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Estimation of the Cardiac Field in the Esophagus
Using a Multipolar Esophageal Catheter
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Hildegard Tanner, Andreas Haeberlin, and Hans-Andrea Loeliger, Fellow, IEEE

Abstract—The rapid progress of invasive therapeutic options
for cardiac arrhythmias increases the need for accurate diagnos-
tics. The surface electrocardiogram (ECG) is still the standard of
noninvasive diagnostics but lacks atrial signal resolution. By con-
trast, esophageal electrocardiography (EECG) yields atrial signals
of high amplitude and with a high signal-to-noise ratio. Esophageal
electrocardiography has become fast and safe, but the mechanical
constraints of esophageal measuring catheters and the “random”
motion of the catheter inside the subject’s esophagus limit the spa-
tial resolution of EECG signals. In this paper, we propose a method
to estimate the electrical field projected onto the esophagus with an
increased spatial resolution, using commonly available esophageal
catheters. In a first step, we estimate the time-varying catheter
position, and in a second step, we estimate the projected electri-
cal field with enhanced spatial resolution. The proposed algorithm
comprises several consecutive optimization steps, where each in-
termediate step produces not just a single point estimate, but a cost
function over multiple solutions, which reduces the information
loss at each processing step. We conclude with examples from a
clinical trial, where the fields of cardiac arrhythmias are presented
as two-dimensional contour plots.

Index Terms—Algorithm, arrhythmia diagnostics, cardiac ar-
rhythmias, esophageal electrocardiography, medical device, multi-
channel signal processing, signal reconstruction.

I. INTRODUCTION

FOR more than half a century, the standard 3-lead and
12-lead electrocardiogram (ECG) have been the most im-

portant diagnostic tools in cardiology. Despite its popularity,
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Fig. 1. Example of the estimated (projected) cardiac electric field, observed
along the esophagus and depicted as a two-dimensional (2D) contour plot;
named an esophageal isopotential map (IPM). An IPM shows the position along
the esophagus on the vertical axis (z) and the time progress on the horizontal
axis. The 2D plot is additionally shaded in colors according to the electric field’s
strength (positive values in orange/red, negative values in blue). The atrial signal
in this example shows a propagation from top to bottom (i.e., cranio-caudal,
dashed arrow), while the propagation in the ventricle runs from bottom to top
(i.e., caudo-cranial, solid arrow).

common surface ECGs have some limitations, in particular for
questions in rhythmology, due to the limited atrial (P wave)
resolution. The rapid progress of invasive therapeutic options
for cardiac arrhythmias increases the need for more accurate
diagnostics. Esophageal electrocardiography (EECG) is an al-
ternative low-risk electrocardiogram recording method. Due to
the anatomical proximity of the esophagus to the heart atria,
EECG signals offer high atrial resolution [1], [2].

Experiments with esophageal electrocardiography began al-
ready around 1906 [3], but EECG has so far remained a niche
technology. There might be various reasons for this develop-
ment: probably the surface ECG method was superior for the
emerging questions at that time and with growing experience
accumulated over decades, it was hard for any alternatives to
establish themselves. Finally, patient tolerance issues and the
increased technical complexity may have additionally prevented
the EECG procedure to spread very far.

Nowadays, materials and techniques have highly improved;
thin and soft catheter tubes are inserted through the nose, an
already well established route from the application of feeding
tubes, and reach any location in the esophagus. If needed, local
surface anesthesia is sufficient to avoid discomfort and pain
during this fast and safe procedure.

While the equipment hurdles are decently solved, esophageal
electrodes preserved their own characteristics: while surface
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Fig. 2. Multi-channel esophageal ECG signal. Most proximal channel (m =
9) is shown at top. In accordance to the convention used for surface ECG signals,
the plot displays the negative voltage −u instead of u. To improve readability,
an individual offset of 0 to 8 mV was added to each channel.

electrodes stick to a particular skin location, esophageal elec-
trodes drift inside the esophagus and their location vary with
the peristalses and the patient’s body or breathing motions. In
other words, esophageal electrodes, as they are usually applied,
do not stick to a single location, which requires proper tracking
of the current electrode locations for any application depending
on sufficient spatial resolution.

