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Abstract
A control-bounded analog-to-digital converter consists of a linear analog system that
is subject to digital control, and a digital filter that estimates the analog input signal
from the digital control signals. Such converters havemany commonalities with delta–
sigma converters, but they can use more general analog filters. The paper describes
the operating principle, gives a transfer function analysis, and describes the digital
filtering. In addition, the paper discusses two examples of such architectures. The
first example is a cascade structure reminiscent of, but simpler than, a high-order
MASH converter. The second example combines two attractive properties that have
so far been considered incompatible. Its nominal conversion noise (assuming ideal
components) essentially equals that of the first example. However, its analog filter is a
fully connected network to which the input signal is fed in parallel, which potentially
makes it more robust against nonidealities.

Keywords Analog-to-digital conversion · Continuous-time delta–sigma modulator ·
Chain of integrators · Kalman recursions · Wiener filter · Factor graphs

1 Introduction

Control-bounded analog-to-digital conversion was proposed in [13], as a simplifica-
tion of control-aided analog-to-digital conversion proposed in [10]. Like several other
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conversion principles (including pipelined conversion [5], beta-expansion conversion
[2,6,7], and modulo conversion [15]), control-bounded conversion works by multi-
ple stages of analog amplification with intermediate steps of adding (or subtracting)
digitally controlled quantities. However, control-bounded conversion stands out by
its analog part operating in continuous time (rather than with discrete-time samples),
which is reminiscent of continuous-time delta–sigma (Δ�) converters. Moreover, the
reconstruction principle of control-bounded conversion differs from other conversion
principles. In consequence, control-bounded converters can use more general analog
filter structures (potentially consuming less power) than delta–sigma converters.

The description in [13] is terse and the performance analysis is rudimentary. In
this paper, we describe the operating principle and the digital estimation in more
detail and give a more detailed transfer function analysis. Moreover, we discuss two
examples of such architectures. The first example (first presented in [13]) is a chain of
integrators resembling a multi-stage noise shaping (MASH) Δ� ADC [8,16,17], but
with a simpler analog part that precludes a conventional digital cancellation scheme.

Before we move on to the second example, we recall here that the challenge of real-
world analog-to-digital conversion is not to minimize the nominal conversion noise
with ideal analog circuits, but to cope efficiently (in particular, with limited power
consumption) with nonideal circuits and disturbances including component mismatch,
thermal noise, etc. But analog cascade structures (as in high-order MASH ADCs and
in our first example) are particularly sensitive to disturbances and imperfections at
the early stage(s). Therefore, these early stage(s) need to be implemented with much
higher precision (and therefore with much higher power consumption) than the later
stages,1 which counteracts the idea of a uniform cascade.

With this background, we now turn to our second example, which is obtained from
the first example by an orthogonal transformation of the analog state space. In con-
sequence, the nominal conversion performance (with ideal analog circuits) remains
essentially unchanged and is easily scaled to any desired level. However, the physical
state space is no longer a cascade, but a fully connected (and nearly uniform) net-
work, into which the analog input signal is fed fully in parallel. In consequence, this
new architecture promises to be quite robust against component mismatch and other
nonidealities.

The paper is structured as follows. The operating principle and the basic transfer
function analysis of control-bounded ADCs are given in Sect. 2. A conversion noise
analysis is given in Sect. 3. The first example architecture is presented and analyzed
in Sect. 4. Section 5 introduces the state space representations that are used in the
remaining sections. The second example architecture is described in Sect. 6. The
digital estimation filter is described in Sect. 7. The actual derivation of this filter is
outlined in the Appendix.

1 This is common knowledge among designers, but textbooks seem to be taciturn about it.
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Fig. 1 Control-bounded analog-to-digital converter. The digital control signals s1(t), . . . , sn(t) remain
constant between the ticks of the digital clock. The digital estimate û(t) is mathematically defined in
continuous time, but will practically be computed at discrete times t1, t2, . . .

2 Operating Principle

2.1 Analog Part and Digital Control

Consider the system of Fig. 1. The continuous-time input signal is a scalar u(t) or a
vector

u(t)
�= (

u1(t), . . . , uk(t)
)T

. (1)

The input signal is assumed to be bounded, i.e., |u(t)| ≤ bu or |u�(t)| ≤ bu for all times
t and all components � = 1, . . . , k. This input signal is fed into a continuous-time
analog linear system, which produces a continuous-time vector signal

y(t)
�= (

y1(t), . . . , ym(t)
)T

, (2)

and the digital control in Fig. 1 ensures that

|y�(t)| ≤ by for all t and � = 1, . . . ,m. (3)

The digital control signals s1(t), . . . , sn(t) remain constant between the ticks of
the digital clock. We will assume that the control is additive, i.e.,

y(t) = y̆(t) − q(t), (4)

where y̆(t) (given by (7)) is the fictional signal y(t) that would result without the digital
control and where q(t) is fully determined by the control signals s1(t), …, sn(t). The
dependence of q(t) on s1(t), …, sn(t) may be complicated, but we will never need
(nor attempt) to determine q(t) explicitly.
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At this point, we have already finished the discussion of the digital control in this
section: its role and its effect are fully described by (3) and (4).

Note that both y̆(t) and q(t) are fictional signals that are not subject to any physical
limits. In fact, the first key idea of control-bounded conversion is to use the approxi-
mation

y̆(t) ≈ q(t). (5)

Roughly speaking, the relative error of the approximation (5) can be made to vanish
by letting the magnitudes of y̆(t) and q(t) grow to infinity while the difference (4) is
kept small by (3).

We now assume that the uncontrolled analog filter is time-invariant and stable2 with
impulse response matrix

g(t)
�=

⎛

⎜
⎝

g1,1(t) . . . g1,k(t)
...

. . .
...

gm,1(t) . . . gm,k(t)

⎞

⎟
⎠ , (6)

where gi, j (t) is the impulse response from u j (t) to yi (t). We then have

y̆(t) = (g ∗ u)(t) (7)

�=
⎛

⎜
⎝

(g1,1 ∗ u1)(t) + . . . + (g1,k ∗ uk)(t)
...

