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Abstract—This paper studies the capability of a recurrent
neural network model to memorize random dynamical firing
patterns by a simple local learning rule. Two modes of learn-
ing/memorization are considered: The first mode is strictly online,
with a single pass through the data, while the second mode uses
multiple passes through the data. In both modes, the learning is
strictly local (quasi-Hebbian): At any given time step, only the
weights between the neurons firing (or supposed to be firing) at
the previous time step and those firing (or supposed to be firing)
at the present time step are modified.

The main result of the paper is an upper bound on the proba-
bility that the single-pass memorization is not perfect. It follows
that the memorization capacity in this mode asymptotically scales
like that of the classical Hopfield model (which, in contrast, mem-
orizes static patterns). However, multiple-rounds memorization is
shown to achieve a higher capacity (with a nonvanishing number
of bits per connection/synapse). These mathematical findings may
be helpful for understanding the functions of short-term memory
and long-term memory in neuroscience.

I. INTRODUCTION

In this paper, we study the capability of a simple recurrent
neural network to memorize and to reproduce a random
dynamical firing pattern.

The background of this paper are neural networks with
spiking neurons [1] – [5]. Such networks may be studied either
as models of biological neural networks, or as candidates for
neuromorphic hardware, or as a mode of mathematical signal
processing as in [6]. In any case, memorizing long sequences
of firing patterns must be an elementary capability of such
networks. (Think of whistling a tune after hearing it once, or
a few times.)

The classic reference for memorization is the Hopfield
network [7], [8, Chapter 42]. Recurrent networks with higher
capacities have been proposed in [9] – [11]. However, all
these networks memorize static vectors (as static attractors of
a dynamical network). By contrast, in this paper, we study the
memorization of dynamical firing sequences, which seems to
have been somewhat neglected in the literature.

The present paper is not immediately related to the vast
literature on (nonspiking) recurrent neural networks such as
LSTM networks [12] and others [13] – [16].

We will consider two different modes of learning. The first
mode is strictly online, with a single pass through the data; the
second mode uses multiple passes through the data. In both
modes, the learning is strictly local, or quasi Hebbian: At any
given time n, only the weights between the neurons firing

(or supposed to be firing) at time n − 1 and those firing (or
supposed to be firing) at time n are modified. The first mode
may thus be viewed as a model for instantaneous learning in
short-term memory.

The main result of this paper is an upper bound on the
probability that the single-pass memorization is not perfect.
From this bound, it follows that the asymptotic memorization
capacity in the strict online mode is at least O

(
L/ ln(L)

)
bits

per neuron, which vanishes in terms of bits per connection
(i.e., per synapse). By contrast, multiple-rounds memorization
is easily seen to achieve a significantly higher capacity, with a
nonvanishing number of bits per connection/synapse and ex-
ceeding the capacity of the Hopfield network. The (important)
ability of single-pass online memorization thus appears to be
bought at the expense of a smaller capacity, which may be of
interest for understanding the functions of short-term memory
and long-term memory in neuroscience [17] – [20].

The paper is structured as follows. The network model is
defined in Section II. Section III introduces the considered
learning rules. The main result—an upper bound on the
probability of imperfect single-pass memorization—is stated
in Section IV. The bulk of the paper is Section V, which proves
the bound of Section IV. Section VI investigates multi-pass
memorization via a least-squares approach. The asymptotic
memorization capacity of both learning modes is addressed in
Section VII, and Section VIII concludes the paper.

II. THE NETWORK MODEL

We consider a discrete-time network model with L neurons
ξ1, . . . , ξL as follows. Each neuron is a map ξ` : RL → {0, 1}
defined as

y 7→ ξ`(y) :=

{
1, if 〈y,w`〉+ η` ≥ θ`
0, otherwise,

(1)

which is characterized by a weight vector w` ∈ RL and
a threshold θ` ∈ R and where 〈y,w`〉 := wT

` y is the
standard inner product. The quantity η` is an arbitrary bounded
disturbance (or error) with

−η ≤ η` ≤ η, (2)

which subsumes imprecise computations and freak firings. In
our main result, η will be allowed to grow linearly with L, cf.
(18) and (19) below.
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These neurons are connected to form an autonomous
recurrent network producing the signal (firing sequence)
y[1],y[2], . . . ∈ {0, 1}L with

y[k + 1] :=
(
ξ1(y[k]), . . . , ξL(y[k])