In this paper, we propose a method to estimate the electric
field projected onto the esophagus with a high spatial reso-
lution. For that we use EECG signals recorded using common
esophageal catheters and present the resulting field estimate as a
two-dimensional (2D) contour plot. With these contour plots we
intend to complement the 12-lead ECG records and to address
particular questions in rhythmology.

To estimate the field, we first give a method to track the vary-
ing catheter position relative to the heart using the esophageal
signals only. In a second step we estimate the projected elec-
tric field with a high spatial resolution. Esophageal catheters
usually have a wide electrode spacing and a limited number of
electrodes (e.g. 4 to 10 electrodes). But wide electrode spacing
leads to undersampling in space, which needs to be consid-
ered when estimating the electric field. Finally, we propose to
present the result as a novel 2D contour plot with a high tem-
poral and spatial resolution, with the two plot axis time and
esophageal depth, which inherently emphasizes timing rela-
tions between the different channels and along the esophageal
depth; we name this plot an esophageal isopotential map (IPM)
[4]. An illustrative example of such an esophageal IPM is given
in Fig. 1.

This paper is structured as follows: In Section II, we first
introduce the idea on how to solve the problems of spa-
tial undersampling and catheter motion. Then, Section III
gives an algorithm to estimate the catheter displacement and
Section IV an algorithm to estimate the projected electric field
in the esophagus, using the catheter displacement estimate. Fi-
nally, in Section V, we introduce the graphical IPM and give
in Section VI real world examples using records from a clin-
ical trial involving healthy subjects and patients with cardiac
arrhythmias.

Fig. 3. Illustration of the catheter displacement over time. The catheter con-
tains M + 1 electrodes, located at distances d0 , d1 , . . . , dM from the catheter
tip, resulting in M independent measuring channels. The catheter drifts along
the z-axis inside the esophagus. The displacement rj (black circles) is the
time-depended position of the catheter tip and rj + dm , m ∈ {1, . . . , M } the
time-depended position of the mth electrode at time index j . The measurement

u
(m )
j is the voltage between electrode “m” and “m − 1” (small blue dots).

II. THE BASIC CONCEPT

Common esophageal catheters have a wide electrode spacing,
leading to a spatial undersampling of the field along the esoph-
agus. Furthermore, the electrodes are constantly drifting along
the esophagus and, in turn, moving with respect to the heart.

By serendipity, solving the tracking problem will help to solve
the undersampling problem: The catheter’s arbitrarily drifting
back and forth along the esophagus axis results in a spatial sam-
pling with small but “randomly” varying changes of the elec-
trode positions. As almost any ECG signal of physiologic or
pathologic heart rhythms exhibit some repetitive signal patterns
(e.g. repetitive atrial or ventricular waves),1 we can synchronize
between multiple heart beats and, finally, refine the spatial reso-
lution by fusing these beats using an appropriate estimate of the
catheter drift. We assume that the start and the length of each
such pattern repetition is known and given, e.g. as the result of
some prior pattern detection method (which is not part of this
paper). An example of a multi-channel EECG is shown in Fig. 2.

We are going to estimate in a first step the movement of
the catheter relative to the heart, and use in a second step the
estimated movement to extract the catheter and the electrode
positions at each heart cycle. This procedure results in spa-
tial sampling along the esophagus axis with small but arbitrary
changes in the measuring positions, and thus enhances the spa-
tial resolution. The estimation of the catheter displacement uses
the multi-channel record of the current heart beat, allowing var-
ious shifts along the esophagus axis, and compares them to the
previous heart beat, taking that shift giving the best match be-
tween the two beats [5]. This concept is extended and applied
to all combinations of heart beats within a selected time frame.

III. CATHETER DISPLACEMENT RECONSTRUCTION

A. Definitions

We assume a catheter to be in straight line with the
esophagus and to hold M + 1 ring electrodes located at dis-

1There exist some medical emergency cases with rhythms showing no repeti-
tive patterns. As these situations are time-critical, the insertion of an esophageal
catheter is anyhow not the method of choice.
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Fig. 4. Illustrative summary of indices and axes subsequently used: (a) single

ECG measurement u
(m )
j (black dot), from the mth measurement channel, with

absolute sample time index j , pattern repetition index n = 2, and relative per-
pattern sample index k; (b) catheter displacement estimate r̂n for the pattern
with index n and the per-sample interpolation ŝj .

tances d0 < d1 < · · · < dM from the catheter tip. At any given
time index j ∈ {1, . . . , J}, J ∈ N, we denote u

