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Abstract—Local polynomial approximations represent a versa-
tile feature space for time-domain signal analysis. The parameters
of such polynomial approximations can be computed by efficient
recursions using autonomous linear state space models and often
allow analytical solutions for quantities of interest. The approach
is illustrated by practical examples including the estimation of
the delay difference between two acoustic signals and template
matching in electrocardiogram signals with local variations in
amplitude and time scale.

Index Terms—localized polynomials, localized feature space,
delay estimation, time-scale estimation, local signal approxima-
tion, autonomous linear state space models

I. INTRODUCTION

Estimating time-domain parameters such as time shifts
and time scales of signals are old problems. Signal scaling
in time, for example due to Doppler shifts, need to be
estimated for radar and sonar applications [1]. Similarly, in
the biomedical field, time scale estimates are fundamental
in ultrasound imaging [2]. Furthermore, time shift or delay
estimations are crucial for time of arrival computations, either
in acoustic signals, where the interaural time delay is essential
for source localization [3], or in radar or sonar systems for
object localization [4].

Existing methods for the estimation of such parameters can
be split into two groups: sample-based methods and feature-
space methods. Presumably, the most common sample-based
method for time delay estimation is cross-correlation [5], or, if
the goal is extended to time scale estimation, methods based
on complex ambiguity functions [6]. However, the precision
of the delay estimate is commonly restricted by the sampling
rate and a new evaluation is needed with each time delay
or time scale considered. More efficient adaptive algorithms
that can tackle these problems exist, but they are restricted to
narrowband signals [1], [7].

Feature-space methods such as the traditional Fourier trans-
form, the fractional Fourier transform, or the Hilbert trans-
form [8], [9], [2] involve transforming the signals to a space
spanned by sinusoids. However, working in such a space only
allows discrete frequency resolution, which, in turn, smears
time-domain signal features.
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Another class of feature-space methods are based on poly-
nomials. The substitution or interpolation of sample-based sig-
nals by local polynomials was already proposed in the 1940s,
along with the well-known B-splines [10]. For some time, this
approach was adopted mainly in computer-aided design and
in 3-D surface modeling [11]. Later on, splines have been
advancing into the broader field of signal processing [12].
More recently, signal analysis based on recursive localized
fitting of polynomials and/or sinusoids have been proposed in
[13]–[17], where the efficiency of the recursive computations
is based on autonomous (i.e., input-free) linear state space
models (ALSSMs).

In this paper, we propose the idea, implicitly suggested
by [13]–[17], to use locally fitted polynomials as feature
spaces for various signal processing tasks. Such polynomial
feature spaces are attractive for a number of reasons. First, as
observed in [13]–[17], the mapping to the local feature space
can be computed by efficient recursions. Second, quantities of
interest can often be determined analytically. Third, scaling
in time does not change the degree of the local polynomial
representations. Forth, polynomials are suitable for multistage
processing where feature-space polynomials are themselves
locally approximated by polynomials. Fifth, when polynomial
signal approximations are used in quadratic cost terms, the
terms are often conveniently also in polynomial form and
efficiently minimized using analytical or standard numerical
methods. To realize this idea of using polynomial approx-
imations for estimating time-domain parameters, we review
the recursive computations for transforming signals to the
proposed feature space. We also provide the analytical tools
necessary to manipulate such feature-space polynomials and
demonstrate the versatility of this approach with multiple
examples.

In Section II of this paper, we describe the recursive ALSSM
method for efficient transformation of a sample-based signal to
our feature space. In Section III, we introduce a vector notation
for feature-space polynomials and algebraic rules for efficient
manipulation of such polynomials. Section IV concludes with
three exemplary applications: fitting polynomials of different
degrees, time delay estimation between two acoustic signals,
and template matching with electrocardiogram signals; the
latter two examples both involve real data. We focus on
examples with only up to three channels here, however, due to
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the structure of the transform used and the low complexity of
our method, the generalization to a large number of channels
is straightforward and remains computationally attractive.

