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Abstract—Three variations on the Massey-Arikan guessing
problem are considered. Their solutions provide new evidence
of the duality between good guessing functions and efficient
quantization schemes. They also show how type-covering can
be used to provide side-information in the guessing setup.

I. INTRODUCTION

In his seminal paper [1], Arikan related the Rényi En-
tropy Hα(X) of a random variable X of finite support set X to
the ρ-th moment of the number of guesses needed to recover
its realization. He showed that, using questions of the form
“Is X = x?”,

E[G∗(X)ρ] ≈ 2ρH1/(1+ρ)(X), (1)

where G∗ denotes the optimal guessing order, i.e., the optimal
bijection X → {1, 2, . . . , |X |}; ρ is a positive constant;
H1/(1+ρ)(X) is the Rényi Entropy of order 1/(1 + ρ); and
where equality holds up to a factor dominated by log |X |.

In the IID case, where Xn ∼ PnX for some PMF PX on X ,

lim
n→∞

logE[G∗(Xn)ρ]

n
= ρH1/(1+ρ)(X), (2)

and the Rényi Entropy thus fully characterizes the exponential
growth rate of E[G∗(Xn)ρ].

Together with Merhav [2], the preceding results were gen-
eralized to the rate-distortion guessing problem. Here the goal
is to minimize the ρ-th moment of the number of guesses
required until the guess X̂n satisfies dn(X

n, X̂n) ≤ D,
where dn(·, ·) is some nonnegative distortion function. Under
the usual single-letter assumption, i.e., Xn being drawn IID
according to PX and dn : Xn × X̂n → R≥0 being express-
ible as dn(xn, x̂n) = 1

n

∑n
i=1 d(xi, x̂i), Arikan and Merhav

showed that

lim
n→∞

logE[G∗d,D(Xn)ρ]

n
(3)

= sup
QX

[ρRd,D(QX)−D(QX ||PX)].

Here Rd,D(QX) denotes the rate-distortion function of a
source of law QX with respect to the distortion mea-
sure d and maximal-allowed distortion D, and G∗d,D(·)
is the optimal guessing function in the rate-distortion
setup. It is defined with respect to an implicit optimal
guessing order (x̂n1 , x̂

n
2 , . . . , x̂

n
|X̂n|) on X̂n, and G∗d,D(x

n)

equals i ∈ {1, 2, . . . , |X̂n|} if i is the lowest index for

which dn(xn, x̂ni ) ≤ D (if no such i exists, then Gd,D(x
n) is

defined as +∞).
Here we present three extensions of these results: The first

deals with a setting where Xn is described using nR bits,
and the description Zn is then revealed to the guesser (before
the guessing begins). Generalizing an argument from [2], we
lower-bound the least ρ-th moment of the number of required
guesses. We upper-bound it by proposing a description of Xn

that is based on type-covering. Using these bounds, we show
that, with the optimal use of the allotted nR bits,

lim
n→∞

min
Zn

logE[G∗(Xn|Zn)ρ]
n

(4)

= sup
QX

inf
QU|X :I(QX;U )≤R

[ρH(QX|U )−D(QX ||PX)],

where G∗(·|Zn) is the optimal guessing function for Xn

given Zn, I(QX;U ) denotes the mutual information between
X and U , and H(QX|U ) is the conditional entropy of X
given U . Both I(QX;U ) and H(QX|U ) are computed with
respect to QX,U = QXQU |X . By invoking the identity

sup
QX

inf
QU|X :I(QX;U )≤R

[ρH(QX|U )−D(QX ||PX)] (5)

= ρmax(H1/(1+ρ)(PX)−R, 0),

we show that for Xn ∼ PnX one needs roughly
nH1/(1+ρ)(PX) bits of side-information to guarantee that
limn→∞ E[G∗(Xn|Zn)ρ] = 1.

The second extension is presented in section III and has a
rate-distortion flavor. We prove that if (Xn, Y n) are drawn
IID according to PX,Y and if after observing Y n we want to
guess Xn to within distortion D as measured by some single-
letter distortion measure d, then the optimal rate-distortion
guessing exponent is given by

lim
n→∞

logE[G∗d,D(Xn|Y n)ρ]
n

(6)

= sup
QX,Y

[ρRcond
d,D(QX|Y )−D(QX,Y ||PX,Y )].

