order and with the same number of quantization
levels. Component variations in the leapfrog’s analog system will
introduce errors in the final output, unless the coefficients of
the reconstruction filter are modified accordingly. Nevertheless,
the simple, modular structure, analytical stability guarantee and
single-bit quantizers make the leapfrog an interesting alternative
to conventional continuous-time sigma-delta modulators.

Index Terms—Control-Bounded Analog-to-Digital Conversion,
Continuous-time sigma-delta, ADC, Component Variations, jitter,
gain-bandwidth

I. INTRODUCTION

Control-bounded analog-to-digital conversion was proposed
in [1] and further developed in [2] and [3]. The conver-
sion principle builds on the idea that analog amplification,
counteracted by a digital control, amounts to an implicit
A/D conversion. This general idea enables a flexible design
framework that promotes novel co-optimization between the
analog and digital domain of an analog-to-digital converter
(ADC) [2], [3]. Previously, a solid mathematical foundation
was presented together with a number of fundamental ADC
design proposals. These designs were mainly verified through
behavioural simulations and discrete component prototypes.
However, no transistor level implementation on silicon has
been reported so far.

Two of the fundamental architectures introduced in [2] are the
so called chain-of-integrators (CI) and leapfrog (LF) ADC, see
Fig. 1. These architectures consist of a chain of integrators,
with or without leapfrog feedback, where each integrator is
individually stabilized by local digital control. The simple,
modular structure, analytical stability guarantee and single-bit
quantizers makes these structures attractive from an implemen-
tation point of view.

Although conceptually different, these architectures struc-
turally resembles those of a continuous-time sigma-delta mod-
ulator (CTSDM). It is therefore interesting to compare the
nominal performance of a CI and LF ADC to CTSDMs with

the same oversampling ratio (OSR) and loop filter order. Addi-
tionally, it is reasonable to assume that the main performance
limitations associated with CTSDMs will also apply to control-
bounded analog-to-digital converters (CBADCs).

In this paper, we compare the CI and LF ADC to comparable
CTSDMs in terms of nominal performance and sensitivity to
component variations, clock jitter and finite gain-bandwidth
product (GBWP) of the amplifiers.

The paper is organized as follows. The CI and LF ADCs are
presented in Section II together with a brief introduction to
the control-bounded conversion concept. The nominal perfor-
mance comparison to CTSDMs is presented in Section III
before sensitivity to component variations, clock jitter and
finite GBWP is addressed in Sections IV to VI. Finally,
conclusions are drawn in Section VII.

II. THE LEAPFROG CBADC

A homogeneous, N -th order, LF analog system is defined by
a system of differential equations of the form

ẋℓ(t) = βxℓ−1(t) + αxℓ+1(t) + κsℓ(t) (1)

for ℓ ∈ [1, . . . , N ] where x0(t) ≜ u(t) refers to the input
signal, and xN+1(t) ≜ 0. Such a LF analog system, together
with a local digital control, operated with a control period
1/fs, is shown in Fig. 1. The CI analog system is a special
case of the LF analog system were α = 0.

The basic principle of the CI and LF structures is to amplify
the input signal through a chain of integrators. The output of
each integrator is interpreted as a state of the analog system
and each state is being stabilized by the non-return-to-zero
(NRZ), single-bit control signals s1(t) . . . sN (t).

The final ADC output is obtained by running the control
signals sℓ(t) through the finite impulse response (FIR) filter

û[k] =

K2−1∑
j=−K1

N∑
ℓ=1

hj,ℓ · sℓ(tk+j), (2)

referred to as the reconstruction filter. The filter coefficients
hj,ℓ are calculated based on a parameterized description of the
analog system (see (1)), and the reader is referred to [3] for a
complete derivation.
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Fig. 1: A N -th order homogeneous chain-of-integrators (CI) (α = 0) and leapfrog (LF) (α < 0) control-bounded ADC.