(m )
j ∈ R, m ∈

{1, . . . , M}, the potential between the two adjacent electrodes
“m” and “m − 1” (see Fig. 3). Within these J samples, we
observe N ∈ N pattern repetitions with known starting time
indices jn ∈ N, n ∈ {1, . . . , N}. Each such pattern repetition
is of constant length K ∈ N (cf. Fig. 4(a)) and with unknown
catheter displacements rn ∈ R, which we want to estimate (cf.
Fig. 4(b)). The catheter displacement rn is referenced as the
position of the catheter tip. As we only have relative positions,
we fix the catheter displacement of the first pattern repetition to
r1 = 0.

In the following, we continuously introduce new symbols
and indices wherever they are needed. To help the reader to
keep track of them, we provide, beside illustrative figures, a
summary in Table I.

B. The Cost Function

We want to estimate the catheter displacement r =
[r1 , . . . , rN ]. For that, we take each pair of repetitive patterns and
consider the least square error between the two multi-channel
signals with respect to their vertical displacement; to allow a
continuous displacement between the two patterns we intro-
duce a function interpolating in between the single channels. Let
ϕj (z), z ∈ [d0 , dM ] be a polynomial of order Nϕ < M approx-

imating and interpolating the measurements (u(1)
j , . . . , u

(M )
j ).

TABLE I
SUMMARY OF RELEVANT SYMBOLS AND INDICES

Symbol Range Description

Scalar Indices
m {1, . . . , M } measuring channel index
j {1, . . . , J} absolute sample/time index
k {1, . . . , K} relative per-pattern sample/time

index
n {1, . . . , N} pattern repetition index
i {. . . ,0 ,1 ,2 , . . .} position index along the

z-axis/esophagus
jn {1, . . . , J} sample/time start index of nth

pattern repetition, n ∈ {1, . . . , N}
Vectors, Functions, and Others
d0 , . . . , dM R+ electrode distance from catheter tip
z R position along the z-axis/esophagus

u
(m )
j R measured voltage on channel “m” at

time index j
ϕj (z) R polynomial interpolation function of

(u(1)
j , . . . , u

(M )
j ) at j; z ∈ [d0 , dM ]

r = [r1 , . . . , rN ] RN true relative catheter displacement
per pattern repetition; r1 = 0

r̂ = [r̂1 , . . . , r̂N ] RN estimate of r
ŝ = [ŝ1 , . . . , ŝJ ] RJ estimate of catheter (tip)

displacement per sample; ŝj = ŝ(j)
ŝ
(m )
j R per sample displacement estimate of

the center between electrodes “m”
and “m − 1”

ŝ(t), t ∈ R R continuous-time estimate of catheter
displacement

q(z) R true (projected) electric field along
the z-axis

q̂i R estimate of q(z) at position index i
(per relative sample index k)

We define the cost function to compare a pair of patterns with
indices n ∈ {1, . . . , N} and ν ∈ {1, . . . , N} with the displace-
ment ρ ∈ R by computing the squared error,

Rn,ν (ρ) =
K∑

k=0

∫ ∞

−∞
[ϕjn +k (z) − ϕjν +k (z − ρ)]2

× δ[d0 ,dM ](z)δ[d0 ,dM ](z − ρ)dz, (1)

with δ[a,b] : R → {0, 1}, a ∈ R, b ∈ R, a < b and δ[a,b](r) = 1
for a ≤ r < b and δ[a,b](r) = 0 otherwise. This pairwise cost
Rn,ν of (1) is a piecewise polynomial in ρ and also writes as

Rn,ν (ρ) =
K∑

k=0

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ dM

d0 +ρ [ϕjn +k (z) − ϕjν +k (z − ρ)]2 dz

if 0 ≤ ρ < dM − d0 ,
∫ dM +ρ

d0
[ϕjn +k (z) − ϕjν +k (z − ρ)]2 dz

if d0 − dM ≤ ρ < 0,

0 otherwise.
(2)

Since not only do we need to compare and optimize between
a single pair but also over all possible pairs, we get an over-all
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Fig. 5. Illustrative examples of costs Pn (r) from (3) as a function of rn

(green, solid lines). The order of the interpolating polynomials ϕj (·) is set to
Nϕ = 7, resulting in piecewise polynomials Pn (r) of order 15 (cf. (3) and