Here G∗d,D(·|·) is the optimal conditional rate-distortion guess-
ing function, and Rcond

d,D(QX|Y ) denotes the conditional rate-
distortion function for a source of law QX when side-
information Y of conditional law QY |X is available to both
describer and reconstructor.
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The third extension is presented in section IV, where we
derive the optimal guessing exponent in a rate-distortion
setting where nR bits are allocated for a description Zn of Xn.
We show that the optimal guessing exponent is given by

lim
n→∞

min
Zn

logE[G∗d,D(Xn|Zn)ρ]
n

(7)

= sup
QX

inf
QU|X :I(QX;U )≤R

[ρRcond
d,D(QX|U )−D(QX ||PX)].

II. GUESSING WITH CHOSEN SIDE-INFORMATION

Theorem 1. The minimal achievable guessing exponent with
side-information Zn , φn(X

n) over all φn : Xn →
{1, 2, . . . , 2nR} is given in (4).

Proof. We first show that no choice of φn and no guessing
strategy can yield an exponent below (4). To that end we ex-
ploit the relationship between guessing strategies and variable-
length source coding [3].

We begin by introducing a data-compression setup. A helper
is allotted nR bits to produce a description Zn of Xn. The
pair (Xn, Zn) is observed by an encoder, which generates a
binary description Wn of Xn. A reconstructor then recovers
Xn from the pair (Wn, Zn).

For a given guessing tuple (φn,G) we create the following
instance of the above data-compression setup: The helper
produces Zn = φn(X

n), and the encoder uses a binary
code for the positive integers Z>0 to describe the positive
integer G(Xn|Zn). The code is such that each i ∈ Z>0 is
described using l(i) bits, where l(i) = dlog(i(1+δ)/C(δ))e.
Here δ > 0 is arbitrarily small and C(δ) =

(∑∞
i=1 1/i

1+δ
)−1

.
(The existence of such a code follows for instance from Kraft’s
Inequality.) The encoder thus observes (Xn, Zn) and pro-
duces a length-dlog(G(Xn|Zn)(1+δ)/C(δ))e string describ-
ing G(Xn|Zn). From this description and Zn the reconstructor
recovers G(Xn|Zn). It then recovers Xn from G(Xn|Zn)
and Zn.

Next, let Ln(P,R) denote the least average binary descrip-
tion length for the data-compression setup introduced above,
where P denotes the source distribution and R is the rate
allotted to the helper. We now relate the performance of the
guessing scheme to the performance of the data-compression
scheme it instantiates and then use Ln(·, ·) to bound the latter:

EPX [G(Xn|Zn)ρ]
(a)

≥ sup
QX

2EQX [log G(Xn|Zn)ρ]−nD(QX ||PX) (8)

(b)

≥ sup
QX

2ρ
EQX [l(G(Xn|Zn))]

1+δ +ρ
logC(δ)−1

1+δ −nD(QX ||PX) (9)

(c)

≥ sup
QX

2ρn
Ln(QX,R)

1+δ +ρ
logC(δ)−1

1+δ −nD(QX ||PX), (10)

where EQ denotes expectation with respect to Q, and
with the following justification: To obtain the variational
inequality (a), we express p(xn) as q(xn) · p(xn)/q(xn) to

arrive at an expectation with respect to q; we then express
p(xn)/q(xn)·G(xn|zn) as 2log ξ and apply Jensen’s Inequality
to the convex map ξ 7→ 2ξ; in (b) we restate logG(Xn|Zn) as
log(G(Xn|Zn)1+δC(δ)/C(δ))/(1 + δ), apply the inequality
ξ ≥ dξe − 1 and recognize dlog(G(Xn|Zn)(1+δ)/C(δ))e
as l(G(Xn|Zn)); (c) follows from the definition of Ln(·, ·).
To proceed, we state a result from [4].

Lemma 1. For every n ∈ Z>0 the least average binary
description length Ln(QX , R) is lower-bounded by

Ln(QX , R) ≥ inf
QU|X :I(QX;U )≤R

H(QX|U ). (11)

From (10) and the preceding lemma (with δ > 0 fixed and n
sent to infinity)

lim inf
n→∞

logEPX [G(Xn|Zn)ρ]
n

(12)

≥ sup
QX

[
ρ
infQU|X :I(QX;U )≤RH(QX|U )

1 + δ
−D(QX ||PX)

]
.

By letting δ approach 0 from above, we conclude that no
guessing exponent below (4) can be achieved.

