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Abstract—A source generates a random sequence that is then
described to a controller who wishes to employ feedback control
on a given finite-state system in order for its output to closely
resemble the sequence. The tension between the best achievable
expected fidelity and the description length is studied in the
asymptotic regime where the length of the sequence tends to
infinity, with the description rate held fixed. The solution is the
source-coding dual of coding for channels with states.

I. INTRODUCTION
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Fig. 1. The length-n source sequence Xn is described by φ(n)(Xn) to a
feedback controller for the system (PSk+1|Sk,Zk

, PX̂|S,Z), which produces
the reconstruction X̂n.

This paper explores yet another facet of the interplay
between control and information theory: it examines the extent
to which a given system can be used for data compression.
Concretely, we consider a setup consisting of an independent
and identically distributed (IID) source, an encoder, and a
time-invariant system with a feedback controller (see Fig-
ure 1). The encoder observes the source sequence Xn and
describes it at a fixed rate to the controller, which–based on
the encoder’s description φ(n)(Xn) and the causally-revealed
state Sk–generates the input Zk that minimizes the expected
time-averaged distortion between the output sequence X̂n

produced by the system and Xn. In section III we provide
a lower bound on the least description rate that allows a given
time-averaged distortion and show that the bound is tight if
at any time the system can be reset to its initial state. In
section IV we apply the bound to a family of systems where
the state evolves autonomously and the inputs only affect the
system’s output.

II. PROBLEM SETUP

The problem we address is how to describe a source
sequence to a controller who, based on the description, wishes
to employ feedback control on a given system to drive its
output towards the source sequence. We model the n-length
source sequence Xn as a sequence of n IID chance vari-
ables X1, . . . , Xn that are drawn according to some given

probability mass function (PMF) PX from a finite set X . The
system is finite-state and time-invariant, with its states taking
values in the set S. It is specified by a triple

S = (s1, PS|S′,Z , PX̂|S,Z), (1)

where s1 ∈ S is its initial state; PS|S′,Z is the conditional
distribution of the time-(k + 1) state Sk+1 given the time-k
state Sk and the time-k input Zk, with the latter taking values
in a finite set Z; and PX̂|S,Z denotes the conditional PMF of
the time-k output X̂k, which takes values in the finite set X̂ ,
given the time-k state Sk and the time-k input Zk.

A rate-R blocklength-n description is a mapping

φ(n) : Xn → I (2)

where
I ,

{
1, 2, . . . , 2nR

}
(3)

is the index set. The controller ψ(n) associates with each
index i ∈ I an n-tuple

ψ(n)(i) = (ψ
(n)
1 (i), . . . , ψ(n)

n (i)) (4)

of n feedback rules, where the k-th rule ψ(n)
k (i) is a function

mapping the states S1, . . . , Sk to the time-k input Zk. Rather
than writing Zk = ψ

(n)
k (i)

(
S1, . . . , Sk

)
, we sometimes prefer

Zk = ψ
(n)
k

(
i, S1, . . . , Sk

)
, (5)

or
Zk = ψ

(n)
k

(
i, Sk

)
, (6)

where we adopt the convention that Sk stands for S1, . . . , Sk,
and Snk stands for Sk, Sk+1, . . . , Sn. We also introduce Tk to
denote the collection of mappings from Sk to Z , i.e.,

Tk = Z(Sk). (7)

With this notation

ψ
(n)
k (i) ∈ Tk, k ∈ [1 : n], i ∈ I. (8)

The system’s time-k output X̂k is drawn conditionally on the
time-k state Sk and input Zk according to PX̂|S,X(·|Sk, Zk),
and the next state Sk+1 according to PX̂|S,X(·|Sk, Zk).

