Variations on the Guessing Problem

Robert Graczyk and Amos Lapidoth Signal and Information Processing Laboratory ETH Zurich, 8092 Zurich, Switzerland Email: {graczyk, lapidoth}@isi.ee.ethz.ch

Abstract—Three variations on the Massey-Arikan guessing problem are considered. Their solutions provide new evidence of the duality between good guessing functions and efficient quantization schemes. They also show how type-covering can be used to provide side-information in the guessing setup.

I. INTRODUCTION

In his seminal paper [1], Arikan related the Rényi Entropy $H_{\alpha}(X)$ of a random variable X of finite support set \mathcal{X} to the ρ -th moment of the number of guesses needed to recover its realization. He showed that, using questions of the form "Is X = x?",

$$\mathbb{E}[\mathbf{G}^*(X)^{\rho}] \approx 2^{\rho \operatorname{H}_{1/(1+\rho)}(X)},\tag{1}$$

where G^{*} denotes the optimal guessing order, i.e., the optimal bijection $\mathcal{X} \rightarrow \{1, 2, \dots, |\mathcal{X}|\}$; ρ is a positive constant; $H_{1/(1+\rho)}(X)$ is the Rényi Entropy of order $1/(1+\rho)$; and where equality holds up to a factor dominated by $\log |\mathcal{X}|$.

In the IID case, where $X^n \sim P_X^n$ for some PMF P_X on \mathcal{X} ,

$$\lim_{n \to \infty} \frac{\log \mathbb{E}[\mathcal{G}^*(X^n)^{\rho}]}{n} = \rho \operatorname{H}_{1/(1+\rho)}(X), \tag{2}$$

and the Rényi Entropy thus fully characterizes the exponential growth rate of $\mathbb{E}[G^*(X^n)^{\rho}]$.

Together with Merhav [2], the preceding results were generalized to the rate-distortion guessing problem. Here the goal is to minimize the ρ -th moment of the number of guesses required until the guess \hat{X}^n satisfies $d_n(X^n, \hat{X}^n) \leq D$, where $d_n(\cdot, \cdot)$ is some nonnegative distortion function. Under the usual single-letter assumption, i.e., X^n being drawn IID according to P_X and $d_n : \mathcal{X}^n \times \hat{\mathcal{X}}^n \to \mathbb{R}_{\geq 0}$ being expressible as $d_n(x^n, \hat{x}^n) = \frac{1}{n} \sum_{i=1}^n d(x_i, \hat{x}_i)$, Arikan and Merhav showed that

$$\lim_{n \to \infty} \frac{\log \mathbb{E}[\mathcal{G}_{d,D}^*(X^n)^{\rho}]}{n}$$

$$= \sup_{Q_X} [\rho \mathcal{R}_{d,D}(Q_X) - \mathcal{D}(Q_X || P_X)].$$
(3)

Here $\mathbb{R}_{d,D}(Q_X)$ denotes the rate-distortion function of a source of law Q_X with respect to the distortion measure d and maximal-allowed distortion D, and $\mathbb{G}^*_{d,D}(\cdot)$ is the optimal guessing function in the rate-distortion setup. It is defined with respect to an implicit optimal guessing order $(\hat{x}^n_1, \hat{x}^n_2, \ldots, \hat{x}^n_{|\hat{\mathcal{X}}^n|})$ on $\hat{\mathcal{X}}^n$, and $\mathbb{G}^*_{d,D}(x^n)$ equals $i \in \{1, 2, \ldots, |\hat{\mathcal{X}}^n|\}$ if i is the lowest index for

which $d_n(x^n, \hat{x}_i^n) \leq D$ (if no such *i* exists, then $G_{d,D}(x^n)$ is defined as $+\infty$).

Here we present three extensions of these results: The first deals with a setting where X^n is described using nR bits, and the description Z_n is then revealed to the guesser (before the guessing begins). Generalizing an argument from [2], we lower-bound the least ρ -th moment of the number of required guesses. We upper-bound it by proposing a description of X^n that is based on type-covering. Using these bounds, we show that, with the optimal use of the allotted nR bits,

$$\lim_{n \to \infty} \min_{Z_n} \frac{\log \mathbb{E}[\mathrm{G}^*(X^n | Z_n)^{\rho}]}{n}$$
(4)
=
$$\sup_{Q_X} \inf_{Q_U | X : \mathrm{I}(Q_{X;U}) \le R} [\rho \operatorname{H}(Q_X | U) - \mathrm{D}(Q_X | | P_X)],$$

where $G^*(\cdot|Z_n)$ is the optimal guessing function for X^n given Z_n , $I(Q_{X;U})$ denotes the mutual information between X and U, and $H(Q_{X|U})$ is the conditional entropy of X given U. Both $I(Q_{X;U})$ and $H(Q_{X|U})$ are computed with respect to $Q_{X,U} = Q_X Q_{U|X}$. By invoking the identity

$$\sup_{Q_X} \inf_{Q_U|_X: I(Q_X;_U) \le R} [\rho \operatorname{H}(Q_X|_U) - \operatorname{D}(Q_X||P_X)] \quad (5)$$