We next propose a guessing scheme that asymptotically
achieves the lower bound. We begin by fixing some small
δ > 0 and, for every type class T (n)(QX) on Xn, we
select a conditional type QU |X that–among all those satisfy-
ing I(QX;U ) ≤ R−δ and QU ∈ P(n)(U), i.e., QU being a type
of denominator n on the alphabet U–minimizes H(QX|U ). The
derivation of the type-covering lemma (see for instance [5,
Chapter 6, p. 152 – 153]) shows that for large enough n there
exists a codebook CQX , such that log |CQX |/n ≤ R − δ/2
and such that for every xn ∈ T (n)(QX) we can find some
un ∈ CQX satisfying (xn, un) ∈ T (n)(QXQU |X).

The side-information Zn that we propose comprises two
parts. The first is of length at most (δ/2)n and describes
the type of Xn, which requires distinguishing between a
polynomial number of outcomes. The second part is the
index of some codeword Un ∈ CQX for which (Xn, Un) is
in T (n)(QXQU |X) and is thus at most of length (R− δ/2)n
bits.

The guesser uses the first part of Zn to recover the type
of Xn and from it identifies the codebook CQX . The guesser
then uses the second part of Zn to recover Un from CQX .
Finally the guesser recovers Xn by sequentially guessing the
elements of the conditional type class T (n)(QX|U |Un) in an
arbitrary order. The ρ-th moment of the number of guesses
can be upper-bounded as follows:

E [G(Xn|Zn)ρ]

=
∑

QX∈P(n)(X )

E[G(Xn|Zn)ρ|Xn ∈ T (n)(QX)] (13)

P[Xn ∈ T (n)(QX)]
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(a)

≤
∑

QX∈P(n)(X )

E[G(Xn|Zn)ρ|Xn ∈ T (n)(QX)] (14)

2−nD(QX ||PX)

(b)

≤
∑

QX∈P(n)(X )

2
nmin∗QU|X :I(QX;U )≤R−δ ρH(QX|U )

(15)

2−nD(QX ||PX)

(c)

≤ max
QX∈P(n)(X )

[
2
nmin∗QU|X :I(QX;U )≤R−δ ρH(QX|U )

(16)

2−nD(QX ||PX)+nδn
]
,

where (a) follows from Sanov’s Theorem; (b) follows from
the fact that in the worst case we go through all the elements
of the conditionally typical set T (n)(QX|U |Un), the size of
which is determined by the entropy of the auxiliary conditional
type QX|U . This type is in turn induced by the choice of QU |X ,
where the notation min∗ in (15) denotes that the optimization
is with respect to types; and (c) follows by maximizing over
the set of all types P(n)(X ), where the overhead of the sum is
absorbed into the exponent δn, with the property that δn ↓ 0,
as there are at most polynomially many types.

To recover (4) from (16), we first observe that H(QX|U )
is a continuous function with respect to QU |X . Since the set
of types is dense in the set of all probability distributions, we
may allow the minimization min∗QU|X H(QX|U ) to be carried
out without the restriction to types at the expense of some
small deviation δ′n satisfying δ′n ↓ 0 for n→∞. Therefore

lim sup
n→∞

logEPX [G(Xn|Zn)ρ]
n

≤ sup
QX

inf
QU|X :I(QX;U )≤R−δ

[
ρH(QX|U )−D(QX ||PX)

]
.

(17)

And since the above holds for for any δ > 0 and inf H(QX|U )
is a continuous function of the rate constraint R, there is
indeed a choice of Zn and a guessing scheme achieving
(4).

Before moving on, we briefly point out a consequence
of this result. It has been shown [6, Corollary 7] that for
any δ > 0, a judicious length-(H1/(1+ρ)(PX)+δ)n description
of Xn suffices to drive the the ρ-th moment associated with
guessing Xn to one. This is congruous with Theorem 1, which,
in combination with the identity (5) implies that the guessing
exponent is zero if and only if R ≥ H1/(1+ρ)(PX). For a
derivation of (5) see [4]. Also note that our choice of Zn
does not necessarily minimize E[G∗(Xn|Zn)ρ]; for ρ = 1, an
explicit construction of a minimizing Zn can be found in [7].

III. RATE-DISTORTION GUESSING WITH
SIDE-INFORMATION

We next consider a setting where (Xn, Y n) ∼ PnX,Y .
For a given pair (d,D), the goal is to guess Xn to within
distortion D after observing Y n in as few guesses as possible.
Our result is summarized in the following theorem.

Theorem 2. With access to the side-information Y n, the
minimal achievable rate-distortion guessing exponent is given
in (6).