(1)). Additionally given are the local quadratic approximations P
(2)
n (·) with

parameters from (10) over the range [rn − δ, rn + δ] with δ = 5 mm for each
cost function (red, dashed lines).

cost function

P (r) =
N∑

n=1

N∑

ν=1

Rn,ν (rν − rn )

︸ ︷︷ ︸
Pn (r)

, (3)

where r is the introduced vector of catheter displacements. Us-
ing the symmetry property Rn,ν (ρ) = Rn,ν (−ρ) and the trivial
property Rn,ν (0) = 0, we get

P (r) = 2
N −1∑

n=1

N∑

ν=n+1

Rn,ν (rν − rn ). (4)

Fig. 5 illustrates some example cost polynomials Pn (r).

C. Cost Minimization by Gradient Descent

To minimize (3), we use the method of gradient descent. Since
physics prohibits position jumps, we also add a regularization
term for r,

S(r) = μ0

N −1∑

n=1

N∑

ν=n+1

(rn − rν )2

jn − jν
∈ R+ , (5)

with single parameter μ0 ∈ R+ , controlling the smoothness of
the displacement estimate. We get

r̂ = argmin
r

(P (r) + S(r)) . (6)

To solve, we iterate for r with

r(new) = r(old) − γ�
(
P (r(old)) + S(r(old))

)
(7)

Fig. 6. Example of catheter displacement estimate from an EECG of a healthy
subject. Shown are: displacement r̂n at each heart beat (blue dots), Variances σ2

n
from (10) of the quadratic approximation (vertical error bars) and displacement
interpolation using the Kalman smoother ŝ(t) (solid black line).

with the gradient operator � and with step size γ ∈ R+ . The
derivative for rn from (7) is

∂ (P (r) + S(r))
∂rn

=
∑

ν∈{2,...,N }
\{n}

∂

∂rn
Rjn ,jν

(rν − rn )

+ 2μ0
(rn − rν )
jn − jν

. (8)

Recall that Rjn ,jν
(ρ) is a continuous, piecewise polynomial in ρ

and thus, its piecewise derivative is simply obtained. However,
its first derivative is not defined at the points between the pieces
(i.e., ρ ∈ {−dM , 0, dM }). Nevertheless, in practice, sufficient
convergence was still observed using the derivative at ρ+ (or
ρ−) instead. Furthermore, note that (3) is not necessarily convex
(cf. Fig. 5). But since it is sufficient to find that local minimum
with only small relative displacements between neighboring
patterns, this is not a necessary condition. As a positive side
effect, outliers are easily detected (and discarded) during the
gradient iterations, as displacement estimates of invalid patterns
usually tend to diverge, rather than to converge to a local cost
minimum, or to converge to a minimum but with a large cost
remainder.

An example of the estimated pattern-wise catheter displace-
ment after applying gradient descent is given in Fig. 6.

D. Catheter Displacement Interpolation Using a Kalman
Smoother With Weighted Samples

In the previous Section III-C, we computed a catheter dis-
placement estimate for every pattern repetition, which oc-
cur with a variable time delay. To gain smooth displace-
ment estimates on an equidistant time grid, we use a Kalman
smoother [6], [7], which is capable to transform between differ-
ent time grids.2 For that, we introduce the auxiliary continuous-
time catheter displacement estimate s(t) ∈ R, t ∈ R, and the
continuous-time cost function, parameterized by sample mean

2We chose a Kalman smoother as we have wide experiences with the param-
eterization of this kind of filters; there are surely other methods to obtain results
of comparable quality.
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mn ∈ R and sample variance σ2
n ∈ R+ , n ∈ {1, . . . , N},

ŝ(t) = argmin
s(t)

N∑

n=1

σ−2
n (s(jn ) − mn )2

+ μ0

∫ J

0

(
d2s(t)
dt2

)2

dt. (9)