)T
(3)

beginning from some initial value y[0] ∈ RL.
In this paper, we want the network to reproduce a signal

(i.e., a firing sequence) of length N ≥ 2 that is given in
the form of a matrix A = (a1, . . . ,aN ) ∈ {0, 1}L×N with
columns a1, . . . ,aN ∈ {0, 1}L, i.e., we want (3), when
initialized with

y[0] = a0 := aN (4)

to yield

y[k] = a(k mod N) (5)

for k = 1, 2, . . ., repeating the columns of A forever.
Such a network can be used as an associative memory as

follows: When initialized with an arbitrary column of A

y[0] = an, (6)

the network will produce the sequence

y[k] = a((k+n) mod N), k = 1, 2, . . . (7)

III. LEARNING RULES

Given the matrix A = (a`,n) (where a`,n is the entry in row
` and column n), we consider learning rules of the following
form. Starting from some initial value w

(0)
` ∈ RL the weights

are updated recursively by

w
(n)
` = w

(n−1)
` + ∆w`,n, n = 1, . . . ,K, (8)

where the weight increment ∆w`,n of neuron ξ` at time n
depends only on a`,n (the desired behavior of this neuron at
this time) and on the preceding firing vector an−1, and perhaps
also on the previous weights w

(n−1)
` of this neuron.

This mode of learning may be called quasi-Hebbian since
the stated restrictions on ∆w`,n essentially agree with those of
Hebbian learning [21], except that the term “Hebbian” is nor-
mally reserved for unsupervised learning. The point of these
restrictions is their suitability for hardware implementation,
both biological and neuromorphic.

We will consider two versions of (8). In the first version
(cf. Section IV), we pass through the data exactly once, i.e.,
K = N , and

∆w`,n := a`,n
(
an−1 − p1L

)
, (9)

where

1L :=
(
1, 1, . . . , 1

)T ∈ RL (10)

and 0 < p < 1 is defined in Section IV. In the second version
(in Section VI), we allow multiple passes through the data,
i.e., K � N , and

∆w`,n := β(n)
(
a`,n −

〈
an−1,w

(n−1)
`

〉)
an−1, (11)

for some step size β(n) > 0.

IV. SINGLE-PASS MEMORIZATION – MAIN RESULT

For a network as in Section II, we now analyze the
probability of perfect memorization for a random matrix
A ∈ {0, 1}L×N with i.i.d. entries a`,n parameterized by

p := Pr[a`,n = 1], (12)

which we denote by A
i.i.d.∼ Ber(p)L×N .

The weight vectors are defined as

w` := w
(N)
` (13)

where w
(N)
` is defined recursively as

w
(n)
` :=

{
w

(n−1)
` , if a`,n = 0

w
(n−1)
` + an−1 − p1L, if a`,n = 1,

(14)

and w
(0)
` := 0, for n = 1, . . . , N , as in (9), resulting in

w` =
∑
j∈J`

(
aj−1 − p1L

)
=
∑
j∈J`

aj−1 − |J`|p1L, (15)

where J` is the set

J` := {n ∈ {1, . . . , N} : a`,n = 1} (16)

of desired firing positions of neuron ξ` and |J`| denotes its
cardinality. It is easily verified that

E[w`] = 0. (17)

Let EA be the event that the memorization of A is not
perfect. Our main result is the following theorem.

Theorem 1 (Upper Bound on Pr[EA]). For all integers L ≥ 1

and N ≥ 2, 0 < p < 1, A
i.i.d.∼ Ber(p)L×N , the recurrent

network with weight vectors (15), thresholds

θ` := θ :=
1

4
Lp(1− p), ` = 1, . . . , L, (18)

disturbance bound

η := η̃ · θ, 0 < η̃ < 1, (19)

and initialized with any column of A will reproduce a periodic
extension of A with

Pr[EA]

< 2LNe−
1
8 (1−η̃)

2p2(1−p)2 LN + LNe−DKL( 1+η̃
2 p‖p)L, (20)

where DKL(p1‖p2) denotes the Kullback–Leibler divergence
(as defined in (49) below) between two Bernoulli distributions
with success probabilities 0 < p1, p2 < 1. �

In consequence, a sufficient condition for the bound in (20)
to vanish for L→∞ is

N ≤ 1

8
(1− η̃)2p2(1− p)2 L

ln(L2)
. (21)

Some numerical examples are given in Figure 1, which plots L
vs. N for the right-hand side of (20) to achieve some desired
level.