Proof. To see why no smaller exponent is achievable,
we again use the duality between guessing and data-
compression. For this guessing setup, the corresponding data-
compression problem is the lossy description of Xn, where
the side-information Y n is revealed to both the encoder
and the reconstructor. Every guessing function Gd,D(·|yn)
induces, along with its guessing order (x̂n1 , x̂

n
2 , . . . , x̂

n
|X̂n|),

a data-compression scheme as follows: Upon observing
the pair (Xn, Y n), the encoder describes the approxima-
tion X̂n of Xn by producing the length-l(i) string de-
scribing the positive integer Gd,D(X

n|Y n), where l(i) =
dlog(i(1+δ)/C(δ))e. Using this string and Y n, the recon-
structor recovers Gd,D(X

n|Y n). Finally X̂n is obtained
from Gd,D(X

n|Y n), Y n, and the implicit guessing order
of Gd,D.

Key is that the average string length in the above data-
compression problem is bounded from below by the condi-
tional rate-distortion function. With this idea in mind, we alter
(8)–(10) as follows:

EPX [Gd,D(Xn|Y n)ρ]
≥ sup

QX

2EQX [log Gd,D(Xn|Y n)ρ]−nD(QX ||PX) (18)

≥ sup
QX

2ρ
EQX [l(Gd,D(Xn|Y n))]

1+δ +ρ
logC(δ)−1

1+δ −nD(QX ||PX) (19)

≥ sup
QX

2ρn
Rcond
d,D(QX|Y )

1+δ +ρ
logC(δ)−1

1+δ −nD(QX ||PX). (20)

The justification for the above inequalities is analogous to the
justification of (8)–(10). Observe that as mentioned above, the
conditional rate-distortion function has been introduced as a
lower bound in the last inequality. To recover (6) as a lower
bound on lim infn→∞ logEPX [Gd,D(Xn|Y n)ρ]/n, we again
let n→∞ and observe that (20) holds for any δ > 0.

To show that there exists a guessing scheme achieving (6),
we need the following lemma from [4].

Lemma 2. For every δ ≥ 0, D ≥ 0 and distortion measure d,
there exists a positive integer n0, such that for all n ≥ n0 and
every length-n sequence yn of type QY ∈ P(n)(Y) and every
conditional type QX|Y satisfying QX ∈ P(n)(X ), there exists
a codebook Cyn ⊂ X̂n satisfying |Cyn | ≤ 2n(R

cond
d,D(QX|Y )+δ)

and such that for every xn ∈ T (n)(QX|Y |yn) there is some
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x̂n ∈ Cyn satisfying 1/n
∑n
i=1 d(xi, x̂i) ≤ D.

With Lemma 2 at hand, we can follow Arikan’s universal
guessing approach [2]. After observing Y n and determining
its type QY , the guesser generates, for every conditional
type QX|Y satisfying QX ∈ P(n)(X ), a codebook CY n,QX|Y
such that for every Xn ∈ T (n)(QX|Y |Y n) there is some
X̂n ∈ CY n,QX|Y satisfying 1/n

∑n
i=1 d(Xi, X̂i) ≤ D and

such that the number of entries in the codebook satis-
fies |CY n,QX|Y | ≤ 2n(R

cond
d,D(QX|Y )+δ). The existence of such a

codebook is guaranteed by Lemma 2, and δ > 0 is some small
constant. Since the size of CY n,QX|Y only depends on Y n via
its type QY , we use the notation |CQYQX|Y | whenever we refer
to the cardinality of CY n,QX|Y .

After generating the codebooks, the guesser defines the
binary relation “�”, where Q′X|Y � QX|Y =⇒
Rcond
d,D(Q

′
X|Y ) ≤ Rcond

d,D(QX|Y ) and arranges the elements of
{QX|Y } in ascending order of “�”. Picking an arbitrary guess-
ing order for every codebook, the guesser then sequentially
guesses elements in CY n,Q1

X|Y
, CY n,Q2

X|Y
, . . . , C

Y n,Q
|Pn(X|Y )|
X|Y

.