We are only interested in ŝ(t) on the equidistant time grid
t ∈ {1, . . . , J}; thus, we denote the outcome as ŝ = [ŝ1 , . . . , ŝJ ]
with ŝj = ŝ(j). The sample mean mn , sample variance σ2

n and
in addition the offset κn ∈ R are a local quadratic approximate
P

(2)
n (·) of Pn (·) from (3) for the nth pattern repetition, i.e.,

{mn, σ2
n , κn}=argmin

m,σ 2 ,κ

∫ r̂ n +δ

r̂n −δ

[
σ−2(ρ − m)2 + κ

−Pn([r̂1 , ..., r̂n−1 , ρ, r̂n+1 , ..., r̂N ])
]2

dρ,

(10)

with δ ∈ R+ selected sufficiently small (see Fig. 5). For effi-
cient minimization of (9), we use the Kalman Smoother with
the Modified Bryson-Frazier Message Passing scheme from
Bruderer et al. [8], modified to deal with weighted samples.
The filter is given by the linear state space system matrices

A =

⎡

⎢⎣
1 0 0
1 1 0
0 1 1

⎤

⎥⎦

B =
[
1 0 0

]T

C =
[
0 0 1

]
, (11)

representing a second-order integrator chain and is equivalent
to (9) (cf. Theorem 2 in [9]). The filter runs recursively for-
ward and backward over index j ∈ {1, . . . , J} and is fed with
observations of Gaussian distributionN (mn, σ2

n/wj ) with sam-
ple weight wj = 1 for j = jn and N (0, 1) with sample weight
wj = 0 in all other cases, where we have no sample.

The interpolated catheter displacement results as ŝj = Cmxj

with mxj
being the posterior mean state vector of the LSSM

(11). The filter’s full computation rules are summarized in
Appendix A. An example of an interpolated catheter displace-
ment estimate is given in Fig. 6.

IV. ELECTRIC FIELD RECONSTRUCTION

A. Introduction

In the previous section we determined the per-pattern estimate
of the catheter displacement r̂n , n ∈ {1, . . . , N} and also, using
interpolation, the per-sample displacement ŝj , j ∈ {1, . . . , J}.
We note that r̂n and ŝj both refer to the position of the catheter
tip (not to that of a particular electrode).

Now, we want to estimate the electric field at any relative time
index k in such a way, that the catheter displacement is taken
into account. (Recall that k is the relative time index within a
single pattern, see Fig. 4(a).) To do so, we assume the catheter
to be in a straight line coinciding with the z-axis (cf. Fig. 3) and

denote the electric field along the z-axis as q(z) ∈ R for z ∈ R
(i.e. the projection of the field to the z-axis).

Considering first any potential difference u(z) ∈ R measured
between 2 adjacent ring electrodes located at distances d0 and d1
from the catheter tip and a catheter insertion depth of z ∈ R. If
the distance d1 − d0 is sufficiently small, we could approximate
the electric field by

q(z +
d0 + d1

2
) ≈ u(z)

d1 − d0
. (12)

However, as discussed in Section I, for common catheters the
electrode distances are rather large and the approximation (12)
turns out to be inadequate. Therefore we need to consider the
integral of the (projected) electric field q(z), i.e.,

u(z + d1) = p(z + d1) − p(z + d0) (13)

with the absolute electric potential

p(z) =
∫ z

−∞
q(ρ)dρ ∈ R. (14)

B. Estimation

We recall that the sequence (u(m )
1 , . . . , u

(m )
J ) is a single-

channel esophageal ECG signal of J samples3 measured be-
tween the electrodes “m” and “m − 1” with estimated catheter
tip insertion depth ŝ = [ŝ1 , . . . , ŝJ ] from Section III-D. We also
note that the measurement u

(m )
jn +k ∈ R corresponds to the kth

sample of the nth pattern repetition on the mth channel (cf.
Fig. 4(a)). Accordingly we denote ŝ

(m )
jn +k = ŝjn +k + 1

2 (dm +
dm−1) the average insertion depth of the two electrodes in-
volved.

We now join the measurements of all pattern repetitions
with the same relative time index k and sort them according
to their electrode insertion depth. We sort them to multiple bins
Ω(k)

i , i ∈ {. . . ,−1, 0, 1, 2, . . .}, each bin spanning over a sin-
gle, non-overlapping interval of length λ ∈ R+ on the z-axis,
i.e.:

Ω(k)
i =

{
u

(m )
jn +k

∣∣ i · λ − λ

2
≤ ŝ

(m )
jn +k < i · λ +

λ

2
,

m ∈ {1, . . . , M}, n ∈ {1, . . . , N}
}

. (15)

Note that a lower value of parameter λ increases the maximal
spatial resolution on the z-axis, but also increases the com-
putational effort; we found for our examples that λ = 0.1 mm
is an appropriate value. Fig. 7 illustrates the re-ordering pro-
cess according to the bin intervals. For later use, we extract for
each non-empty bin the cardinality w

(k)
i and the empirical mean

m
(k)
i , i.e.,

w
(k)
i = |Ω(k)

i | (16)

m
(k)
i =

1

w
(k)
i

∑

u∈Ω(k )
i

u, (17)

or set w
(k)
i = 0 and m

(k)
i = 0 for any empty bin.