Clearly, for all ε > 0, there exists Lε ∈ N such that
L2/ ln(L) ≥ L2−ε for all L ≥ Lε. It follows that

LN ≥ L2−ε (22)

for N = L/ ln(L) and L → ∞, i.e., asymptotically the
network is able to memorize almost square matrices with
instantaneous learning as in (13) – (15).

V. PROOF OF THEOREM 1

We now prove Theorem 1, by using the union bound and
by upper bounding the error probability for a single entry a`,n
which amounts to bound the tails of 〈an−1,w`〉.

The memorization is perfect if and only if ξ`(an−1) = a`,n
for all ` ∈ {1, . . . , L} and for all n ∈ {1, . . . , N}. By the
union bound, we have

Pr[EA] ≤
L∑
`=1

N∑
n=1

Pr[ξ`(an−1) 6= a`,n] . (23)

Moreover, using the same threshold θ for each neuron and by
the law of total probability, we have

Pr[ξ`(an−1) 6= a`,n]

= (1− p) Pr[ 〈an−1,w`〉+ η` ≥ θ | a`,n = 0]

+ pPr[ 〈an−1,w`〉+ η` < θ | a`,n = 1] . (24)

Now, let ` ∈ {1, . . . , L} and let n ∈ {1, . . . , N} be fixed
but arbitrary. Then

〈an−1,w`〉 =

〈
an−1,

∑
j∈J`

(
aj−1 − p1L

)〉
(25)

=
∑
j∈J`

〈
an−1,aj−1 − E[aj−1]︸ ︷︷ ︸

=: ãj−1

〉
(26)

=

N∑
j=1

a`,j 〈an−1, ãj−1〉 (27)

= a`,n 〈an−1, ãn−1〉+ S`,n, (28)

where

S`,n :=
∑

j∈{1,...,N}\{n}

a`,j 〈an−1, ãj−1〉. (29)

Lemma 1. The random variable S`,n as defined in (29) has
expectation zero, i.e.,

E[S`,n] = 0, (30)

and its moment generating function is upper bounded by

E
[
etS`,n

]
< e

t2

8 LN (31)

for all t ∈ R. �

A proof of Lemma 1 is given in [28, Appendix A].
Let us define the event

Ea`,n :=
{
ξ`(an−1) 6= a`,n

}
. (32)
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Fig. 1. Value of L required for the right-hand side of (20) to equal 10−3,
10−6, 10−9, 10−12 (from bottom to top) for p = 1/2, and η̃ = 1/8.

Then by (28) we can upper bound (24) as

Pr
[
Ea`,n

]
≤ Pr[S`,n ≥ θ − η` | a`,n = 0]

+ Pr[ 〈an−1, ãn−1〉+ S`,n < θ − η` | a`,n = 1] . (33)

As (global) threshold we choose

θ :=
1

4

∑
a∈{0,1}

E[ 〈an−1,w`〉 | a`,n = a] , (34)

cf. Figure 2, and it can be shown that

θ =
1

4
E[〈an−1, ãn−1〉] . (35)

Note that S`,n depends on a`,n. To get rid of the conditioning
on a`,n in (33), we observe that an error, i.e., Ea`,n implies
either |S`,n| ≥ θ− η`, or |S`,n| < θ− η` and 〈an−1, ãn−1〉+
S`,n < θ − η`, cf. Figure 2. Thus by the union bound, we
obtain

Pr
[
Ea`,n

]
≤ Pr[|S`,n| ≥ θ − η`]

+ Pr[〈an−1, ãn−1〉 < 2(θ − η`)] (36)
≤ Pr[|S`,n| ≥ θ − η]

+ Pr[〈an−1, ãn−1〉 < 2(θ + η)] (37)
= Pr[|S`,n| ≥ θ(1− η̃)]

+ Pr[〈an−1, ãn−1〉 < 2θ(1 + η̃)] , (38)

where in (37) we applied (2), and (38) holds because of (19).
Now, we apply the Chernoff bound [22] to both terms on

the right-hand side of (38). Thus, we have

Pr[S`,n ≥ θ(1− η̃)] ≤ min
t>0

E
[
etS`,n

]
etθ(1−η̃)

(39)

< min
t>0

e
t2

8 LN

etθ(1−η̃)
(40)

= e−
2θ2(1−η̃)2

LN . (41)



The step from (39) to (40) follows from (31). The bound (40)
is minimized by tmin = 4θ(1− η̃)/(LN) which implies (41).