(gm,1 ∗ u1)(t) + . . . + (gm,k ∗ uk)(t)

⎞

⎟
⎠ . (8)

Wewill also need the (elementwise) Fourier transform of (6), which will be denoted
by G(ω) and will be called analog transfer function (ATF) matrix.

2.2 Digital Estimation and Transfer Functions

Using the approximation (5), the digital estimation produces an estimate of u(t) from

q(t) ≈ (g ∗ u)(t), (9)

which is a continuous-time deconvolution problem. The basic estimate is given by

û(t)
�= (h ∗ q)(t), (10)

where h(t) is a matrix of stable impulse responses with (elementwise) Fourier trans-
form given in (15).

Note that û(t) is mathematically defined in continuous time, but it will in practice
be computed at discrete times t1, t2, . . . . These computations will be discussed in

2 The extension of the following transfer function analysis to unstable analog systems is possible, but
beyond the scope of this paper.
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Sect. 7; it will be shown there that û(t1), û(t2), . . . can be computed with a digital
linear filter directly from the digital control signals s1(t), . . . , sn(t), without actually
computing q(t).

Using (4), the estimate (10) can be written as

û(t) = (h ∗ y̆)(t) − (h ∗ y)(t) (11)

≈ (h ∗ y̆)(t) (12)

= (h ∗ g ∗ u)(t). (13)

Note that the step from (11) to (12) uses (5) or, equivalently, the approximation

y(t) ≈ ẙ(t)
�= 0, (14)

as illustrated in Fig. 1.
The impulse response matrix h in (10) is determined by its (elementwise) Fourier

transform

H(ω)
�= G(ω)H

(
G(ω)G(ω)H + η2Im

)−1
, (15)

where (·)H denotes Hermitian transposition, Im is the m-by-m identity matrix, and
η > 0 is a design parameter. The estimate (10) with h(t) as in (15) can be viewed as
a statistical estimate or as the solution of a least-squares problem, as will be detailed
in Sect. 2.3.1.

In the important special case where u(t) is scalar (i.e., k = 1), the ATFmatrixG(ω)

is a column vector and H(ω) is a row vector; in this case, using the matrix inversion
lemma, (15) can be written as

H(ω) = G(ω)H

‖G(ω)‖2 + η2
(16)

and

H(ω)G(ω) = ‖G(ω)‖2
‖G(ω)‖2 + η2

. (17)

Note that H(ω)G(ω) ≈ 1 for frequencies ω such that ‖G(ω)‖ � η while
H(ω)G(ω) ≈ 0 for ‖G(ω)‖ � η.

Equations (11) and (13) can then be interpreted as follows. Eq. (13) is the signal
path: the signal u(t) is filtered with the signal transfer function (STF) matrix

H(ω)G(ω) = G(ω)H
(
G(ω)G(ω)H + η2Im

)−1
G(ω). (18)

The second term in (11) is the conversion error

ε(t)
�= û(t) − (h ∗ g ∗ u)(t) (19)

= −(h ∗ y)(t), (20)
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with y(t) bounded as in (3). Because of (20),H(ω)will be called noise transfer function
(NTF)matrix. TheNTF (16) is the starting points of the performance analysis inSect. 3.

Note that the STF (17) or (18) does not entail a phase shift and is free of aliasing
(hence the title of [13]): the sampling in Fig. 1 (which is used for the digital control)
affects the error signal (20), but not (13).

2.3 More About the Estimation Filter

2.3.1 Alternative Characterizations

The estimate (10) and (15) is further illustrated by noting that it is the solution of the
continuous-time least-squares problem

û(t) = lim
Δ→∞ argmin

u(t)

(∫ t+Δ

t−Δ

‖y(τ )‖2 dτ + η2
∫ t+Δ

t−Δ

‖u(τ )‖2 dτ
)

, (21)

where the minimization is subject to the constraints (4) and (7). The first term in (21)
quantifies (14) while the second term in (21) is a regularizer.

Moreover, the estimate (10) and (15) coincides also with the Wiener filter that
computes the LMMSE (linear minimum mean squared error) estimate of u(t) from
q(t) under the assumptions that y1(t), . . . , ym(t) are independent white-noise signals
with power σ 2

Y and u1(t), . . . , uk(t) are independent white-noise signals with power
σ 2
U = σ 2

Y /η2.
The proof of these claims is beyond the scope of this paper; for the essential ideas,

we refer to [4] and the Appendix.
However, the estimate (10) and (15) is not justified by these characterizations, but

by its practicality.

2.3.2 Bandwidth and the Parameter �

For the following discussion of the parameter η in (15), we restrict ourselves to the
scalar-input case, where the STF and the NTF are given by (17) and (16), respectively.
In this case, it is easily seen from (17) that η determines the bandwidth of the estimate
(10). For example, assuming that ‖G(ω)‖∞ decreases with |ω|, the bandwidth is
roughly given by 0 ≤ |ω| ≤ ωcrit with ωcrit determined by

‖G(ωcrit)‖ = η. (22)

However, the bandwidth of the estimate may be reduced by postfiltering as mentioned
in Sect. 2.3.3.

It is also worth noting that the parameter η equals the ratio of the STF (17) and the
NTF at ωcrit

H(ω)G(ω)

‖H(ω)‖
∣∣
∣∣
ω=ωcrit

= η, (23)

as illustrated in Fig. 5.



Circuits, Systems, and Signal Processing

2.3.3 Postfiltering

The basic estimate (10) need not be the final converter output. For example, an extra
(digital!) anti-aliasing filter before sampling û(t) at discrete times t1, t2, . . . will nor-
mally be advantageous. The integration of such an extra filter in the computations of
the basic estimate is straightforward, cf. Sect. 7.3.

2.4 Remarks

We conclude this section with a number of remarks. First, we note that the conversion
error (19) is not due to the quantizers in Fig. 1, but due to the approximation (14) or
equivalently (5). In other words, the conversion error (19) is fundamentally unrelated
to the precision of the quantizer circuits in Fig. 1 (except indirectly via the effectiveness
of the digital control).

Second, we note that the details of the digital control (clock frequency, thresholds,
etc.) do not enter the transfer function analysis of Sect. 2.2.