3We assume a sufficiently large (temporal) sampling rate of the recordings
such that the assumptions of the Nyquist-Shannon sampling theorem hold.
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Fig. 7. Illustration of the bins Ω(k )
i , i ∈ {. . . ,−1, 0, 1, 2, . . .}, for a single

relative time index k. Each bin contains the measurements with similar electrode
position estimates ŝ

(m )
jn + k

over multiple pattern repetitions n ∈ {1, . . . , N}, all
with equal relative time index k. The small squares display example multi-

channel measurements (u(1)
j , . . . , u

(M )
j ) of three pattern repetitions with ab-

solute time indices j1 + k (black squares), j2 + k (white squares) and j3 + k
(grey squares).

To finally estimate, based on the sorted measurements, the
fundamental electric field (for any particular relative time index
k), we consider (13) as a linear filter, which we are going to
discretize with respect to continuous position z, and design the
filter in the z-domain. For the sake of simplicity, we use the bin
size λ also as the discretization grid distance.

Let Qk (Z) be the z-transform of a discretized electric field
q(z) and Uk (Z) the z-transform of discrete samples of a
continuous measurement u(z) ∈ R, both with respect to po-
sition z (and not to time index k), and let Δ ∈ N be the
(discrete) electrode distance. Then the z-transform of (13)
writes as

Uk (Z) = G(Z)Qk (Z) (18)

with

G(Z) = λ · (1 − Z−Δ)
Z

Z − 1
. (19)

(At this point, Z ∈ C is the z-transform variable and is not to
be confused with the z ∈ R, the position on the z-axis.) As the
inverse G−1(Z) is not a stable filter, we use a Kalman filter [10]
with an additional regularization term to estimate the electric
field Qk (Z) as the input to G(Z), given the observations Uk (Z).
The regularization term will assure stability of the filter inverse.
We again use the Kalman filter summarized in Appendix A
with two joined LSSM, such that the output of the first system
is fed as the input to the second system; the first system with
parameters {B1 , A1 , C1} is the regularization term, in our case
a 2nd order integrator chain, the second system with parameters
{B2 , A2 , C2} the transfer function (19) in its controllable form.
The input of the first system is an (assumed) zero-mean Gaussian
input, leading to a stable filter inverse [11], as recently used in
[12]. The first system {B1 , A1 , C1} writes as in (11), the second

Fig. 8. Example of electric field estimate using Kalman filtering at a par-
ticular sample index k = 47. (a) Joined measurements at a particular sample
index k over all the recorded pattern repetitions, leading to non-equidistant

samples along the z-axis. Each sample consists of the mean m
(k )
i (black

dots) and the variance 1/w
(k )
i (vertical error bars) of a single bin Ω(k )

i ,
i ∈ {. . . ,−1, 0, 1, 2, . . .}. The measurements are superimposed by the con-
tinuous input estimate from the Kalman filter (blue line). (b) Electric field
estimate.

system as

A2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0

1
...

. . .
...

. . .
...

1 0
0 · · · · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B2 =
[
1 0 . . . 0 1

]T

C2 = [ 0 . . . 0︸ ︷︷ ︸
Δ

1
∣∣ − 1 ], (20)

and, finally, the joined LSSM is

A =

[
A1 0

B2C1 A2

]

B =
[

B1

0

]
(21)

C =
[
0 C2

]
.

The filter runs recursively forward and backward over the
bin index i (and not over the relative time index k), and is fed
with observations of Gaussian distributionN (m(k)

i , 1/w
(k)
i ) for

non-empty bins, and with N (0, 1) and weight w
(k)
i = 0 for all
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Fig. 9. Verification of the algorithm using a synthetic electric field containing abrupt changes in the field strength. (a) Contour plot of synthetic “true” electric
field. (b) IPM of electric field using our reconstruction algorithm. The “true” field was sampled with a 9 channel catheter with an electrode distance of 1 cm. Note
that the z-axis is scaled differently from other IPM figures.