II. TRANSFORMATION TO LOCAL POLYNOMIAL FEATURE
SPACE USING ALSSMS

Prior to any further processing, we transform the given
scalar signal y = [y1, . . . , yK ]T ∈ RK at each time index
k ∈ {1, . . . ,K}, where K � 1, into a feature space X ∈ RQ.
The features are the coefficients of a polynomial of the degree
Q−1, which locally approximates a windowed segment of the
signal around k. The approximation is done by minimizing the
squared error cost

Jba(k, x, γ) =

k+b∑
i=k+a

γ|i−k|
(
yi − pi−k(x)

)2
, (1)

where a, b ∈ Z, a < b define the window boundaries,
γ ∈ (0, 1] is an exponential window weight that minimizes
the effect of samples further away from k on the cost and
where pi(x) is the polynomial function in i with coefficient
vector x = [λ0, . . . , λQ−1]T ∈ RQ,

pi(x) = λ0 + λ1i+ . . .+ λQ−1i
Q−1 . (2)

Without loss of generality, we assume that a ≤ 0 and b > 0.
Note that in the case of infinite windows (i.e., a → −∞),
γ < 1 must additionally hold for stability. More intricate
window weights and individual sample weights can be applied
in the cost function. This is further discussed in [14], [15]. The
coefficients of the polynomial approximation are thus given by

x̂k = argmin
x∈RQ

Jba(k, x, γ) . (3)

Representation of the polynomial function by an au-
tonomous linear state space model (ALSSM) leads to efficient
recursions for the polynomial approximation at each time step.
The ALSSM corresponding to pi(x) with coefficients x is

xi+1 = Axi (4)
pi(x) = cTxi , (5)

where the states xi ∈ RQ, A ∈ RQ×Q, and c ∈ RQ for a
system of order Q. The initial state is x0 = x. For the example
of Q = 4, the system matrices are

A =


1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1

 (6)

c =
[
1 0 0 0

]T
, (7)

with generalization to any order Q given in [15]; or in the
computationally more robust form using the binomial basis
in [14].

Then, pi(x) = cTAix holds, which we insert in the cost (1)
to obtain

Jba(k, x, γ) = J0
a(k, x, γ) + Jb1(k, x, γ) (8)

=
∑k
i=k+aγ

k−i(yi − cTAi−kx)2

+
∑k+b
i=k+1γ

i−k(yi − cTAi−kx)2 . (9)

The first summation term in (8), which pertains to the past
samples, can be written as

J0
a(k, x, γ) = κa,0k − 2xTξa,0k + xTW a,0

k x , (10)

where the parameters

κa,0k =
∑k
i=k+aγ

k−iy2
i ∈ R (11)

ξa,0k =
∑k
i=k+aγ

k−i(AT)i−kcyi ∈ RQ (12)

W a,0
k =

∑k
i=k+aγ

k−i(AT)i−kccTAi−k ∈ RQ×Q (13)

are computed by the forward recursions

κa,0k = γκa,0k−1 + y2
k − γ−a+1y2

k−1+a (14)

ξa,0k = γA−Tξa,0k−1 + cyk − γ−a+1(AT)a−1cyk−1+a (15)

W a,0
k = γA−TW a,0

k−1A
−1+ccT−γ−a+1(AT)a−1ccTAa−1 (16)

initialized by κa,00 = 0, ξa,00 = 0, W a,0
0 = 0. For an infinite

window a → −∞, we have γ−a+1 → 0 and the recur-
sions (14)-(16) simplify accordingly.

Similarly, the second summation term of (8), which pertains
to the future samples, is expressed as

Jb1(k, x, γ) = κ1,b
k − 2xTξ1,b

k + xTW 1,b
k x , (17)

where

κ1,b
k =

∑k+b
i=k+1γ

i−ky2
i ∈ R (18)

ξ1,b
k =

∑k+b
i=k+1γ

i−k(AT)i−kcyi ∈ RQ (19)

W 1,b
k =

∑k+b
i=k+1γ

i−k(AT)i−kccTAi−k ∈ RQ×Q (20)

are computed by the backward recursions

κ1,b
k = γκ1,b

k+1 + γy2
k+1 − γb+1y2

k+b+1 (21)

ξ1,b
k = γATξ1,b

k+1 + γATcyk+1−γb+1(AT)b+1cyk+b+1 (22)

W 1,b
k = γATW 1,b

k+1A+ γATccTA− γb+1(AT)b+1ccTAb+1 (23)

which are initialized by κ1,b
K = 0, ξ1,b

K = 0, W 1,b
K = 0.