= $\rho \max(\operatorname{H}_{1/(1+\rho)}(P_X) - R, 0),$

we show that for $X^n \sim P_X^n$ one needs roughly $n \operatorname{H}_{1/(1+\rho)}(P_X)$ bits of side-information to guarantee that $\lim_{n\to\infty} \mathbb{E}[\operatorname{G}^*(X^n|Z_n)^{\rho}] = 1.$

The second extension is presented in section III and has a rate-distortion flavor. We prove that if (X^n, Y^n) are drawn IID according to $P_{X,Y}$ and if after observing Y^n we want to guess X^n to within distortion D as measured by some single-letter distortion measure d, then the optimal rate-distortion guessing exponent is given by

$$\lim_{n \to \infty} \frac{\log \mathbb{E}[\mathrm{G}^*_{d,D}(X^n | Y^n)^{\rho}]}{n}$$

$$= \sup_{Q_{X,Y}} [\rho \operatorname{R}^{\operatorname{cond}}_{d,D}(Q_{X|Y}) - \mathrm{D}(Q_{X,Y} | | P_{X,Y})].$$
(6)

Here $G_{d,D}^*(\cdot|\cdot)$ is the optimal conditional rate-distortion guessing function, and $R_{d,D}^{cond}(Q_{X|Y})$ denotes the conditional ratedistortion function for a source of law Q_X when sideinformation Y of conditional law $Q_{Y|X}$ is available to both describer and reconstructor. The third extension is presented in section IV, where we derive the optimal guessing exponent in a rate-distortion setting where nR bits are allocated for a description Z_n of X^n . We show that the optimal guessing exponent is given by

$$\lim_{n \to \infty} \min_{Z_n} \frac{\log \mathbb{E}[\mathbf{G}_{d,D}^*(X^n | Z_n)^{\rho}]}{n}$$
(7)
=
$$\sup_{Q_X} \inf_{Q_{U|X}: \mathbf{I}(Q_{X;U}) \le R} [\rho \, \mathbf{R}_{d,D}^{\text{cond}}(Q_X|_U) - \mathbf{D}(Q_X||P_X)].$$

II. GUESSING WITH CHOSEN SIDE-INFORMATION

Theorem 1. The minimal achievable guessing exponent with side-information $Z_n \triangleq \phi_n(X^n)$ over all $\phi_n : \mathcal{X}^n \to \{1, 2, \dots, 2^{nR}\}$ is given in (4).

Proof. We first show that no choice of ϕ_n and no guessing strategy can yield an exponent below (4). To that end we exploit the relationship between guessing strategies and variable-length source coding [3].

We begin by introducing a data-compression setup. A helper is allotted nR bits to produce a description Z_n of X^n . The pair (X^n, Z_n) is observed by an encoder, which generates a binary description W_n of X^n . A reconstructor then recovers X^n from the pair (W_n, Z_n) .

For a given guessing tuple (ϕ_n, \mathbf{G}) we create the following instance of the above data-compression setup: The helper produces $Z_n = \phi_n(X^n)$, and the encoder uses a binary code for the positive integers $\mathbb{Z}_{>0}$ to describe the positive integer $G(X^n|Z_n)$. The code is such that each $i \in \mathbb{Z}_{>0}$ is described using l(i) bits, where $l(i) = \lceil \log(i^{(1+\delta)}/C(\delta)) \rceil$. Here $\delta > 0$ is arbitrarily small and $C(\delta) = (\sum_{i=1}^{\infty} 1/i^{1+\delta})^{-1}$. (The existence of such a code follows for instance from Kraft's Inequality.) The encoder thus observes (X^n, Z_n) and produces a length- $\lceil \log(\mathbf{G}(X^n|Z_n)^{(1+\delta)}/C(\delta)) \rceil$ string describing $\mathbf{G}(X^n|Z_n)$. From this description and Z_n the reconstructor recovers $\mathbf{G}(X^n|Z_n)$. It then recovers X^n from $\mathbf{G}(X^n|Z_n)$ and Z_n .