Fig. 10. IPM of a healthy 59 years old male. Atrial wave (a), ventricular wave (v).

empty bins. The Kalman filter outputs an estimate of Gaussian
distribution with mean mxi

and variance Vxi
. Subsequently, the

electric field results as q̂i = C0mxi
with variance C0Vxi

CT
0 ,

using the selection vector C0 =
[
C1 0

]
.

An example of such a field estimate at a particular index k is
given in Fig. 8.

V. THE ESOPHAGEAL ISOPOTENTIAL MAP

We introduce a new graphical representation of the field esti-
mated in the previous section. We name this representation the
esophageal isopotential map (IPM) [4]. An example of such
an IPM is shown in Fig. 1. An IPM is the spatiotemporal rep-
resentation of the projected cardiac electric field measured in
the esophagus, depicted as a 2D contour plot with time on the
horizontal axis (abscissa), the esophageal location on the ver-
tical axis (ordinate), and the electric field projection depicted
as contour levels. For the electric field we propose to use the
unit 1 mV/cm, leading to convenient and meaningful numeric
values. The contours are open or closed curves along which the
electric field has constant values. The contour level spacing is
fixed to a constant value, e.g. to 0.20 mV/cm.

VI. RESULTS

Fig. 9(a) shows a synthetic field test pattern and Fig. 9(b) the
corresponding estimate after reconstruction of that field using
the proposed algorithm. The purpose of this reconstruction of the
known test field is to give to the reader an intuitive access to the
reconstruction efficiency of the proposed algorithm. The chosen
test pattern deliberately deviates from an esophageal electric
field: it contains abrupt changes in the field strength in order to
identify the limits of the algorithm. The reconstruction bases on a
9 channel synthetic EECG signal, recorded using an equidistant
electrode spacing of 1 cm and with a slowly varying catheter
displacement. The comparison of the estimate to the reference
signal reveals some blurring and smoothing artifacts introduced
by the algorithm: this is, along the time axis, essentially due to
the low pass filtering applied to all EECG signals (in order to
suppress the omnipresent baseline interferences [13]) and along
the z-axis due to the smoothing effect of the regularization term
in the Kalman filter (Section III-D).

To show the suitability of our method, we performed a clin-
ical trial with 13 patients and 6 healthy subjects. From each
participant, we recorded about 1 hour of EECG signals using a
commercially available 9 channel catheter (Esoflex 10S, FIAB
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Fig. 11. IPM of a 67 years old patient with typical counterclockwise atrial flutter: atrial flutter waves (a-flu), ventricular wave (v), high pass filter artifacts (*).

Fig. 12. IPM as in Fig. 11 but with time axis spanning 1200 ms to emphasize the heart rhythm (counterclockwise atrial flutter with 4:1 conduction from the
atrium to the ventricle): atrial flutter waves (a-flu), ventricular waves (v).

SpA, Italy) with an electrode spacing of 1 cm. The signals were
recorded with g.USBamp (g.tec medical engineering GmbH,
Austria) at a sampling frequency of 4800 Hz. All esophageal
channels were initially filtered with an IIR high-pass filter, ap-
plied in forward and backward direction to prevent phase distor-
tion. The IIR filter is implemented as a second order Butterworth
filter with a cut-off frequency of 1 Hz.

Fig. 10 shows an exemplary IPM of a healthy subject. The
atrial and ventricular signals are of high resolution and the prop-
agation direction along the z-axis is clearly visible. Figs. 11 and
12 show IPMs of a patient with typical counterclockwise atrial
flutter. The atrial signal with its high repetition rate is immedi-
ately apparent and the propagation direction of each atrial flutter
wave is again directly read from the plot. To interpret this IPM
example, we have to keep in mind that the esophageal electric
field is dominated by the cardiac activity located in close prox-
imity to the esophagus, i.e., by activity located in the left atrium.
Thus, we here mainly observe the left atrial part of the flutter
wave.

The two examples shown well demonstrate the qualities of
esophageal IPMs: the plots are of high atrial resolution and
inherently emphasize the spatial location of the cardiac activity

(with respect to the z-axis), and finally immediately visualize the
propagation directions. The clinical value and benefit of IPMs
are further discussed and illustrated with multiple examples in
[14] and [15]. A next clinical trial is already approved by the
authorities and ready to start.