To quantify how closely the system’s output sequence X̂n

resembles Xn, we fix a bounded distortion measure

d : X × X̂ → R≥0 (9)
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and define the time-averaged distortion

D̄n ,
1

n

n∑
k=1

d(Xk, X̂k). (10)

Its expectation over the source sequence and the system’s
behavior is denoted E[D̄n]. It is determined by the descrip-
tion φ(n) and feedback-controller ψ(n), the source distri-
bution PX , and the system S. More concretely, E[D̄n] is
computed with respect to the distribution

PS1
PnXPTn|XnPSn

2 |S1,TnPX̂n|Sn,Tn , (11)

where PS1
is the PMF of the initial state

PS1
= δs1 , (12)

with δs1 denoting a PMF that places all the weight on s1,
i.e., P[S1 = s1] = 1; where Tn = (T1, . . . , Tn), with
Tk ∈ Tk being the random feedback rule mapping Sk

to Zk = ψ
(n)
k (φ(n)(Xn))(Sk), namely

Tk = ψ
(n)
k (φ(n)(Xn)); (13)

and where the distribution of the state sequence Sn2 condi-
tioned on the initial state S1 and the feedback-controller Tn

can be expressed as

PSn
2 |S1,Tn(sn2 |s1, ψ(n)(i)) =

n−1∏
k=1

PS|S′,Z
(
sk+1

∣∣sk, ψ(n)
k (i, sk)

)
(14)

with ψ(n)(i) = (ψ
(n)
1 (i), . . . , ψ

(n)
n (i)) denoting the feedback

rules when we substitute i for φ(n)(xn). The distribution of
the output sequence X̂n conditioned on (Sn, Tn) is

PX̂n|Sn,Tn(x̂n|sn, ψ(n)(i)) =

n∏
k=1

PX̂|S,Z
(
x̂k
∣∣sk, ψ(n)

k (i, sk)
)
.

(15)
The source sequence Xn, the description φ(n), the con-

troller ψ(n), and the system S thus induce a joint distribution
on the states Sn and the output sequence X̂n.

Given a maximal-allowed expected time-averaged distor-
tion D, we seek the smallest rate R for which we can
find a sequence of descriptions (φ(n)) and controllers (ψ(n))
satisfying

lim sup
n→∞

E[D̄n] ≤ D, (16)

where E[D̄n] is the expected time-averaged distortion
induced by applying the description φ(n) and the
feedback-controller ψ(n) to (Xn,S). This rate is
denoted RT(PX ,S, d,D) or RT(D; s1), and we refer
to the mapping D 7→ RT(D; s1) as the rate-trackability
function.

Henceforth we assume that for every δ > 0 there is a se-
quence of rate-log |X | descriptions (allowing the sequence Xn

to be described to the controller losslessly) with corresponding
feedback-controllers for which

lim sup
n→∞

E[D̄n] ≤ δ, (17)

and hence RT(D; s1) is well-defined for D > 0. If (17) cannot
be satisfied for δ = 0, we define RT(0; s1) ,∞. This assump-
tion entails no loss of generality, since we can think of it as
restricting the domain of RT(· ; s1) to (Dinf,+∞], where Dinf
denotes the infimum over all D ≥ 0 for which there exists
a sequence of rate-log |X | descriptions with corresponding
feedback-controllers satisfying

lim sup
n→∞

E[D̄n] ≤ D. (18)

Characterizing the rate-trackability function is the objec-
tive of this paper. In section III we derive a lower bound
on RT(D; s1) and show that it holds with equality under the
condition that to each state s′ ∈ S there corresponds some
“reset” input r(s′) ∈ Z that drives the state to s1 in the sense
that

PS|S′,Z(s|s′, r(s′)) = δs1(s) ∀s ∈ S. (19)

In section IV we establish a single-letter expression
for RT(D; s1) for systems where the time-k input Zk only
influences the output X̂k, and has no impact on the distribution
of the next state Sk+1.