Third, the digital estimate (10) is fundamentally a continuous-time quantity, and
the resulting STF (18) and (17) are exact continuous-time expressions. Sampling this
estimate at discrete times may be required in most applications, but it is not essential
to the converter in itself. In fact, nontrivial continuous-time digital signal processing
(e.g., beamforming) can be done before any sampling, as suggested in [14, Section
10.2].

Forth, the digital estimation and the transfer function analysis of Sect. 2.2 work
for arbitrary stable analog transfer functions g(t). In fact, stability of the uncontrolled
analog system has here been assumed only for the sake of the analysis: the actual
digital filter in Sect. 7 is indifferent to this assumption (hence the title of [10]).

Finally, the purpose of the analog linear system in Fig. 1 is not to prepare the
input signal for quantization, but to amplify the input signal, over a frequency band
of interest, into the vector signal (7) such that (5) is a good approximation. This very
general setting offers design opportunities for the analog system/filter beyond the
limitations of conventional Δ� modulators, as will be illustrated by the examples in
Sects. 4 and 6.

3 Conversion Noise Analysis

In this section, we derive an expression (32) for the nominal conversion noise (assum-
ing ideal analog circuits and no thermal noise) in terms of the amplitude response of
the analog system. While the analysis in Sect. 2 was mathematically exact, we will
here resort to approximations similar to those routinely made in the analysis of Δ�

ADCs. We again restrict ourselves to the case where u(t) is scalar (i.e., k = 1) and
will be denoted by u(t).
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3.1 SNR and Statistical Noise Model

The conversion performance can be expressed as the signal-to-noise ratio (SNR)

SNR
�= S

SN
(24)

where S and SN are the power of û(t) and the power of the conversion error (20),
respectively, both within some frequency band B of interest.

The numerator in (24) depends, of course, on the input signal. A trivial upper bound
is S ≤ b2u , and for a full-scale sinusoid, we have

S = b2u/2. (25)

As for the in-band power SN of the conversion error (20), we begin by writing

E
[
ε(t)2

] = 1

2π

∫ ∞

−∞
H(ω)SyyT(ω)H(ω)H dω, (26)

where y(t) is modeled as a stationary stochastic process with power spectral density
matrix

SyyT(ω)
�=

∫ ∞

−∞
E
[
y(t + τ)y(t)T

]
e−iωτ dτ. (27)

(These statistical assumptions cannot be literally true, but they are a useful model.)
Restricting (26) to the frequency band B of interest, we have

SN = 1

2π

∫

B
H(ω)SyyT(ω)H(ω)H dω. (28)

3.2 White-Noise Analysis

If SyyT(ω) in (28) is approximated by

SyyT(ω) ≈ σ 2
y|BIm, (29)

we further obtain

SN ≈
σ 2
y|B
2π

∫

B
H(ω)H(ω)H dω (30)

=
σ 2
y|B
2π

∫

B
‖G(ω)‖2

(‖G(ω)‖2 + η2
)2 dω (31)

≈
σ 2
y|B
2π

∫

B
1

‖G(ω)‖2 dω, (32)
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Fig. 2 Analog part and digital control of the example in Sect. 4 for ρ1 = . . . = ρn = 0

where the last step is justified by ‖G(ω)‖ ≥ η for ω ∈ B, cf. (17) and Sect. 2.3.2.
Note that the approximation (29) is restricted toB and is ultimately vindicated by the

accuracy of (32). Using (32), the scale factor σ 2
y|B can be determined by simulations.

It is obvious from (32) that a large SNR (24) requires a large analog amplification,
i.e., ‖G(ω)‖ must be large throughout B.

4 A First Example: A Chain of Integrators

This example was first presented in [13], but it is here analyzed much further.
Moreover, this example is the basis of the examples in Sect. 6. (An even more detailed
analysis of this architecture as well as a prototype implementation is reported in [14]
and [12].)

4.1 Analog Part and Digital Control

The analog part including the digital control is shown in Fig. 2. The input signal u(t)
is a scalar. The state variables x1(t), …, xn(t) obey the differential equation

d

dt
x�(t) = −ρ�x�(t) + β�x�−1 − κ�β�s�(t) (33)

with ρ� ≥ 0, κ�β� ≥ 0, and with x0(t)
�= u(t). The switches in Fig. 2 represent

sample-and-hold circuits that are controlled by a digital clock with period T . The
threshold elements in Fig. 2 produce the control signals s�(t) ∈ {+1,−1} depending
on the sign of x�(kT ) at sampling time kT immediately preceding t .

We will assume |u(t)| ≤ b, and the system parameters will be chosen such that

|x�(t)| ≤ b (34)

holds for � = 1, . . . , n.
The control-bounded signals y1(t), . . . , ym(t) are selected from the state variables

x1(t), . . . , xn(t) as will be discussed below.
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Fig. 3 Conventional view of the first stage in Fig. 2

4.2 Relation to MASH Converters

Figure 2 has some similarity with a continuous-time MASH Δ� modulator [8,16].
However, MASH converters are fundamentally built around the idea of passing only
(or primarily) the quantization error of previous stages to the next stage. By contrast,
Fig. 2 does not compute any quantization error signal at all, which is a significant
simplification; in consequence, we conjecture that Fig. 2 can be implemented with
lower power consumption than the analog part of a MASH converter.

Indeed, Fig. 2 cannot be handled by the digital cancellations schemes normally
used in MASH converters. To see this, consider Fig. 3, which shows how the first
stage in Fig. 2 would conventionally be modeled (perhaps with κ̃ = κ), where e1(t)
is the local quantization error [17]. Since e1(t) enters the system in exactly the same
way as u(t) (except for a scale factor), these two signals cannot be separated by any
subsequent processing.

Nonetheless, the analysis in [14, Section 5.5.4] shows that Fig. 2 achieves essentially
the same nominal performance as a MASH converter.