VII. CONCLUSION

In this paper, we have presented a novel approach to estimate
the catheter displacement and to increase the spatial resolution of
esophageal ECG measurements for a medical applications, tak-
ing advantage of the particular nature of the signal. As we have
shown in Section VI, this approach is ready to work with clinical
data, recorded with commonly available equipment. However,
its value as a complementary diagnostic tool in the arrhythmia
diagnostics needs to be prospectively evaluated. The output rep-
resentation of this method, the IPMs, were already presented
in [14] and [15] and need additional clinical trials to be further
evaluated.

To summarize the presented algorithm, it splits the initial
problem into multiple consecutive processing steps and makes
use of versatile quadratic and more elaborate cost functions
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defined in the time, as well as in the spatial domain. The output
of each step (except the last) is not a point estimate, but a
cost function that can be processed by the subsequent step.
In this way, the loss of information in each processing step
is reduced. For example, in Section III-D, we use a Kalman
smoother to re-map the non-equidistant depth estimation to an
equidistantly sampled representation. We use not only quadratic
cost functions, but also higher order polynomials, both over time
and over space, as illustrated in Fig. 5.

APPENDIX A
KALMAN SMOOTHER WITH MODIFIED BRYSON-FRAZIER

MESSAGE PASSING SCHEME

There are different methods to compute Kalman filters; one
method is the Modified Bryson-Frazier message passing scheme
[11], which avoids matrix inversions, and thus is computation-
ally highly efficient in solving many filtering tasks. In the fol-
lowing, we give a full summary of the recursive computation
rule for such a filter processing scalar observations (modified
from Bruderer et al. [8] to work with weighted samples). This
Kalman filter is based on linear state space models (LSSM) of
order N ∈ N and is parametrized by discrete time state matrix
A ∈ RN ×N , output vector C ∈ R1×N , observation noise vari-
ance σ2

Z,k ∈ R+ , and input variance σ2
U ∈ R+ . The filter is fed

with observations of Gaussian distribution, i.e., N (myk
, σ2

Z,k )
for k ∈ {1, . . . ,K}, K ∈ N, each with its sample weight wk .
We extend the filter by that sample weight wk ∈ R+

0 , allowing
to weight each sample differently. For our application, the spe-
cial case wk = 0 is of particular importance, whenever there is
no sample for a single index k.

To perform the filtering, the Gaussian distribution of the
LSSM state vector x ∈ RN ×1 with mean vector mxk

∈ RN ×1

and covariance matrix Vxk
∈ RN ×N , is efficiently computed

using recursions: the forward recursion for k = 1, . . . ,K
follows as

Gk = wk

(
σ2

Z,k + wkC
−→
V x ′′

k
CT

)−1
(22)

Fk = I −−→
V x ′′

k
CTGkC (23)

−→
V x ′′

k
= A

−→
V xk −1 A

T + Σ (24)

−→mxk
= A−→mxk −1 +

−→
V x ′′

k
CTG(myk

− CA−→mxk −1 ) (25)

−→
V xk

=
−→
V x ′′

k
−−→

V x ′′
k
CTGC

−→
V x ′′

k
, (26)

with I denoting the unity matrix, the variance update

Σ = σ2
U

∫ Ts

0
eAτ bbTeATτ dτ (27)

with Ts = 1, and with
−→
V x ′′

0
, −→mx0 , and

−→
V x0 all initial-

ized to zero. The backward recursion for k = K, . . . , 1
follows as

ξ̃xk
= AT

(
F T

k ξ̃xk + 1 + CTGk (CA−→mxk −1 − myk
)
)

(28)

W̃xk
= AT

(
F T

k W̃xk + 1 Fk + CTGkC
)

A, (29)

with ξ̃xK + 1 and W̃xK + 1 initialized all to zero. Finally, this com-
putations lead to a state vector of Gaussian distribution with
mean and variance

mxk
= −→mxk

−−→
V xk

ξ̃xk
(30)

Vxk
= Vxk

(I − W̃xk
Vxk

). (31)

The distribution of the final (scalar) signal of interest is
extracted from the state vector, using the selection matrix
C0 ∈ R1×N and follows as N (C0mxk

, C0Vxk
CT

0 ).
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