The total cost remains a quadratic function in x,

Jba(k,x,γ)=κa,0k +κ1,b
k −2xT(ξa,0k +ξ1,b

k )+xT(W a,0
k +W 1,b

k )x (24)

with the coefficients estimate x̂k that solves (3) given by

x̂k = (W a,0
k +W 1,b

k )−1(ξa,0k + ξ1,b
k ) . (25)

III. MANIPULATING POLYNOMIALS IN LOCALIZED
FEATURE SPACE

In the previous section of this paper, we transformed a
sample-based signal into a localized feature space spanned by
polynomial coefficients. In this section, we introduce a vector
notation for such polynomials and summarize algebraic rules
for efficiently manipulating them [17].



A. Definition and Properties of the Vector Exponent Notation

Let z be a scalar in R and q = [q1, . . . , qQ]T a vector in
NQ0 with Q ∈ N. We define the function (z, q) 7→ zq as the
element-wise power of z, i.e.,

zq
4
= [zq1 , . . . , zqQ ]T . (26)

Note that the elements of q are neither ordered nor unique.
A univariate polynomial in z with coefficient vector α ∈ RQ

and exponent vector q as in (26) expresses as

αTzq ∈ R . (27)

A bivariate polynomial with additional variable w ∈ R and
additional exponent vector r ∈ NR0 and a joint coefficient
vector ∼α ∈ RQR expresses as

∼
αT(zq ⊗wr) ∈ R , (28)

with ⊗ denoting the Kronecker product.

B. A Calculus for Polynomials in Vector Exponent Notation

Mathematical operations with polynomials such as sum,
product, and power often simplify to a linear transformation
of the polynomial coefficient and/or exponent vector with the
help of the vector exponent notation. In the following, we give
a brief summary of the transformation rules for such common
operations. The full derivation, including rules for multivariate
polynomials, are given in [17].

1) Sum of two polynomials of same exponent: Let
α, β ∈ RQ be the coefficient vectors of two polynomials
in vector exponent notation with common exponent vector
q ∈ NQ0 . Then, the sum of the two polynomials is

αTzq + βTzq = (α+ β)Tzq . (29)

2) Product of two polynomials of same exponent: Given
the coefficients α, β ∈ RQ and the exponent vector q,

(αTzq)(βTzq) =
∼
αTz

∼
q (30)

with
∼
α = α⊗β ∈ RQ

2

(31)
∼
q = Mq ∈ NQ

2

0 , (32)

where

M = (IQ⊗1Q) + (1Q⊗ IQ) , (33)

and where IQ denotes the identity matrix of size Q and 1Q =
[1, . . . , 1]T ∈ RQ.

3) Integral of a polynomial: Given the coefficients α ∈ RQ,∫
(αTzq)dz = αT

∫
zqdz =

∼
αTz

∼
q (34)

with the substitutes
∼
α = Λα ∈ RQ (35)
∼
q = q + 1Q ∈ NQ0 , (36)

and Λ−1 = Diag (
∼
q) ∈ RQ×Q, the diagonal matrix of ∼q.

4) Definite integral: The integral over finite interval [a, b] is∫ b

a

(αTzq)dz = (Λα)T(b
∼
q − a

∼
q) (37)

using Λ and ∼q as in (35) and (36), respectively.

IV. PRACTICAL EXAMPLES

In this section, we give three examples using localized
feature space polynomials as proposed in Section II and III.

A. Approximating a Polynomial by a Polynomial of Lower
Degree

A common task is to fit a lower-degree polynomial βTzr to
a given higher-degree polynomial αTzq over the interval [a, b]
such that the squared error is minimal (β ∈ RR, r ∈ NR0 ,
α ∈ RQ, q ∈ NQ0 ). Thus, we minimize the cost function

J(α, β) =

∫ b

a

[
αTzq − βTzr

]2
dz (38)

over β, which yields

β̂ = argmin
β

(
αTATCAα− 2βTBTCAα+ βTBTCBβ

)
(39)

with the fixed matrices A ∈ R(Q+R)×Q, B ∈ R(Q+R)×R

and C ∈ R(Q+R)×(Q+R), derived by repetitive (and somewhat
tedious) application of the rules given in Section III-B. The
full derivation is given in the Appendix of this paper. Note that
the cost in (39) is of a quadratic form in β and is minimal
for any β satisfying the linear equality BTCAα = BTCBβ.
Figure 1 illustrates an example of such a fit.

a b

x

αTzq

βTzr

Fig. 1. Fit of a 3rd-degree polynomial (βTzr , solid line) to a given 7th-degree
polynomial (αTzq , dashed line) over the interval [a, b], using (39).