The index i on QiX|Y denotes the position of QX|Y in the
ascending arrangement with respect to “�”. In the worst case
we go through all codebooks until and including the one
corresponding to the actual joint type of (Xn, Y n), so the
ρ-th moment of the number of guesses can be bounded by

E[Gρd,D(X
n|Y n)]

=
∑
QY

E[Gρd,D(X
n|Y n)|Y n ∈ T (n)(QY )]P[Y n ∈ T (n)(QY )]

(21)

≤
∑
QY

E[Gρd,D(X
n|Y n)|Y n ∈ T (n)(QY )]2

−nD(QY ||PY )

(22)

(a)

≤
∑
QY

∑
QX|Y

( ∑
Q′
X|Y �QX|Y

|CQYQ′X|Y |

)ρ
(23)

2−nD(QX|Y ||PX|Y )2−nD(QY ||PY )

(b)

≤
∑
QY

∑
QX|Y

( ∑
Q′
X|Y �QX|Y

2n(R
cond
d,D(QYQ

′
X|Y )+δ)

)ρ
(24)

2−nD(QYQX|Y ||PX,Y )

(c)

≤
∑
QY

∑
QX|Y

2nρ(R
cond
d,D(QYQX|Y )+δ+δn)2−nD(QYQX|Y ||PX,Y )

(25)
(d)

≤ sup
QX,Y

2nρ(R
cond
d,D(QY QX|Y )+δ+δn)2−nD(QYQX,Y ||PX,Y ),

(26)

where the sums
∑
QY

and
∑
QX|Y

are read as
∑
QY ∈P(n)(Y)

and
∑
QX|Y ∈P(n)(X|Y), respectively, and with the following

justification: To recover (a), observe that the size of all
codebooks up to and including the one corresponding to the
actual type of (Xn, Y n) constitutes an upper bound on the
expected number of guesses; (b) follows from Lemma 2; (c)
is a result of the guessing order induced by “�” and further
follows from absorbing the sum overhead into the exponent δn;
and (d) is due to a maximization over all types where the sum
overhead is again included in δn. By letting δ approach 0 from
above and δn ↓ 0, it follows that (6) is indeed achievable.

IV. RATE-DISTORTION GUESSING WITH A HELPER

We consider a rate-distortion guessing problem where, as
in section II, nR bits are alotted to create a description Zn to
help the guesser.

Theorem 3. The minimal achievable rate-distortion guessing
exponent with side-information Zn , φn(X

n) over all φn :
Xn → {1, 2, . . . , 2nR} is given in (7).

Proof. In order to prove that no choice of Zn allows for a
guessing exponent below (7), we begin by reintroducing the
data-compression setup from section II. However, instead of
requiring that the reconstructor recovers Xn from (Wn, Zn),
we content ourselves with an approximation X̂n that satisfies
1
n

∑n
i=1 d(Xi, X̂i) ≤ D.

For a given guessing tuple (φn,Gd,D), we instantiate
this data-compression setup as follows: The helper gener-
ates Zn = φn(X

n) and the encoder, observing Zn, describes
Xn by the string for the positive integer Gd,D(X

n|Zn).
This string has length l(i), where l(i) = dlog(i(1+δ)/C(δ))e.
From this description and Zn the reconstructor recovers
Gd,D(X

n|Zn). It then recovers X̂n from Gd,D(X
n|Zn), Zn,

and the implicit guessing order of Gd,D.
To continue, we need a lower bound for the above data-

compression setup. The bound is stated in the following lemma
from [4].

Lemma 3. Suppose Xn ∼ QnX and let Zn = φn(X
n)

denote the chosen side-information about Xn, where for
some positive constant R the side-information is generated
by applying a helper φn : Xn → {1, 2, . . . , 2nR}. An encoder
ϕn : Xn × {1, 2, . . . , 2nR} → {1, 2, . . . , 2nR0} produces a
description of Xn based on Zn. This description is revealed
to a reconstructor ψn along with the side-information Zn.
From the description and Zn the reconstructor produces
X̂n = ψn(ϕn(X

n, Zn), Zn) satisfying

1

n

n∑
i=1

E[d(Xi, X̂i)] ≤ D. (27)

For every n ∈ Z>0 the least achievable R0 in this setup is
lower-bounded by

R0 ≥ inf
QU|X :I(QX;U )≤R

Rcond
d,D(QX|U ). (28)
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With (28) we can lower-bound the ρ-th moment of the number
of guesses by

EPX [Gd,D(Xn|Zn)ρ]
≥ sup

QX

2EQX [log Gd,D(Xn|Zn)ρ]−nD(QX ||PX) (29)

≥ sup
QX

2ρ
EQX [l(Gd,D(Xn|Zn))]

1+δ +ρ
logC(δ)−1

1+δ −nD(QX ||PX) (30)

≥ sup
QX

[
2ρn

infQU|X :I(QX;U )≤R Rcond
d,D(QX|U )

1+δ +ρ
logC(δ)−1

1+δ (31)

2−nD(QX ||PX)

]
.