4.3 Conditions Imposed by the Digital Control

The bound (34) can be guaranteed by the conditions

|κ�| ≥ b (35)

and

T |β�|
(|κ�| + b

) ≤ b. (36)

With the definition

γ�
�= T |β�|, (37)

(36) becomes

γ� ≤ b

|κ�| + b
(38)
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which implies γ� ≤ 1/2, and γ� = 1/2 is admissible if and only if |κ�| = b. In this
case (i.e., if |κ�| = b), the control frequency 1/T is admissible if and only if

1/T ≥ 2|β�|. (39)

4.4 Transfer Functions

Asmentioned, the control-bounded signals y1(t), . . . , ym(t) are selected from the state
variables x1(t), . . . , xn(t). Anobvious choice ism = n and y1(t) = x1(t), …, yn(t) =
xn(t). In this case, the ATFG(ω)

�= (
G1(ω), . . . ,Gn(ω)

)T of the uncontrolled analog
system (as defined in Sect. 2) is given by

Gk(ω) =
k∏

�=1

β�

iω + ρ�

. (40)

Another reasonable choice is m = 1 and y1(t) = xn(t) as in [13]. In this case, the
ATF is simply

G(ω) =
n∏

�=1

β�

iω + ρ�

. (41)

We now specialize to the case where β1 = . . . = βn = β and ρ1 = . . . = ρn = ρ,
which makes the analysis more transparent. For m = 1 as in (41), we then have

‖G(ω)‖2 = |Gn(ω)|2 =
(

β2

ω2 + ρ2

)n
. (42)

For m = n, we obtain

‖G(ω)‖2 =
n∑

k=1

|Gk(ω)|2 (43)

=
1 −

(
ω2+ρ2

β2

)n

(
ω2+ρ2

β2

)n (
1 − ω2+ρ2

β2

) . (44)

Note that, for ω2 + ρ2 < β2, |Gn(ω)|2 as in (42) is the dominant term in (43). In
consequence, G(ω) as in (42) yields almost the same performance as (43).

For illustration, the amplitude responses |G1(ω)|, …, |Gn(ω)| are plotted in Fig. 4
for n = 5, β = 10, and ρ ∈ {0, 0.03β}. Fig. 5 shows the resulting STF (17) and the
components H1(ω), …, Hn(ω) of the NTF (16) for m = n (i.e., with ‖G(ω)‖ as in
(44)) and η2 = 104.3.

From now on, we will normally assume ρ = 0 (i.e., undamped integrators).
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Fig. 4 Analog transfer functions (ATF) |G1(ω)|, . . . , |G5(ω)| of the example in Sect. 4.4, with ρ = 0
(solid) and some ρ > 0 (dashed). The frequency axis is normalized by the minimum control frequency (39)

Fig. 5 Signal transfer function (STF) and noise transfer functions (NTF) of the example in Sect. 4.4, with
ρ = 0 (solid) and some ρ > 0 (dashed). Also shown is the bandwidth parameter ωcrit from (22)

4.5 Bandwidth

Using (42) (with ρ = 0), the bandwidth ωcrit defined by (22) is easily determined to
be

ωcrit = |β|/η 1
n . (45)
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Fig. 6 Simulated power spectral density of the estimate û(t) for the example in Figs. 4 and 5 with n =
2, . . . , 5 stages (from top to bottom), with OSR = 32, and with a full-scale sinusoidal input signal u(t)

For G(ω) as in (44), Eq. (45) does not strictly hold, but it is a good proxy for the
bandwidth also in this case.

In the following, we will use the quantity

OSR
�= 1/T

2 fcrit
(46)

with fcrit
�= ωcrit/(2π), which may be viewed as an analog of the oversampling ratio

of Δ� converters. With (45) and with

γ
�= T |β| (47)

as in (37), we then obtain

η =
(γ

π
OSR

)n
. (48)

Finally, we recall from Sect. 4.3 that stability can be guaranteed if and only if γ ≤ 1/2.

4.6 Simulation Results

Figures 6 and 7 show the power spectral density (PSD) of the digital estimate û(t)
for the numerical example in Figs. 4 and 5 with ρ = 0 and with further details as
given below. In Fig. 6, the input signal u(t) is a full-scale sinusoid; in Fig. 7, the input
signal is u(t) = 0. Except for the peak in Fig. 6, both Figs. 6 and 7 thus show the PSD
of the conversion error (19).
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Fig. 7 Same as Fig. 6, but with input signal u(t) = 0 and for n = 1, . . . , 5

As for the details in these simulations,3 we have OSR = 32, b = 1, κ = 1.05, and
T = 1/21.5, resulting in γ = 10/21.5. The frequency of the sinusoidal input signal
is 0.1 Hz.

A key point of Figs. 6 and 7 is that the PSD of the conversion error appears to be
well described by the white-noise analysis of Sect. 3.2.

4.7 Concluding Remarks

Throughout this section,wehave just discussed the nominal performance of a converter
with the structure of Fig. 2. A detailed discussion of circuit mismatch, thermal noise,
etc., is beyond the scope of this paper, but given in [12,14]. Further contributions of
[14] that are not reported here include a working hardware prototype and variations
of the integrator chain including a chain of oscillators and a leapfrog structure.

5 State Space Representation

Both our further examples (in Sect. 6) and the digital estimation (in Sect. 7) require
the analog linear system of Fig. 1 to be described in state space form. Specifically, we
write

d

dt
x(t) = Ax(t) + Bu(t) + �s(t) (49)

3 Simulating the analog system requires to solve differential equations.We used the SciPy software package
[18], which implements a Runge–Kutta method.
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and

y(t) = CTx(t), (50)

where x(t) is the state vector, s(t)
�= (

s1(t), . . . , sn(t)
)T comprises the digital control

signals, andA, B,C, �, are matrices of suitable dimensions, The ATF matrix can then
be written as

G(ω) = CT (iωIn − A)−1 B. (51)

For the example of Sect. 4, we have

A = AC
�=

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

−ρ1 0 . . . . . . 0

β2 −ρ2 0
. . .

...

0 β3 −ρ3
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 βn −ρn

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

, (52)

B = BC
�= (

β1, 0, . . . , 0
)T, and

� = �C
�=

⎛

⎜⎜
⎜⎜
⎝

−κ1β1 0 . . . 0

0 −κ2β2
. . .

...
...

. . .
. . . 0

0 . . . 0 −κnβn

⎞

⎟⎟
⎟⎟
⎠

. (53)

If we choose m = n and y1(t) = x1(t), …, yn(t) = xn(t), we have CT = In ; if,
instead, we choose m = 1 and y1(t) = xn(t), we have CT = (0, . . . , 0, 1).