B. Time Delay Estimation
In a second example, we observe two signals, where the

second signal shows a variably delayed or jittery version
of the first signal, as illustrated in Fig. 2. Delayed and
jittered signals are often observed in transmission systems with
multiple physical pathways of variable length. To estimate the
time delay between two channels, we exploit our localized
feature space. We first locally approximate the signals of
both channels by higher degree polynomials according to
Section II. We then minimize the squared error between two
corresponding polynomials while allowing a variable time
shift, which leads to an estimate of the local time delay.

Let αT
kz

q ∈ R and βT
k z

q ∈ R be two polynomials in z ∈ R
of degree Q = max(q) ∈ N, which locally approximate the
two signals around index k. We consider the cost function

Jk(s) =

∫ b

a

[
αT
k (z − 1

2
s)q − βT

k (z +
1

2
s)q
]2
dz , (40)



which is the squared error between the two polynomials over
the interval (a, b), when a time shift s ∈ R is applied.
Minimizing the cost over s, yields an estimate of s.

After repetitive (and, again, somewhat tedious) application
of the calculus outlined in Section III-B, (40) transforms into
a polynomial in s in the elementary form

Jk(s) =
(
A(αk ⊗αk)−B(αk ⊗βk)+C(βk ⊗βk)

)T
sq̃ , (41)

with q̃ = M · [1, ..., Q+1]T ∈ R(Q+1)2 , M as in (33), and
fixed A, B, C ∈ R(Q+1)2×(Q+1)2 . Note that A, B, and C are
independent of α and β and, thus, fully precomputable [17].

Finally, minimizing (41) boils down to finding a (local)
minimum in the univariate polynomial (41) in s. In practice,
the feasible shift is often limited by physical bounds, and,
thus, can be determined efficiently using standard methods,
e.g. using gradient descent.

Note that, if a wider observation interval than that spanned
by a single polynomial is desired, multiple cost functions can
be accumulated and jointly minimized. Hence, for a rectangu-
lar observation window of length 2∆+1, the accumulated cost
is

J̄k(s) =
∑k+∆
i=k−∆ Ji(s) (42)

which has to be minimized over s. Note that (42) remains of
the same polynomial degree as (41) and, thus, the minimiza-
tion complexity is independent of the selected window length.
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Fig. 2. Top: two-channel acoustic signal from left (L, solid line) and right
(R, dashed line) ear with interaural time delay. Bottom: ŝ shows the local
time delay estimate of corresponding local polynomial fits, while s is the
averaged version of ŝ using a rectangular window according to (42). The true
delay (dashed black line), calculated according to head geometry and speed
of sound for an azimuth of 45°, is approximately 0.52ms.

Figure 2 demonstrates the results of an interaural time
delay estimation using polynomials of degree 4. The data is
generated by the convolution of the International Speech Test
Signal [18] with a head-related impulse response recorded at
45° azimuth and 0° elevation from the CIPIC database [19].

C. Time & Amplitude Scaling

When a moving source emits a field, such as an electric
or magnetic one, and this field is measured by fixed sensors,
then we will observe signals of a variable time and amplitude
scale, depending on the source speed and source strength. To
estimate source parameters such as speed and strength from
such observations is a common problem [20], [21].

In the following example, we use real electrocardiogram
(ECG) signals measured with electrodes inside the esophagus,
which is close to the heart’s atrium. Analyzing such ECG
signals is a problem of the kind described above: with every
heart beat the heart gets depolarized which sends a moving
electrical wave front along the heart’s surface, producing a
transient electrical field and inducing the well-known ECG
signals. The amplitudes of such ECG signals are proportional
to the source strength while ECG pulse durations are inversely
proportional to the depolarization front speed.