III. CHARACTERIZATION OF RT(D; s1)

In order to characterize RT(D; s1), it is useful to define
the following auxiliary multi-letter R-D problem: A source
sequence X̃1, . . . , X̃m is drawn IID with X̃j taking values in
the set Xn according to the n-fold product distribution PnX ,
where PX is the PMF governing the source law in the original
problem. The sequence X̃m is described using a mapping

φ̃(m,n) : (Xn)m → {1, . . . , 2nmR} (20)

X̃m 7→ i

and a reconstructor ψ̃(m,n) that produces the sequence

ψ̃(m,n)(i) = ψ̃
(m,n)
1 (i), . . . , ψ̃(m,n)

m (i), (21)

where ψ̃(m,n)
j (i) is, for every j ∈ [1 : m], an n-tuple of the

form

ψ̃
(m,n)
j (i) =

(
ψ̃
(m,n)
j,1 (i), . . . , ψ̃

(m,n)
j,n (i)

)
(22)

with

ψ̃
(m,n)
j,ν (i) : Sν → Z, ν ∈ [1 : n], (23)

where S and Z are the state and input alphabets of the original
problem. Recalling (7), we can rewrite (23) as

ψ̃
(m,n)
j,ν (i) ∈ Tν , ν ∈ [1 : n] (24)
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and

ψ̃
(m,n)
j (i) ∈ T1 × · · · × Tn. (25)

Note that in the auxiliary R-D problem the feedback-controller
looks back at most n states.

We next define a distortion measure d̃n between x̃ ∈ Xn
and ψ̃ ∈ T1 × · · · × Tn. We imagine that the n-length source
sequence is x̃ and that the first n feedback rules specified by ψ̃
are applied to S (which starts at s1), and we define

d̃n(x̃, ψ̃) ,
1

n

n∑
k=1

E[d(Xk, X̂k)|Xk = x̃k], (26)

where the expectation is computed with respect to

PS1PSn
2 |S1,ψ̃

PX̂n|Sn,ψ̃, (27)

with PS1
(s) = δ(s1), irrespective of the past controls and the

system’s behavior.
We denote this auxiliary R-D problem Pn(s1) and its

corresponding R-D function Rn(· ; s1), so normalized by n

Rn(D; s1) = min
PTn|Xn :E[d̃n(Xn,Tn)]≤D

1

n
I(Xn;Tn). (28)

We extend the definition of this rate-distortion problem to
systems where the initial state is not deterministic, but drawn
from some PMF PS1

, in which case the problem and its corre-
sponding R-D function are denoted Pn(PS1

) and Rn(· ;PS1
),

respectively.

Theorem 1. For all D > 0 the rate-trackability function
satisfies

RT(D; s1) ≥ lim inf
n→∞

Rn(D; s1). (29)

If the system has “reset” inputs satisfying (19), then for all
D > 0

RT(D; s1) = lim inf
n→∞

Rn(D; s1). (30)

Proof. Proving (29) is conceptually simple. The proof is based
on the observation that any blocklength-n pair (φ(n), ψ(n)) for
the original problem can be viewed as “scalar quantizer” for
the Pn(s1) problem. Its rate must therefore be at least as large
as that of the best (asymptotic) vector quantizer on Pn(s1),
namely Rn(D; s1).

To formalize this argument, note that by definition of the
rate-trackability function we can, for every n, find some m(n)
with a description φ(m(n)) and a feedback-controller ψ(m(n))

satisfying

E[D̄m(n)] ≤ D +
1

n
. (31)

Applying the pair (φ(m(n)), ψ(m(n))) block-wise in the prob-
lem Pm(n)(s1) shows that there is a rate-RT(D; s1) coding
scheme with a time-averaged distortion of at most D + 1/n.

Observe that by this argument and since RT(D; s1) is upper-
bounded by log |X | for every D > 0, so is Rn(D; s1) for all
sufficiently large n. Next, by definition of the rate-distortion
function,

RT(D; s1) ≥ Rm(n)(D + 1/n; s1), (32)

and we note that monotonicity and continuity of Rm(n) imply
the existence of a small nonnegative constant δn satisfying

Rm(n)(D + 1/n; s1) = Rm(n)(D; s1)− δn. (33)

We now require the following lemma.