6 Hadamard Converters

The chain of integrators discussed in Sect. 4 provides excellent nominal performance
(i.e., assuming ideal analog circuits). However, the real problem of analog-to-digital
conversion is to efficiently cope with nonideal circuits. But every cascade structure,
including that of Fig. 2, is sensitive to disturbances and imperfections at the early
stage(s). In consequence, these early stage(s) need to be implemented with much
higher precision (and therefore with much higher power consumption) than the later
stages, which counteracts the apparent symmetry between the stages in Fig. 2.

We now show that the symmetry of the physical analog circuitry can be restored by
a transformation of the state space. The resulting structure is conjectured to be more
robust against disturbances and imperfections, as will be discussed in Sect. 6.4.
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6.1 The Transform

For the transform, we use the orthogonal n × n matrix

H̃
�= 1√

n
H, (54)

where H is a Hadamard matrix. (Other orthogonal matrices could be used, but the
Hadamard matrix yields circuit friendly coefficients.)

The state space representation of the Hadamard converters is given by (49) and (50)
with

A = H̃ACH̃T, (55)

B = αH̃BC (56)

= αβ1√
n

(1, . . . , 1)T, (57)

and

CT = α−1CT
CH̃

T = α−1H̃T, (58)

where α > 0 is a scale factor and we chose CC = In . (The digital control and the
matrix � will be discussed below.) Note that (55)–(58) is just the chain of integrators
in a different coordinate system. In particular, the ATF (51) is unchanged by this
transformation. However, the circuit topology has changed: it is obvious from (57)
that the input signal u(t) is fed to all integrators equally and in parallel, and the matrix
(55) is fully connected.

For example, for n = 4, the Hadamard matrix

H =
(
1 1
1 −1

)
⊗

(
1 1
1 −1

)
, (59)

β1 = . . . = β4 = β, and ρ1 = . . . = ρ4 = 0, we obtain

A = β

4

⎛

⎜⎜
⎝

3 1 1 −1
−1 −3 1 −1
−1 1 1 3
−1 1 −3 −1

⎞

⎟⎟
⎠ . (60)

We also note from (51) that ‖G(ω)‖2 is unchanged if (58) is replaced by CT =
α−1U, where U is an arbitrary orthogonal matrix. In fact, replacing (58) by CT = aU,
with an arbitrary nonzero scale factor a ∈ R, leaves the nominal conversion noise (32)
unchanged (since the scale factor a enters quadratically both into ‖G(ω)‖2 and into
σ 2
y|B). In particular, (58) can be replaced by

CT = In (61)
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Fig. 8 Hadamard converters

with no effect on the nominal conversion noise.

6.2 Digital Control

The digital control can be effected in different ways, resulting in different Hadamard
converters. In the following discussion, we refer to Fig. 8 and the symbols defined
therein.

We also keep in mind that the mapping

R
n → R

n : ξ �→ H̃ξ (62)

preserves the Euclidean norm of ξ , but it does not preserve bounds on the individual
components of ¸ = (

ξ1, . . . , ξn
)T. In fact, if ¸ is only constrained by |ξ�| ≤ b, � ∈

{1, . . . , n}, then the best bound on the components of H̃ξ is
√
nb.

6.2.1 Integrator Chain Control (ICC)

This mode emulates the control of the chain of integrators (Fig. 2) using the {+1,−1}-
valued control signals s̃1(t), . . . , s̃n(t) with κ̃� = κ�β�, � ∈ {1, . . . , n}; the control
signals s̆1(t), . . . , s̆n(t) are not used (i.e., κ̆1 = . . . = κ̆n = 0). The variables x̃(t) =(
x̃1(t), . . . , x̃n(t)

)T in Fig. 8 are the outputs of the integrators in the chain (Fig. 2),

which are related to the physical states x(t) = (
x1(t), . . . , xn(t)

)T of the Hadamard
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converter by

x(t) = αH̃x̃(t). (63)

Choosing

α = 1/
√
n (64)

makes sure that all components of x are kept within the same limits as the components
of x̃.

6.2.2 Diagonal Control (DC)

In this mode, the integrator outputs x1(t), . . . , xn(t) in Fig. 8 are kept within an
admissible range using the {+1,−1}-valued control signals s̆1(t), . . . , s̆n(t); the sig-
nals s̃1(t), . . . , s̃n(t) are not used (i.e., κ̃1 = . . . = κ̃n = 0). In (49), this is expressed
by

s(t) = s̆(t)
�= (

s̆1(t), . . . , s̆n(t)
)T (65)

and 0 is a diagonal matrix with diagonal elements −κ̆ .
For guaranteed stability, the analysis of Sect. 4.3 can be adapted as follows. For

the sake of illustration, we here specialize to n = 4 and A as in (60). We assume
|u(t)| ≤ b and we wish to guarantee

|x�(t)| ≤ b (66)

for all � ∈ {1, . . . , n}. Disregarding the control, it follows from (57) and (60) that the
input of each integrator is upper bounded by

ζ
�= |αβ|b√

n
+ 6|β|b

4
. (67)

Thus, (66) can be guaranteed by the conditions

|κ̆| ≥ ζ (68)

and

T
(|κ̆| + ζ

) ≤ b. (69)

Conditions (68) and (69) can be simultaneously satisfied if and only if

|β|T ≤ 1

3 + |α| . (70)
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This bound is more restrictive than (39). However, extensive simulations have shown
that (70) is overly pessimistic; in fact, even |β|T = 1/2 as in (39) appears to suffice
(cf. Fig. 9, which will be discussed in Sect. 6.3).

6.2.3 Combined Control (CC)

The best results (to be detailed below) are obtained by using both the control signals
s̆1(t), . . . , s̆n(t) and s̃1(t), . . . , s̃n(t) in Fig. 8. In this case, mathematical guarantees
for |x�(t)| ≤ b may be difficult to obtain, or too conservative to be useful.