As shown in [2], the performance of a LF CBADC may
be expressed in terms of G(ω), which denotes the transfer
function from u(t) to xN (t). For a bandwidth frequency ωB,
the signal-to-noise ratio (SNR) of the ADC output may be
approximated as

SNR ∝
(
PxN

∫ ωB

0

|G(ω)|−2dω

)−1

, (3)

where PxN
is the total power of xN (t). The SNR of a CBADC

is therefore improved by increasing the in-band amplification
of the analog system or reducing the magnitude of xN (t).

A. Parametrization

Parametrizing the LF ADC for a target specification involves
choosing the parameters β, α, κ and fs such that the ADC
achieves a target SNR over a desired bandwidth ωB. Due to
the chain-like structure of the CI and LF analog system, it
follows from (3) that SNR ∝ β2N . By a recursive argument
[3], it may be shown that the analog system has guaranteed
stability if

fs = 2|β| and κ = −β. (4)

In other words, increasing the SNR by increasing β comes at
a cost of higher control frequency, fs.

In contrast to the CI, the LF can have complex poles in
the transfer function, because of the feedback paths in the
analog system. As a result, the analog system can provide a
certain amplification over a wider bandwidth for the same β.
According to (3), the LF will therefore achieve a higher SNR
for the same fs, compared to the CI.

III. NOMINAL PERFORMANCE COMPARISON

In this section, we compare the nominal performance of the CI
and LF CBADC against various CTSDMs for different orders
N . In the following simulations, the LF is parameterized for
a target SNR of 90dB (cf. [2]), where β and fs satisfy the
analytical stability guarantee of (4). The CI is parameterized
with the same OSR and for both the CI and LF we use a
full scale (FS) input amplitude. The simulations are performed
using the circuit simulator Spectre, where the comparators and
active-RC integrators are modelled using verilog-a and the
input signal is a sinusoidal with frequency fi = fs/1024.

The number of coefficients K1 + K2 used for the recon-
struction filter (2) must be sufficiently large, such that it does
not limit the SNR. For simplicity K1 = K2 = 210 was used
in all simulations in this paper, which is a number that is
intentionally chosen larger than necessary for the target SNR
of 90dB.

The CTSDMs are synthesized using the Schreier MATLAB
Toolbox [4] with optimized placement of the noise transfer
function (NTF) zeros. For each modulator, the OSR is chosen
the same as for the LF, and the maximum out-of-band NTF
gain, ||NTF||∞, is empirically maximized by verifying stabil-
ity with a 0.5FS sinusoidal and DC input. Both the CBADCs
and CTSDMs are simulated with an NRZ feedback digital-to-
analog converter (DAC).

The simulation results are shown in Fig. 2. For each N ,
CTSDMs with an N th order loop-filter are simulated with an
N level (SD NL), 1 bit (SD 1B) and N bit (SD NB) quantizer.
For each N , both cascade of resonators with feedback (CRFB)
and cascade of resonators with feedforward (CRFF) structures
are simulated and the one with highest SNR is shown in the
plot. The choice of quantization levels is motivated by the
following observations. As the CI and LF ADCs has N output
bits per clock period, a CTSDM with an N bit quantizer would
have the same output bitrate. However, the required hardware
complexity will be higher for an N bit quantizer compared to
N single bit quantizers. To match the number of quantization
levels, CTSDMs with N level quantizers are simulated for N
equal 2, 4 and 8.

The figure shows that the LF ADC has a similar nominal
performance as a CTSDM with an N level quantizer. In other
words, if the N level quantizer of an N th order CTSDM is
implemented as a flash ADC, a similar nominal performance
could be achieved by using the same comparators as local
control on a LF analog system, thereby avoiding the linearity
issues associated with the multi-level feedback DACs.

Furthermore, Fig. 2 show that the SNR of the LF ADC
increase by approximately 12dB per N relative to an N th
order, single-bit CTSDM. As expected, the CTSDMs with
N bit quantizers has an nominal SNR advantage. It should
be noted that, in these comparisons, the CI and LF ADC
has an analytical stability guarantee, while the ||NTF||∞ of
the CTSDMs is empirically optimized for the given quantizer
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Fig. 2: Simulated and normalized SNR for a LF and CI
CBADC compared against CTSDMs with single bit (1B), N-
level (NL) and N-bit (NB) quantizers.

and OSR. Higher SNR could therefore be achieved for the
CBADCs, at the expense of reduced stability margin, by
violating the stability guarantee of (4).