Lemma 1. Consider a sequence of convex decreasing func-
tions (fn) on the domain R≥0, and assume that every fn is
upper-bounded by C ∈ R≥0. Then, for every sequence (δn)
satisfying δn ↓ 0 as n→∞,

lim
n→∞

fn(x)− fn(x+ δn) = 0 ∀x > 0. (34)

Proof. Suppose not. Then there is some ε > 0 such that for
infinitely many n

fn(x)− fn(x+ δn) ≥ ε (35)

and hence, since fn is assumed to be convex and decreasing,

fn(x′) ≥ f(x) + (ε/δn)(x− x′) ∀x′ ∈ [0, x], (36)

contradicting fn(x′) ≤ C for large n.

With Lemma 1 at hand, we conclude the proof of (29) by
noting that

RT(D; s1) ≥ lim inf
n→∞

Rm(n)(D; s1)− δn (37)

= lim inf
n→∞

Rm(n)(D; s1) (38)

≥ lim inf
n→∞

Rn(D; s1), (39)

where we have applied Lemma 1 in the first equality to argue
that (Rm(n)(D; s1)−Rm(n)(D + 1/n; s1))→ 0.

We next prove (30) by showing that under the “reset
assumption”, for every δ > 0 there exists a sequence of
descriptions of rate at most R′ + δ, where

R′ , lim inf
n→∞

Rn(D; s1), (40)

with corresponding feedback-controllers satisfying

lim sup
n→∞

E[D̄n] ≤ D. (41)

We first choose a positive integer n such that

Rn(D; s1) ≤ R′ + δ/2, (42)

and observe that monotonicity and continuity of the rate-
distortion function Rn(· ; s1) imply the existence of a small
positive constant δn satisfying
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Rn(D − δn; s1) = R′ + δ. (43)

Invoking Lemma 1, we see that δn cannot be too small for
large n, in particular we can choose n such that in addition
to satisfying (42), n will be large enough so that

δn ≥
2dmax

n
, (44)

where dmax denotes the maximum element in the range of d.
We next observe that by definition of the rate-distortion

function Rn(D−δn; s1) we can find for all sufficiently large m
a description

φ̃∗ : (Xn)m → {1, . . . , 2nm(R+δ)} (45)

and a reconstructor ψ̃∗, that given i ∈ {1, . . . , 2nm(R+δ)},
produces the feedback-controller

ψ̃∗(i) = (ψ̃∗1(i), . . . , ψ̃∗m(i)) (46)

with

ψ̃∗j (i) ∈ T1 × · · · × Tn ∀j ∈ [1 : m] (47)

and with the resulting expected time-averaged
distortion between (Xn)m and its reconstruc-
tion ψ̃∗1(φ̃∗(Xnm)), . . . , ψ̃∗m(φ̃∗(Xnm)), namely,

E[D̃m] ,
1

m

m∑
j=1

E[d̃n(Xjn
(j−1)n+1, ψ̃

∗
j (φ̃∗(Xnm)))], (48)

being smaller than D− δn/2. We next derive a new feedback
rule ψ̃′(i) from ψ̃∗(i) by replacing the last mapping in the
tuple ψ̃∗j (i) with one producing the “reset” input, i.e.,

ψ̃′j(i) ,
(
ψ̃∗j,1(i), . . . , ψ̃∗j,n−1(i), sn 7→ r(sn)

)
. (49)

The idea is now to apply φ̃∗ and ψ̃′ as a description and
feedback-controller pair to the source sequence (Xn)m and
the system S. Observe that (49) guarantees that Sk = s1 holds
for k = n+ 1, 2n+ 1, . . . , (m− 1)n+ 1; and since