Next, let $L_n(P, R)$ denote the least average binary description length for the data-compression setup introduced above, where P denotes the source distribution and R is the rate allotted to the helper. We now relate the performance of the guessing scheme to the performance of the data-compression scheme it instantiates and then use $L_n(\cdot, \cdot)$ to bound the latter:

$$\mathbb{E}_{P_{X}}[G(X^{n}|Z_{n})^{\rho}] \\
\stackrel{(a)}{\geq} \sup_{Q_{X}} 2^{\mathbb{E}_{Q_{X}}[\log G(X^{n}|Z_{n})^{\rho}] - n \operatorname{D}(Q_{X}||P_{X})} \tag{8}$$

$$\stackrel{(b)}{\geq} \sup_{Q} 2^{\rho \frac{\mathbb{E}_{Q_X}[l(\mathbf{G}(X^n | Z_n))]}{1+\delta} + \rho \frac{\log C(\delta) - 1}{1+\delta} - n \operatorname{D}(Q_X || P_X)} }$$
(9)

$$\geq \sup_{Q_X} 2^{\rho n \frac{L_n(Q_X,R)}{1+\delta} + \rho \frac{\log C(\delta) - 1}{1+\delta} - n \operatorname{D}(Q_X || P_X)},$$
(10)

where \mathbb{E}_Q denotes expectation with respect to Q, and with the following justification: To obtain the variational inequality (a), we express $p(x^n)$ as $q(x^n) \cdot p(x^n)/q(x^n)$ to arrive at an expectation with respect to q; we then express $p(x^n)/q(x^n) \cdot G(x^n|z_n)$ as $2^{\log \xi}$ and apply Jensen's Inequality to the convex map $\xi \mapsto 2^{\xi}$; in (b) we restate $\log G(X^n|Z_n)$ as $\log(G(X^n|Z_n)^{1+\delta}C(\delta)/C(\delta))/(1+\delta)$, apply the inequality $\xi \geq \lceil \xi \rceil - 1$ and recognize $\lceil \log(G(X^n|Z_n)^{(1+\delta)}/C(\delta)) \rceil$ as $l(G(X^n|Z_n))$; (c) follows from the definition of $L_n(\cdot, \cdot)$. To proceed, we state a result from [4].

Lemma 1. For every $n \in \mathbb{Z}_{>0}$ the least average binary description length $L_n(Q_X, R)$ is lower-bounded by

$$L_n(Q_X, R) \ge \inf_{Q_{U|X}: \mathbf{I}(Q_{X|U}) \le R} \mathbf{H}(Q_{X|U}).$$
(11)

From (10) and the preceding lemma (with $\delta > 0$ fixed and n sent to infinity)

$$\liminf_{n \to \infty} \frac{\log \mathbb{E}_{P_X} [\mathbf{G}(X^n | Z_n)^{\rho}]}{n}$$
(12)
$$\geq \sup_{Q_X} \left[\rho \frac{\inf_{Q_U|_X: \mathbf{I}(Q_X; U) \leq R} \mathbf{H}(Q_X|_U)}{1 + \delta} - \mathbf{D}(Q_X||P_X) \right].$$

By letting δ approach 0 from above, we conclude that no guessing exponent below (4) can be achieved.

We next propose a guessing scheme that asymptotically achieves the lower bound. We begin by fixing some small $\delta > 0$ and, for every type class $\mathcal{T}^{(n)}(Q_X)$ on \mathcal{X}^n , we select a conditional type $Q_{U|X}$ that-among all those satisfying $I(Q_{X;U}) \leq R - \delta$ and $Q_U \in \mathcal{P}^{(n)}(\mathcal{U})$, i.e., Q_U being a type of denominator n on the alphabet \mathcal{U} -minimizes $H(Q_{X|U})$. The derivation of the type-covering lemma (see for instance [5, Chapter 6, p. 152 – 153]) shows that for large enough n there exists a codebook \mathcal{C}_{Q_X} , such that $\log |\mathcal{C}_{Q_X}|/n \leq R - \delta/2$ and such that for every $x^n \in \mathcal{T}^{(n)}(Q_X)$ we can find some $u^n \in \mathcal{C}_{Q_X}$ satisfying $(x^n, u^n) \in \mathcal{T}^{(n)}(Q_X Q_{U|X})$.