6.3 Simulation Results

Figures 9, 10, 11, and 12 show some simulation results with these different control
schemes. In all these simulations, we have β2 = . . . = βn = β, |β|T = 1/2, n = 4,
and α = 1/

√
n = 1/2. Moreover, we have:

ICC: κ̆ = 0, κ̃ = β, and β1 = β.
DC: κ̆ = β, κ̃ = 0, and β1 = 0.8β.
CC: κ̆ = κ̃ = β/

√
2, and β1 = 0.8β.

These choices for the parameters of DC and CC are heuristic.
Figure 9 shows the effectiveness of the different control schemes by showing his-

tograms of max�∈{1, ...,n}{|x�(t)|} and of max�∈{1, ...,n}{|x̃�(t)|}, sampled over the time
t , for specific parameter settings as in Fig. 10. The corresponding histograms for
Figs. 11 and 12 look quite similar.

Figures 10, 11, and 12 show the PSD of the digital estimate û(t). In Figs. 10
and 11, the input signal u(t) is a full-scale sinusoid; in Fig. 12, the input signal is a
small positive constant (specifically, u(t) = 0.025). The sharp peaks in Fig. 12 (and
probably also in the other figures) are limit cycles.

From these figures, DC appears to offer little advantages while CC appears to be
most attractive; in particular, CC can be used with very low OSR (46), where ICC fails
due to limit cycles.

6.4 Robustness Against Nonidealities

So far, we have only considered the functionality of Hadamard converters with ideal
circuits. However, our primary motivation for considering such converters is that we
conjecture them to be potentially very robust against component mismatch and other
nonidealities. This conjecture is suggested by the fact thatHadamard converters behave
physically much like parallel structures, as is obvious from (57).

In order to demonstrate these robustness properties,we consider a possible hardware
implementation as shown in Fig. 13.

This implementation uses a differential op-amp with capacitive feedback to facili-
tate the integrators of the Hadamard converter. The transformation H̃ is realized using
a resistor network as shown in Fig. 14.
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Fig. 9 Histogram of maximal component amplitudes of x(t) (dashed) and x̃(t) (solid), for integrator chain
control (ICC), diagonal control (DC), and combined control (CC)

Fig. 10 Simulated power spectral density of the estimate û(t) of Hadamard converters of order n = 4 with
a full-scale sinusoidal input signal u(t) and OSR = 16

The global resistive values R and the capacitors valuesC , in the feedback path from
the op-amps, are chosen such that

2

RC
= β. (71)
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Fig. 11 Same as Fig. 10, but with OSR = 2

Fig. 12 Same as Fig. 11, but with (very small) constant input u(t)

We now consider the following mismatch scenario. The resistors are independently
drawn from a uniform distributionwith support of±1%deviation from their respective
nominal values. The same scenario is repeated for the chain-of-integrators hardware
realization from [12]. The resulting PSDs of the estimate, averaged over 500 such
simulations, are shown in Fig. 15. It is obvious that the Hadamard converter effectively
suppresses the harmonic distortion caused by the mismatch and results in better SNR
performance.
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Fig. 13 Circuit implementation of the control-bounded Hadamard converter for n = 4. An implementation
for the resistor networksH4(R) is shown in Fig. 14. Note that the integrators are implemented as differential
amplifiers with capacitive feedback resulting in eight state vector voltages x+

1 (t), x−
1 (t), . . . , x+

4 (t), x−
4 (t).

However, as the corresponding signals are represented as differential voltages, i.e., x�(t) = x+
�

(t)− x−
�

(t),
the state space order m = n = 4. The feedback capacitors are all of the same capacitive value C which
is chosen, together with R, such that they agree with (71). Finally, R∞ represents a resistor value that is
substantially larger than R

Fig. 14 A H4(R) Hadamard resistor network where the k-th differential output is connected to the �-th
differential input via the k-th row �-th column resistor pair in the figure
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Fig. 15 Simulated averaged power spectral density of the estimate û(t) for the mismatch scenario in
Sect. 6.4. The figure shows a chain-of-integrators converter (CI) as in [12], and a Hadamard converter (HC)
with ICC control architecture as in Fig. 13. Also shown is the nominal (no-mismatch) performance

Of course, such simulations do not prove the conjectured robustness of the
Hadamard converter in an actual implementation, but they support the conjecture.

7 Computing û(t)

The job of the digital estimation in Fig. 1 is to compute samples of the continuous-time
estimate û(t) defined by (10) and (15). At first sight, this computation looks daunting,
involving not only the continuous-time convolution (10), but also the computation of
q(t) from the control signals s1(t), . . . , sn(t).

It turns out, however, that samples of û(t) can be computed quite easily and effi-
ciently by the recursions given in Sect. 7.1. A brief derivation of these recursions is
given in the Appendix; in outline, it involves the following steps.

The starting point is that the filter (15) is formally identical with the optimal filter
(the Wiener filter) [1,9] for a certain statistical estimation problem (cf. Sect. 2.3.1).
This same statistical estimation problem can also be solved by a variation of Kalman
smoothing [9], which leads to recursions based on a state space model of the analog
system. The precise form of the required Kalman smoother is not standard, as it
combines input signal estimation as in [3]with a limit to continuous-time observations.

Throughout, we will use the state space representation of the analog system as in
Sect. 5.
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7.1 Basic Filter Algorithm

Assume that we wish to compute the basic estimate û(t) given by (10) for t =
t1, t2, . . . .Wewill here restrict ourselves to regular sampling4 with tk = kTu such that
T (the period of the clock in Figs. 1 and 2) is an integer multiple of Tu ; in other words,
we interpolate regularly between the ticks of the clock in Fig. 1. Moreover, we focus
on the steady-state case k � 1 where border effects can be neglected. The algorithm
consists of a forward recursion and a backward recursion.

Forward recursion: for k = 0, 1, 2, . . . , compute the vectors −→m k (of the same
dimension as x(t)) by

−→m k+1
�= Af

−→m k + Bfs(tk) (72)

starting from −→m 0
�= 0.

The required matrices Af and Bf will be given in Sect. 7.4.

Backward recursion: Compute the vectors ←−m k (of the same dimension as x(t))
by

←−m k
�= Ab

←−m k+1 + Bbs(tk) (73)

starting from ←−m N = 0 for some N > k, as well as

û(tk) = WT(←−m k − −→m k
)
. (74)

The required matrices Ab and Bb and the matrix W will be given in Sect. 7.4.
To be precise, (74) agrees with (10) only for k � 0 and k � N . In practice,

however, N − k need not be very large for (74) to be accurate, i.e., only a moderate
delay (i.e., latency) is required.