E[D̃m] ≤ D − δn
2

(50)

and the change in (49) increases the expected time-averaged
distortion by no more than dmax/n, we have demonstrated the
existence of a description φ̃∗ of rate R′+δ and a corresponding
feedback-controller ψ̃′ that satisfies

E[D̄nm] ≤ E[D̃m] +
dmax

d
≤ D − δn

2
+
dmax

n
≤ D, (51)

where the last inequality follows from (44).
Since (51) holds for every sufficiently large m, we con-
clude that there is a sequence of descriptions and feedback-
controllers of rate at most R′ + δ satisfying

lim sup
l→∞

E[D̄l] ≤ D, (52)

which follows because even if l is not of the form l = nm,
we can express it as l = nm + r with r ≤ n, apply φ̃∗

and ψ̃′ until time nm, and use an arbitrary feedback rule on
the remaining r time steps. Since the distortion measure d is
assumed to be bounded, this does asymptotically not change
the time-averaged distortion.

In the following section we present an application of
Theorem 1 by studying the rate-trackability function for au-
tonomous, ergodic systems.

IV. CODING FOR AUTONOMOUS, ERGODIC SYSTEMS

We conclude the paper by considering systems whose inputs
do not influence their state evolution.

Theorem 2. If the state-evolution law of S is of the form

PS|S′,Z = PS|S′ , (53)

and PS|S′ is irreducable and aperiodic, then for all D > 0

RT(D; s1) = min
PT |X :E[dS(X,T )]≤D

I(T ;X), (54)

where dS(x, ψ) is defined as

dS(x, ψ) ,
∑
s

π(s)
∑
x̂

PX̂|S,Z(x̂|s, ψ(s))d(x, x̂), (55)

with π denoting the stationary distribution induced by PS|S′
and with the chance variable T taking values in T1.

Proof. Intuitively speaking Theorem, 2 states that the follow-
ing strategy is optimal: Wait until P[Sk = ·] is sufficiently
close to the stationary distribution and then treat the situation
as a single-letter R-D problem with a new distortion mea-
sure dS and reconstruction alphabet T1.

To formalize this idea, let P∗ denote the R-D problem
for the source sequence Xn ∼ PnX and the single-letter
distortion dS of (55), and let R∗(·) be its R-D function. We
now argue that for every δ > 0 there exists a sequence
of descriptions (φ(n)) and feedback-controllers (ψ(n)) of
rate R∗(D) + δ satisfying

lim sup
n→∞

E[D̄n] ≤ D. (56)

To see this, first observe that since PS|S′ is irreducable and
aperiodic, there exists for every ε > 0 a positive integer g such
that for every s ∈ S and all k ≥ g

|P[Sk = s]− π(s)| ≤ ε. (57)

Next, let

φ∗(n) : Xn → {1, . . . , 2nR
∗(D−δ′)}, n ∈ N (58)
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be a sequence of descriptions and

ϕ∗(n) : {1, . . . , 2nR
∗(D−δ′)} → T n1 , n ∈ N (59)

be a sequence of decoders of rate R∗(D − δ′) for the
rate-distortion problem P ∗ with δ′ > 0 chosen such as
to satisfy R∗(D − δ′) ≤ R∗(D) + δ (the existence of a
suitable δ′ follows from the continuity of the rate-distortion
function). For n large enough, the expected time-averaged
distortion as measured by dS and induced by (φ∗(n), ϕ∗(n))
is bounded from above by D − δ′/2. We now construct a
new description φ(n) of rate R∗(D− δ′) that ignores Xg and
encodes Xn

g+1 according to φ∗(n−g)(Xn
g+1). The correspond-

ing feedback-controller ψ(n) is constructed by applying an
arbitrary feedback rule until time g and then applying the
feedback-controller ϕ∗(n−g)(φ∗(n−g)(Xn

g+1)). The expected
distortion incurred until time g is constant and finite, and
hence does not influence the asymptotic discussion. Due
to (57), we further observe that computing the expected
time-k distortion E[d(Xk, X̂k)] with respect to the true state
distribution P[Sk = ·] instead of π for k ≥ g yields a value no
larger than E[dS(Xk;Tk)] + εdmax. Thus, by choosing g such
that ε ≤ δ′/(2dmax), we can indeed construct a sequence (φ(n))
of rate-(R∗(D)+δ) descriptions with corresponding feedback-
controllers (ψ(n)) satisfying lim supn→∞ E[D̄n] ≤ D. This
concludes the achievability part of the proof.