Finally, we note that the SNR of the CI decrease with
approximately 6 dB per N relative to the LF. This is explained
by the extended bandwidth of the LF analog system, as briefly
discussed in Section II-A.

IV. COMPONENT VARIATIONS

For CTSDMs implemented with active-RC integrators, the
time-constants are subject to significant process variations due
to the inaccuracy of the RC-product. When the time-constants
are increased from their nominal value, the loop-filter become
less aggressive, resulting in weaker quantization noise suppres-
sion and reduced nominal performance. On the other hand,
lower time-constants increase the nominal performance, but
also the risk of instability [5]. As the SNR of a CBADC is
proportional to the in-band amplification of the analog system
(see (3)), a similar behaviour should be expected for the LF
ADC.

Fig. 3 shows simulated SNR versus normalized time constant
values for the 4th order LF ADC, and the 4 level (4L) CRFB
CTSDM from Fig. 2. In the simulations, all time constants
are varied by the same amount, which may be considered the
worst-case scenario in terms of stability [6].

As the reconstruction filter of a CBADC is derived from a
parameterized description of the analog system, we would
expect a reduced SNR if the integrator time constants change
without the reconstruction filter being modified accordingly.
From Fig. 3 we see that this is indeed the case, where
the orange and blue lines shows the SNR of the LF with
and without corrected filter coefficients, respectively. For this
particular system, the SNR reduction due to mismatch in the
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Fig. 3: Simulated SNR vs. normalized time constant for a 4th
order CRFB CTSDM with a 4 level (FB 4L) quantizer, and a
4th order LF ADC with (LF4 c) and without (LF4) corrected
filter coefficients.

filter coefficients is more than 20dB for a 5% variation in time
constants.

When the reconstruction filter is corrected to match the analog
system, the LF has an increased stability margin compared to
the CTSDM, due to the conservative stability guarantees (cf.
(4)). We conclude that a digital calibration is needed for the
CBADC reconstruction filter, which is possible and practical,
as will be shown in another paper.

V. CLOCK JITTER

Clock jitter is known to be one of the major performance
limiting factors in CTSDM [7]. For a clock period T , the k’th
rising edge will ideally arrive at a time t0k = kT . However, in
the presence of clock jitter, the clock rises at tjk = kT + τk,
where the absolute clock jitter τk is a random variable.

For modulators with square wave feedback DAC, variations in
the width of the feedback pulse is known to be the dominant
source of jitter error [8], as the corresponding error signal
is not shaped by the loop-filter. The performance of the
modulator is therefore nearly independent of the statistical
distribution of τk, as it is the variation in the pulse width,
not in the absolute position, that limits the performance [9].
When analyzing the jitter induced error with NRZ and return-
to-zero (RZ) feedback DACs, reasonably accurate results may
be obtained by assuming τk are i.i.d. zero mean, Gaussian
random variables with standard deviation σj .

The power spectral density (PSD) of the jitter induced error
under the stated assumptions is analyzed in a number of
publications, e.g. [10], [11]. In summary, the PSD of the jitter
error may be expressed as

Pj(f) ∝ ∆
(σj

T

)2

T, (5)

where ∆ denotes the quantizer step-width.

For the LF ADC, we would similarly expect the pulse width
variations in the control signal s1(t) to be the dominant source
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Fig. 4: Simulated SNR vs. normalized RMS jitter (σj/T ) for
a 3rd order LF and CRFF CTSDM with one bit quantizer
(CRFF 1B).

of jitter error, as the equivalent error signal adds in parallel
with the input. It is therefore reasonable to assume that the
PSD of the jitter error in the LF ADC follows the same
proportionality relations as described by (5).

For the clock jitter simulations, we consider it most relevant to
compare architectures with the same quantizer step-width, as
these would be expected to suffer similarly from jitter noise, cf.
(5). Fig. 4 compares simulated SNR versus normalized RMS
jitter (σj/T ) for the 3rd order LF and the CRFF CTSDM with
one bit quantizer (CRFF 1B) from Fig. 2. The figure shows
that both the LF and the CTSDMs follow a −20dB/decade
relationship to σj , as expected from (5). When simulated with
the same input amplitude, the LF and CTSDM has essentially
the same SNR when limited by jitter noise. However, the LF is
designed for an FS amplitude which gives an SNR advantage
of 6dB.