To estimate both parameters, source strength and source
speed, we first generate a time- and amplitude-normalized
reference signal using a physical heart model, before we match
the time and amplitude scale of the reference signal to the
observed real signals. For efficiency, we work in the local
polynomial feature space of the signals.

Let α ∈ RQ be the coefficients of a polynomial αTzq with
exponent vector q ∈ NQ0 and of degree max(q), approximating
the reference signal shape over the interval [a, b], a, b ∈ R.
Furthermore, let βk ∈ RQ be the coefficient vector of the
polynomial βT

k z
q which locally approximates the observed

signal around time index k. We then consider the cost

Jk(λ, η) =

∫ b

a

[
λαT(ηz)q − βT

k z
q
]2
dz , (43)

where λ ∈ R is the (unknown) amplitude scaling and η ∈ R
the (unknown) time dilation of the signal. This cost becomes
minimal when the amplitude and time scale of the two
polynomials match best, yielding an estimate for λ and η.

We note that the cost function (43) is the integral of a
quadratic form of a (higher-degree) polynomial and is thus
a multivariate polynomial in λ and η. Therefore, applying the
calculus outlined in Section III-B transforms (43) to

Jk(λ,η)=A(βk⊗βk)−2λ(B(α⊗βk))Tηq+λ2(C(α⊗α))TηMq (44)

with fixed A ∈ RQ2

, B ∈ RQ×Q2

, and C ∈ RQ2×Q2

, and
M as in (33). Note that (44) is a multivariate polynomial of
degree 2 in λ and of degree (max(q))2 in η. Full derivation
of (44) is given in detail in [17, Section 6.3].

We obtain a closed-form solution for the minimization over
λ by setting the first derivative of (44) to zero,

λ̂k = argmin
λ

Jk(λ, η) =
(α⊗βk)TBTηq

(α⊗α)TCTηMq
. (45)

Finally, the substitution of (45) into (44) yields the uni-
variate rational function

η̂k = argmin
η

Jk(λ̂k, η) = argmin
η

[(B(α⊗βk))Tηq]2

(C(α⊗α))TηMq
, (46)

which needs to be minimized. In our example, we used a plain
grid search for minimization, since the search interval of η is
narrow due to physical constraints, and processing speed was
more important than precision in our application.

Figure 3 displays an example of a real esophageal ECG
signal of an atrial wave with the matched reference signal
after applying amplitude and time scaling.
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Fig. 3. Left: 5th-degree polynomial approximation of a 3-channel normalized
reference signal of the cardiac electrical activity (red lines). The reference
signal was generated using a physical heart model. Middle: 3-channel
recording of an atrial wave in an esophageal ECG signal (gray) with local
polynomial approximation (blue line). Right: match of time- and amplitude-
scaled reference signal (red) to local polynomial approximation of ECG signal
(blue)

V. CONCLUSION

This paper proposes a feature space of localized poly-
nomials for parameter estimation problems. Transformation to
feature space is efficiently done by means of recursions that
result from the parameterization of polynomials by ALSSMs.
The local signal form is fully encoded in the polynomial
coefficients, which provides a framework for solving different
estimation problems analytically with sub-sample resolution.

APPENDIX

Derivation of (39) according to [16]:

∫ b

a

[
αTzq − βTzr

]2
dz

=

∫ b

a

[
(Aα−Bβ)Tzs

]2
dz

=

∫ b

a

(
(Aα−Bβ)⊗(Aα−Bβ)

)T
zMsdz

=
(

Λ
[
(Aα−Bβ)⊗(Aα−Bβ)

])T
(

c︷ ︸︸ ︷
bMs+1 − aMs+1)

=
(
(Aα⊗Aα)−(Aα⊗Bβ)−(Bβ⊗Aα)+(Bβ⊗Bβ)

)T
ΛTc

= αTATCAα− 2βTBTCAα+ βTBTCBβ (47)

with M according to (33), exponent vector

s =

[
q
r

]
∈ RQ+R ,

fixed transformation matrices

A =

[
IQ

0R×Q

]
∈ R(Q+R)×Q , B =

[
0Q×R
IR

]
∈ R(Q+R)×R ,

and vec (C) ≡ ΛTc, with unity matrix I and zero matrix 0 of
indicated dimensions.
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