7.2 FIR Filter Version

The computation of (74) can be formulated as a finite impulse response (FIR) filter.
For Tu = T (i.e., samples of û(t) are produced at the clock rate), we thus obtain

û(tk) ≈
L2∑

�=−L1

h̃� s(tk−�) (75)

with coefficient matrices

h̃�
�=

{
WTA�

bBb if � ≤ 0

−WTA−�+1
f Bf else,

(76)

4 In this section, we use k to index time steps, which is unrelated to the dimensionality of u(t) as in (1).
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where L1 > 0 and L2 > 0 need to be chosen large enough such that the truncation of
(74) to the finite sum (75) does not significantly affect the overall performance.

If the control signals s(t) = (
s1(t), . . . , sn(t)

)T are {+1,−1} valued, the computa-
tion of (75) requires n(L1 + L2 +1) additions (and no multiplications) per time index
k for a scalar input signal (or for each scalar component of a vector input signal).

Multiple alternative ways to organize the computation of (74) are discussed in [14].

7.3 Decimation Filtering

Inmany applications, the clock rate samples (75) will be subsampled to a lower rate. In
this case, including an anti-aliasingfilter before subsampling (like in aΔ� converter) is
mandatory. If the control signals s(t) are {+1,−1} valued, combining the anti-aliasing
filtering with the filtering (75) retains the multiplierless FIR filter structure.

7.4 Offline Computations

We now turn to the matricesAf ,Bf ,Ab,Bb and the matrixW in (72)–(74), which can
be precomputed.

We first need the symmetric square matrices
−→
V and

←−
V (of the same dimension as

A) as follows. The matrix
−→
V is the limit

−→
V

�= lim
τ→0

lim
�→∞

−→
V� (77)

of the iteration

−→
V�+1

�= −→
V� + τ

(
A

−→
V� + (A

−→
V�)

T + BBT − 1

η2
−→
V�CCT−→V�

)
; (78)

equivalently,
−→
V is the solution of the continuous-time algebraic Riccati equation

A
−→
V + (A

−→
V )T + BBT − 1

η2
−→
VCCT−→V = 0. (79)

The matrix
←−
V is defined almost identically, but with a sign change in A, i.e.,

←−
V is

the solution of the continuous-time algebraic Riccati equation

A
←−
V + (A

←−
V )T − BBT + 1

η2
←−
VCCT←−V = 0. (80)

The matrix W in (74) is then obtained by solving the linear equation

(
−→
V + ←−

V )W = B (81)

forW.
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The matrix Af in (72) is given by

Af
�= e(A−−→

VCCT/η2)Tu (82)

and the matrix Ab in (73) is

Ab
�= e−(A+←−

VCCT/η2)Tu . (83)

Finally, the matrix Bf in (72) is

Bf
�=

∫ Tu

0
e(A−−→

VCCT/η2)(Tu−t)� dt (84)

and the matrix Bb in (73) is

Bb
�= −

∫ Tu

0
e−(A+←−

VCCT/η2)(Tu−t)� dt . (85)

Note that the only free parameter of the digital filter is η2 as in (15).
Care must be taken that the quantities of this section are computed with sufficient

numerical precision, and the matrices
−→
V and

←−
V should be exactly symmetric.

For the example of Sect. 4 (and Fig. 2) with n = 2 and ρ = 0, the quantities in (81)
turn out to be

−→
V =

(
β
√
2η βη

βη βη
√
2η

)
, (86)

←−
V =

(
β
√
2η −βη

−βη βη
√
2η

)
, (87)

and W = 1
2
√
2η

(1, 0)T, which may be a useful test case for numerical computations.

8 Conclusion

Control-bounded conversion is a new type of analog-to-digital conversion where a
digital estimate of the continuous-time analog input signal(s) is obtained from a prin-
cipled solution of a natural inverse problem. We have developed the fundamentals
of such converters, including a transfer function analysis and the implementation of
the digital estimate as a practical linear filter. The flexibility of the digital control
and estimation allows to use more general analog filter structures than conventional
converters.

We gave two examples of such architectures. The first example is a chain of integra-
tors (first proposed in [13]), which is reminiscent of a continuous-time MASH ADC,
but with a simpler analog part that cannot be satisfactorily handled by a conventional
digital cancellation scheme. The second example is obtained from the first example
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by a transformation of the state space, resulting in essentially the same nominal per-
formance, but with a fully connected physical structure that is conjectured to be more
robust against component mismatch and other nonidealities.

Funding This research work was funded by ETH Zurich.

Availability of data andmaterials Data sharing is not applicable to this article as no datasets were generated
or analyzed during the current work.

Declarations

Conflict of interest Not applicable.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

9 Appendix

In this appendix, we give a condensed derivation of the algorithmof Sect. 7. (A detailed
development of all the required background is beyond the scope of this paper.)

Asmentioned in Sect. 2.3.1, the filter (15) can be viewed as amultivariate extension
of the continuous-time Wiener filter [1] that estimates a multivariate zero-mean white
Gaussian noise “signal” U(t) from the signal

Ỹ(t)
�= (g ∗ U)(t) + Z(t), (88)

where Z(t) is m-dimensional zero-mean white Gaussian noise that is independent of
U(t). In this statistical model, the average

Ũ(t,Δ)
�= 1

Δ

∫ t

t−Δ

U(τ ) dτ (89)

(forΔ > 0) is a K -dimensional5 zero-meanGaussian randomvariablewith covariance

matrix
σ 2
U
Δ
IK . The covariance matrix

σ 2
Z

Δ
Im of Z(t) is defined analogously.