VI. FINITE AMPLIFIER GAIN-BANDWIDTH PRODUCT

In order to draw any conclusions on the expected power
consumption of a LF ADC relative to comparable CTSDMs,
the power consumption of the amplifiers used to implement
the active-RC integrators of the loop filter must be taken into
account. In particular the first amplifier, whose errors are not
suppressed by the loop filter, is often the most power-hungry
component of the whole modulator [12]. In the CTSDM
literature, the power consumption is often assumed to be
proportional to the required GBWP [13], defined as

GBWP ≜ 2πA0fu, (6)

where A0 is the DC-gain of the amplifier and fu denotes the
open-loop unity gain frequency. To obtain some insight in the
expected power consumption of the LF ADC we therefore
compare the sensitivity to the amplifier’s GBWP.

Simulated (normalized) SNR versus amplifier GBWP is shown
in Fig. 5 for a 2nd and 4th order LF (LF2, LF4) and a
2nd and 3rd order CRFB CTSDM (CRFB2, CRFB3). In
the simulations, the GBWP of all amplifiers are varied by
the same amount. The OSR values are the same as used in
the simulations of Fig. 2. However, due to stability issues,
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Fig. 5: Simulated normalized SNR vs. normalized amplifier
GBWP, for a 2nd and 4th order LF (LF2, LF4) and a 2nd and
3rd order CRFB CTSDM (CRFB2, CRFB3).

||NTF||∞ was reduced to 1.3 for the CTSDMs, compared
to the optimized value used for the simulations in Fig. 2.
Despite the reduced NTF gain, the CTSDMs still suffer from
stability issues for smaller GBWPs, which is seen in Fig. 5 for
normalized SNR values below −40dB. For the LF simulations,
the filter coefficients of (2) has been modified to account for
the internal amplifier pole, such that the filter error described
in Section IV is avoided.

The main observation from Fig. 5 is that both the LFs and
CTSDMs approach their nominal SNR for GBWP ≈ 2πfs.
This coindices with previous studies on CTSDMs concluding
that an amplifier unity gain frequency of fu ≈ fs is needed,
unless the finite GBWP is compensated by modifying the
loop filter coefficients [13]. Similar compensation techniques
could be derived for the LF as well; however, simulations with
GBWP compensation is beyond the scope of this paper.

The simulated sensitivity to the amplifiers’ GBWP indicate
that the LF and CI impose similar requirements on the
amplifiers as a CTSDM with the same fs and filter order N .
We find it reasonable to conclude that the analog system of a
LF ADC is expected to have a similar power consumption as
the loop filter of a comparable CTSDM.

VII. CONCLUSIONS

Through behavioural circuit simulations, the CI and LF
CBADC have been compared to relevant CTSDMs in terms of
nominal performance and sensitivity to clock jitter, component
variations and finite GBWP in the amplifiers.

It was shown that the LF and CI ADC have a similar nominal
performance as a CTSDM of the same order and with the
same number of quantization levels, but with a larger stability
margin and the benefit of only using single-bit quantizers.

Without calibration, the mismatch between the reconstruc-
tion filter and analog system makes any CBADC sensitive
to component variations. However, if corrected for, the LF



displays a larger tolerance to time constant variations than a
correspondingly parameterized CTSDM.

The CI and LF’s sensitivity to clock jitter and finite GBWP
is comparable to that of a CTSDM. Simulations with finite
GBWP show that the amplifier’s unity gain frequency should
be on the order of fu ≈ fs to avoid significant performance
degradation.

The presented comparison results shows that the LF ADC
could be an interesting alternative to conventional CTSDM.
It has the benefit of a simple, modular structure with an
analytical stability guarantee and single-bit quantizers.

ACKNOWLEDGMENT

The authors would like to thanks Prof. José M. de la Rosa
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