The above arguments differ from those of the preceding
two setups only in the last inequality, which is now due to
Lemma 3. We recover the exponent in (7) as a lower bound
on lim infn→∞ logEPX [Gd,D(Xn|Zn)ρ]/n by again letting n
tend to infinity and observing that (31) holds for any δ > 0.

To derive a guessing scheme that asymptotically achieves
the optimal exponent (7), we combine the ideas introduced
in sections II and III. We begin by fixing two small con-
stants δ > 0, δ′ > 0 and, for every type class T (n)(QX)
on Xn, select a conditional type QU |X that–among all
those satisfying I(QX;U ) ≤ R − δ and QU ∈ P(n)(U)–
minimizes Rcond

d,D(QX|U ). We observe that for large enough n
there exists a codebook CQX , such that log |CQX |/n ≤ R−δ/2
and such that for every xn ∈ T (n)(QX) we can find some
un ∈ CQX satisfying (xn, un) ∈ T (n)(QXQU |X).

The side-information Zn is again made up of two parts.
The first is of length at most (δ/2)n and describes the type
of Xn. The second part is the index of some Un ∈ CQX
satisfying (Xn, Un) ∈ T (n)(QXQU |X). This description
requires no more than (R− δ/2)n bits.

The guesser uses the first part of Zn to recover the type
of Xn and from it identifies the codebook CQX . Next the
guesser uses the second part of Zn to recover Un from
CQX . With Un and the joint type of (Xn, Un) at hand, the
guesser applies Lemma 2 to generate a codebook CUn that
satisfies log |CUn |/n ≤ Rcond

d,D(QX|U ) + δ′ and such that for
every Xn ∈ T (n)(QX|U |Un) there is some X̂n ∈ CUn
satisfying 1/n

∑n
i=1 d(Xi, X̂i) ≤ D. The guesser then finds a

suitable X̂n by sequentially guessing the elements of CUn in
an arbitrary order. The ρ-th moment of the number of guesses
can be upper-bounded as follows:

E [Gd,D(X
n|Zn)ρ]

=
∑

QX∈P(n)(X )

E[Gd,D(Xn|Zn)ρ|Xn ∈ T (n)(QX)] (32)

P[Xn ∈ T (n)(QX)]

≤
∑

QX∈P(n)(X )

E[Gd,D(Xn|Zn)ρ|Xn ∈ T (n)(QX)] (33)

2−nD(QX ||PX)

(a)

≤
∑

QX∈P(n)(X )

2
nmin∗QU|X :I(QX;U )≤R−δ ρ(R

cond
d,D(QX|U )+δ′)

(34)

2−nD(QX ||PX)

(b)

≤ max
QX∈P(n)(X )

[
2
nmin∗QU|X :I(QX;U )≤R−δ ρ(R

cond
d,D(QX|U )+δ′)

(35)

2−nD(QX ||PX)+nδn
]
.

To see why (a) holds, observe that for Xn of type QX the
guesser performs at most 2(R

cond
d,D(QX|U )+δ′)n many guesses.

Here Rcond
d,D(QX|U ) is minimized with respect to the type QU |X

under the constraint that I(QX;U ) ≤ R − δ. In (b) we
upper-bound the sum over P(n)(X ) by its dominating term
and absorb the overhead into the exponent δn. We relax the
minimization over types to a minimization over all probability
distributions at a small surplus in the exponent δ′n, satisfy-
ing δ′n ↓ 0. We next let δ and δ′ approach 0 from above,
and drop the requirement that QX must be a type in the first
maximization.

V. GUESSING WITH CORRELATED SIDE-INFORMATION

The preceding sections present instances of a setup where
(Xn, Y n) ∼ PnX,Y , and Xn is to be guessed to within
distortion D after observing a rate-R description of Y n. If Xn

is to be guessed exactly, then the optimal guessing exponent
E∗ satisfies

sup
QY

inf
QU|Y :I(QU;Y )≤R

sup
QX|Y,U

(ρH(QX|U )−D(QX|Y,U ||PX|Y )

−D(QY ||PY )) ≥ E∗ (36)

≥ sup
QY

inf
QU|Y :I(QU;Y )≤R

sup
QX|Y

(ρH(QX|U )−D(QX,Y ||PX,Y )).

(37)
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