By “estimating U(t),” we really mean to estimate the random variable(s) (89) for
any fixed t , and then taking the limitΔ → 0 [4]. In this setting, the MAP estimate, the
MMSE estimate, and the LMMSE estimate agree and equal the mean of the posterior
distribution of Ũ(t,Δ) conditioned on the observation of Ỹ(t). The Wiener filter

5 In this appendix, we use K , rather than k as in (1), to denote the number of input signals.

http://creativecommons.org/licenses/by/4.0/
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Fig. 16 Two sections of the factor graph of the (uncontrolled) state space model. The total factor graph
consists of many such sections (perhaps with initial and final conditions, which we can ignore in this paper).
A box labeled “N (m, 6)” represents a multivariate Gaussian density with mean vector m and covariance
matrix 6, 0 refers to an all zero vector of appropriate dimensions, and a small filled box represents a known
quantity; all other boxes represent linear equations. This factor graph representation is exact only in the
limit Δ = tk − tk−1 → 0

computes this estimate (for Δ → 0) as

Û(t) = (h ∗ Ỹ)(t) (90)

where the Fourier transform of h(t) is (15) with

η2 = σ 2
Z/σ 2

U . (91)

Applying this Wiener filter to the signal q(t) as in (10) means that we solve the
statistical estimation problem for the observation Ỹ(t) = q(t).

The same statistical estimation problem can also be solved by a variation of Kalman
smoothing (or by an equivalent variation of recursive least squares, cf. (21)). In contrast
to the Wiener filter, the Kalman approach is based on the state space equations (49)
and (50), which leads to recursive estimation algorithms. We will use a discrete-
time approximation of the state space model with discrete times6 t1, t2, . . . and fixed
tk − tk−1 = Δ > 0; our continuous-time results will then be obtained by taking the
limit Δ → 0.

Fromnowon,wewill use factor graphs as in [11], which allow to compose recursive
estimation algorithms from lookup tables of “local” computations. A factor graph
of (the discrete-time approximation of) our statistical model in state space form is
shown in Fig. 16. Note that Fig. 16 represents the uncontrolled analog system with
the observations Ỹ(tk) = q(tk).

6 The discrete times t1, t2, . . . in this appendix (with tk − tk−1 = Δ → 0) are unrelated to the discrete
time steps in Sect. 7.
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Fig. 17 One section of the factor graph of the state space model with plugged-in digital control signals s(t).
The representation is exact only in the limit Δ = tk − tk−1 → 0, where eAΔ → In + AΔ

Now we plug in the (known and piecewise constant) control signals s(t) =
(s1(t), . . . , sn(t)) into the state spacemodel.We thus obtain the factor graph of Fig. 17,
where all the observed signals are now zero, cf. (14). This second factor graph is easy
to work with, and to take the Δ → 0 to continuous time at the end.

Using the notation of [11], we now consider the quantities −→mX(t) and
−→
V X(t) as

well as ←−mX(t) and
←−
V X(t). The former denote the mean vector and the covariance

matrix, respectively, of the forward sum-product message, which equals the Gaussian
probability density of the time-t state X(t) given past observations (up to a scale
factor); the latter denote the mean vector and the covariance matrix, respectively, of
the backward sum-product message, which equals the likelihood of the (given) future
observations conditioned on X(t) (up to a scale factor).

From Fig. 17, we determine these quantities using Tables II–IV of [11] as follows.
From (III.1) and (II.7) of [11], we have

−→
V X(t−k ) = eAΔ−→

V X(tk−1)(e
AΔ)T + σ 2

UΔBBT, (92)

and from (IV.2) and (IV.3) of [11], we have

−→
V X(tk ) = −→

V X(t−k ) − −→
V X(t−k )C

(
σ 2
Z

Δ
Io + CT−→V X(t−k )C

)−1

CT−→V X(t−k ) (93)

For Δ ≈ 0, we have

eAΔ ≈ In + ΔA; (94)
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thus (92) becomes

−→
V X(t−k ) ≈ −→

V X(tk−1) + Δ
(
A

−→
V X(tk−1) + (A

−→
V X(tk−1))

T + σ 2
UBB

T
)

(95)

and (93) becomes

−→
V X(tk ) ≈ −→

V X(t−k ) − Δ

σ 2
Z

−→
V X(t−k )CC

T−→V X(t−k ). (96)

Combining (95) and (96) yields (77)–(79) as the steady-state condition for

−→
V

�= −→
V X(t)/σ

2
U (97)

in the limit Δ → 0.
The derivation of (80) is essentially identical except that the matrix eAΔ is replaced

by its inverse, which amounts to a sign change in A.
As for −→mX(t), we have

−→mX(t−k ) = eAΔ−→mX(tk ) + �s(tk−1)Δ (98)

from (III.2) and (II.9) of [11], and

−→mX(tk ) = −→mX(t−k ) − −→
V X(t−k )C

(
σ 2
Z

Δ
Io + CT−→V X(t−k )C

)−1

CT−→mX(t−k ) (99)

from (IV.1) and (IV.3) of [11]. For Δ ≈ 0, we obtain with (94)

−→mX(tk ) = −→mX(tk−1) + Δ
(
A−→mX(tk−1) + �s(tk−1) − 1

η2
−→
VCCT−→mX(tk−1)

)
, (100)

where we have used the normalized stationary covariance matrix (97). Note that (100)
is exact in the limit Δ → 0 and amounts to the differential equation

d

dt
−→mX(t) =

(
A − 1

η2
−→
VCCT

)
−→mX(t) + �s(t). (101)

The solution of this differential equation (for t > 0) is

−→mX(t) = eÃt−→mX(0) + eÃt
∫ t

0
e−Ãτ�s(τ ) dτ (102)

with Ã
�= A − −→

VCCT/η2. This solution applies to any interval between tk and tk+1
in Sect. 7.1 and yields (72) with (82) and (84).

The derivation for ←−mX(t) is essentially identical except for a sign change in both A
and �, where the latter is due to (II.10) of [11].



Circuits, Systems, and Signal Processing

Finally, we use the result from [3] that the MAP/MMSE/LMMSE estimate ofU (t)
(i.e., the posterior mean of (89) for Δ → 0) is given by

û(t) = σ 2
UB

TW̃(t)
(←−m X(t) − −→m X(t)

)
(103)

with

W̃(t)
�=

(−→
V X(t) + ←−

V X(t)

)−1
, (104)

which yields (74) and (81). Note that (103) and (104) may also be obtained directly
from Fig. 17 using (II.12), (III.8), and (III.9) of [11] and then taking the limit Δ → 0.
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