The lower tail of S`,n, i.e., Pr[S`,n ≤ −(θ − η)] can be
upper bounded analogously. Thus by the union bound of both
tails, we obtain

Pr[|S`,n| ≥ θ(1− η̃)] < 2e−
2θ2(1−η̃)2

LN . (42)

As for the other term on the right-hand side of (38), we
note

〈an−1, ãn−1〉 =

L∑
`=1

a`,n−1(a`,n−1 − p) (43)

= (1− p)
L∑
`=1

a`,n−1 (44)

since a1,n−1, . . . , aL,n−1
i.i.d.∼ Ber(p), thus

1

1− p
〈an−1, ãn−1〉 ∼ Bin(L, p), (45)

which together with (35) implies (cf. (18))

θ =
1

4
Lp(1− p). (46)

Then, inserting (46) into the right summand on the right-hand
side of (38) yields

Pr

[
〈an−1, ãn−1〉 <

1 + η̃

2
Lp(1− p)

]
= Pr

[
1

1− p
〈an−1, ãn−1〉 <

1 + η̃

2
Lp

]
(47)

≤ e−DKL( 1+η̃
2 p‖p)L, (48)

with Kullback–Leibler divergence (or relative entropy)

DKL(p1‖p2) := p1 ln

(
p1
p2

)
+ (1− p1) ln

(
1− p1
1− p2

)
, (49)

for 0 < p1, p2 < 1, cf. [23]. From (47) to (48) we applied the
bound stated in [28, Appendix B] with 1 − δ = (1 + η̃)/2,
0 < η̃ < 1, because of (45). Note that in general

DKL(p1‖p2) 6= DKL(p2‖p1), (50)

and for all 0 < p1, p2 < 1

DKL(p1‖p2) ≥ 0 (51)

with equality if and only if p1 = p2.
Finally, we obtain

Pr
[
Ea`,n

]
< 2e−

2θ2(1−η̃)2
LN + e−DKL( 1+η̃

2 p‖p)L (52)

= 2e−
1
8 (1−η̃)

2p2(1−p)2 LN + e−DKL( 1+η̃
2 p‖p)L. (53)

Inequality (52) follows from (38) together with the two upper
bounds (42) and (48). In (53) we inserted (46).

The upper bound in (53) is independent on ` and n, and
thus (23) yields (20) which concludes the proof. �

θ − η θ 2θ 2(θ + η) E[〈an−1, ãn−1〉]0

a`,n = 0 a`,n = 1

z

p〈an−1,w`〉(z)

Fig. 2. Sketch of the probability distribution of (28) for the realization
〈an−1, ãn−1〉 = E[〈an−1, ãn−1〉] and the two cases a`,n = 0 (peak
on the left) and a`,n = 1 (peak on the right).

VI. MULTI-PASS MEMORIZATION

Perfect memorization can also be achieved via a certain
least-squares problem, and solving this least-squares problem
via stochastic gradient descent can be phrased as multi-pass
learning according to (11).

Specifically, for fixed ` ∈ {1, . . . , L}, consider the least-
squares problem

min
w`

N∑
n=1

|〈an−1,w`〉 − a`,n|2 = min
w`

∥∥Ãw` − ã`
∥∥2, (54)

where

Ã :=


aT
N

aT
1
...

aT
N−1

 ∈ RN×L, ã` :=

a`,1
...

a`,N

 ∈ RN . (55)

Note that Ã is the transposed matrix of (aN ,a1, . . . ,aN−1) ∈
RL×N , i.e., of the one time-step cyclic shifted version of A,
and ã` is the `-th row of A turned into a column vector.

If rank(Ã) = N , then

min
w`∈RL

∥∥Ãw` − ã`
∥∥2 = 0, (56)

which implies that A is (perfectly) memorizable, i.e.,
Pr[EA] = 0. For L ≥ N , 0 < p ≤ 1/2, A i.i.d.∼ Ber(p)L×N , it
follows from [24] that

Pr
[
rank(Ã) = N

]
≥ 1−

(
1− p+ oN (1)