For the converse we invoke Theorem 1 and show
that R∗(D) constitutes a lower bound on (29). To that end
we first convice ourselves that in order to minimize (29), the
support of Tn can be restricted to T n1 , i.e., the time-k feedback
rule Tk takes into account only Sk (instead of Sk). To see this,
consider any conditional distribution PTn|Xn satisfying

E[d̃n(Xn, Tn)] ≤ D. (60)

From Tn we generate a new feedback-controller T ′n as
follows: For every k ∈ [2 : n] and every state sk ∈ S we
independently generate a simulation of the past states Sk−1,
denoted S′k−1sk

, according to PSk−1|Sk
(·|sk). Then the feed-

back rules

(sk−1, sk) 7→ Tk(sk−1, sk) (61)

are replaced by

(sk−1, sk) 7→ Tk(S′k−1sk
, sk) (62)

for all sk ∈ Sk, k ∈ [2 : n]. Observe that

E[d(Xk, T
′
k(Sk))] = E[d(Xk, Tk(S′k−1Sk

, Sk))] (63)

= E[d(Xt, Tk(Sk−1, Sk))], (64)

where the second equality holds because the inputs to the
system do not influence its state. This condition is necessary,
as in general replacing the argument Sk−1 of Tk with S′k−1Sk

changes the distribution of Sk+1.
From (64) we follow that PT ′n|Xn satisfies

E[d̃n(Xn, T ′n)] = E[d̃n(Xn, Tn)] ≤ D, (65)

and since Xn → Tn → T ′n is a Markov chain, the data
processing inequality implies

I(Xn;Tn) ≥ I(Xn;T ′n), (66)

and hence we may indeed assume that Tn ∈ T n1 when
considering (29). To wrap up the proof, we argue that assuming
Tn ∈ T n1 ,

lim inf
n→∞

min
PTn|Xn :E[d̃n(Xn,Tn)]≤D

1

n
I(Xn;Tn) ≥ R∗(D). (67)

This will follow immediately from the lemma below that we
state without proof.

Lemma 2. Let Xn ∼ PnX for some PMF PX with finite
support X , and let (dn) be a sequence of distortion measures
on the finite domain X × X̂ . Suppose there is a distortion
measure d such that dn → d as n→∞ in the sense that

lim
n→∞

max
x,x̂
|dn(x, x̂)− d(x, x̂)| = 0. (68)

Then, for D ∈ R≥0,

lim inf
n→∞

min
PX̂n|Xn : 1n

∑n
i=1 E[di(Xi,X̂i)]≤D

1

n
I(Xn; X̂n) (69)

≥ min
PX̂|X :E[d(X,X̂)]≤D

I(X; X̂)

We now observe that (67) follows from Lemma 2 with

dn(x, ψ) =
∑
s

P[Sn = s]
∑
x̂

PX̂|S,Z(x̂|s, ψ(s))d(x, x̂)

(70)
and d = dS ; the source and reconstruction alphabets are X
and T1, respectively.

As a closing remark of this section, we see that for a system
where Sn ∼ πn, the problem corresponds to an indirect R-D
problem as studied by Witsenhausen in [3]; by Dobrushin and
Tsybakov in [1]; and by Wolf and Ziv in [4]. We also mention
that the channel-coding dual of our problem is considered by
Gallager in [2, Chapter 4, p. 97 – 111].
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