)N
, (57)

where oN (1) denotes a sequence which converges to zero,
i.e., limN→∞ oN (1) = 0. Thus, any matrix A

i.i.d.∼ Ber(p)L×N

with L ≥ N , and in particular with

L = N (58)

is memorizable as N →∞.
Clearly, the least-squares problem (54) could be solved by

gradient descent as follows. Starting from some initial guess
w

(0)
` we proceed by

w
(n)
` = w

(n−1)
` + β(n)ÃT

(
ã` − Ãw

(n−1)
`

)
(59)



for n = 1, . . . ,K, K ∈ N, and with step size β(n) > 0.
The recursion (59) with constant β(n) = β converges to a
minimizer of (54) if

0 < β <
2

λmax(ÃTÃ)
, (60)

where λmax(ÃTÃ) > 0 is the largest eigenvalue of ÃTÃ.
Finally, replacing gradient descent as in (59) by stochastic

gradient descent yields

w
(n)
` = w

(n−1)
` + β(n)

(
a`,n −

〈
an−1,w

(n−1)
`

〉)
an−1, (61)

which is (11). Again, as in (5) the column indices are taken
modulo N and a0 := aN . It is shown in [25] that if at every
iteration the column indices are chosen randomly, then (61)
converges exponentially in expectation to a solution of (56).

VII. MEMORIZATION CAPACITY

LetAtypical be a typical set of matrices (in any standard sense
of “typical sequences” [23]) for the random matrix A

i.i.d.∼
Ber(p)L×N and |Atypical| denotes the cardinality of Atypical.
Then, we have

lim
L→∞

1

L
log2 |Atypical| = Hb(p)N, (62)

with the binary entropy function

Hb(p) := −p log2(p)− (1− p) log2(1− p) (63)

for 0 < p < 1, cf. [23].
The absolute capacity of a network is equal to the total

number of bits which can be memorized by the network, thus

Cabsolute ≥ log2 |Atypical| [ bits ]. (64)

A. Capacity per Neuron

From (62) and (64) it follows that the asymptotic memo-
rization capacity in bits per neuron is lower bounded by

Cneuron ≥ Hb(p)N [ bits per neuron ]. (65)

For the single-pass memorization rule (14) we have (21)
(which is a consequence of Theorem 1), and we thus obtain

Csingle-pass ≥ Cp,η̃
L

ln(L)
[ bits per neuron ] (66)

with constant

Cp,η̃ :=
1

16
(1− η̃)2p2(1− p)2Hb(p) > 0, (67)

for 0 < p, η̃ < 1. For the multi-pass memorization rule (59),
we have (cf. (58))

Cmulti-pass ≥ Hb(p)L [ bits per neuron ]. (68)

Both memorization capacities Csingle-pass and Cmulti-pass (in bits
per neuron) are unbounded in L.

B. Capacity per Connection (Synapse)

The capacity per connection (i.e., per nonzero weight) is

Cconnection =
Cneuron

L
, (69)

because in both modes the network is fully connected, and we
obtain

Csingle-pass ≥ Cp,η̃
1

ln(L)
[ bits per connection ], (70)

Cmulti-pass ≥ Hb(p) [ bits per connection ]. (71)

Thus, in bits per connection the capacity Csingle-pass seems to
vanish, whereas Cmulti-pass does not vanish as L→∞.

C. Comparison with the Hopfield Network

The capacity of the Hopfield model with L neurons is
L/(2 ln(L)) vectors with the Hebbian learning rule [26] and
L/
√

2 ln(L) vectors with the Storkey learning rule [27].
However, for a fair comparison with the results of the present
paper, it should be noted that each vector consists of L random
bits, resulting in a capacity of L/(2 ln(L)) bits per neuron and
L/
√

2 ln(L) bits per neuron, respectively. It follows that the
capacity (66) of single-pass memorization is (at least) of the
same order as the Hopfield model with Hebbian learning while
the capacity (68) of multi-pass learning exceeds the capacity
of the Hopfield model.

VIII. CONCLUSION

We have studied the capability of a “spiking” dynamical
neural network model to memorize random firing sequences
by a form of quasi-Hebbian learning. Our main result was
an upper bound on the probability that instantaneous mem-
orization is not perfect. From this bound, the instantaneous-
memorization capacity of a network with L neurons is (at
least) O

(
L/ ln(L)

)
bits per neuron. By contrast, iterative (i.e.,

multi-pass) learning is shown to achieve a capacity of O(L)
bits per neuron and O(1) bits per connection/synapse. These
results may be useful for understanding the functions of short-
term memory and long-term memory in neuroscience and their
potential analogs in neuromorphic hardware.
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