The side-information Z_n that we propose comprises two parts. The first is of length at most $(\delta/2)n$ and describes the type of X^n , which requires distinguishing between a polynomial number of outcomes. The second part is the index of some codeword $U^n \in C_{Q_X}$ for which (X^n, U^n) is in $\mathcal{T}^{(n)}(Q_X Q_{U|X})$ and is thus at most of length $(R - \delta/2)n$ bits.

The guesser uses the first part of Z_n to recover the type of X_n and from it identifies the codebook C_{Q_X} . The guesser then uses the second part of Z_n to recover U_n from C_{Q_X} . Finally the guesser recovers X^n by sequentially guessing the elements of the conditional type class $\mathcal{T}^{(n)}(Q_{X|U}|U^n)$ in an arbitrary order. The ρ -th moment of the number of guesses can be upper-bounded as follows:

$$\mathbb{E}\left[\mathbf{G}(X^{n}|Z_{n})^{\rho}\right]$$

$$=\sum_{Q_{X}\in\mathcal{P}^{(n)}(\mathcal{X})}\mathbb{E}[\mathbf{G}(X^{n}|Z_{n})^{\rho}|X^{n}\in\mathcal{T}^{(n)}(Q_{X})] \qquad (13)$$

$$\mathbb{P}[X^{n}\in\mathcal{T}^{(n)}(Q_{X})]$$

$$\stackrel{(a)}{\leq} \sum_{Q_X \in \mathcal{P}^{(n)}(\mathcal{X})} \mathbb{E}[\mathrm{G}(X^n | Z_n)^{\rho} | X^n \in \mathcal{T}^{(n)}(Q_X)]$$
(14)

 $2^{-n\operatorname{D}(Q_X||P_X)}$

$$\stackrel{(b)}{\leq} \sum_{Q_X \in \mathcal{P}^{(n)}(\mathcal{X})} 2^{n \min_{Q_U|X}^* : \mathrm{I}(Q_X; U) \le R - \delta} \rho \operatorname{H}(Q_X|_U)}$$
(15)

 $2^{-n \operatorname{D}(Q_X||P_X)}$

$$\overset{(c)}{\leq} \max_{Q_X \in \mathcal{P}^{(n)}(\mathcal{X})} \left[2^{n \min_{Q_U|X}^* : \mathrm{I}(Q_X; U) \leq R-\delta} \rho \operatorname{H}(Q_X|U)} \right.$$

$$2^{-n \operatorname{D}(Q_X||P_X) + n\delta_n} \right],$$

$$(16)$$

where (a) follows from Sanov's Theorem; (b) follows from the fact that in the worst case we go through all the elements of the conditionally typical set $\mathcal{T}^{(n)}(Q_{X|U}|U^n)$, the size of which is determined by the entropy of the auxiliary conditional type $Q_{X|U}$. This type is in turn induced by the choice of $Q_{U|X}$, where the notation min^{*} in (15) denotes that the optimization is with respect to types; and (c) follows by maximizing over the set of all types $\mathcal{P}^{(n)}(\mathcal{X})$, where the overhead of the sum is absorbed into the exponent δ_n , with the property that $\delta_n \downarrow 0$, as there are at most polynomially many types.

To recover (4) from (16), we first observe that $H(Q_{X|U})$ is a continuous function with respect to $Q_{U|X}$. Since the set of types is dense in the set of all probability distributions, we may allow the minimization $\min_{Q_{U|X}}^* H(Q_{X|U})$ to be carried out without the restriction to types at the expense of some small deviation δ'_n satisfying $\delta'_n \downarrow 0$ for $n \to \infty$. Therefore

$$\limsup_{n \to \infty} \frac{\log \mathbb{E}_{P_X} [\mathrm{G}(X^n | Z_n)^{\rho}]}{n} \leq \sup_{Q_X} \inf_{Q_{U|X}: \mathrm{I}(Q_{X|U}) \leq R-\delta} \left[\rho \operatorname{H}(Q_{X|U}) - \mathrm{D}(Q_X || P_X) \right].$$
(17)

And since the above holds for for any $\delta > 0$ and $\inf H(Q_{X|U})$ is a continuous function of the rate constraint R, there is indeed a choice of Z_n and a guessing scheme achieving (4).

Before moving on, we briefly point out a consequence of this result. It has been shown [6, Corollary 7] that for any $\delta > 0$, a judicious length- $(H_{1/(1+\rho)}(P_X)+\delta)n$ description of X^n suffices to drive the the ρ -th moment associated with guessing X^n to one. This is congruous with Theorem 1, which, in combination with the identity (5) implies that the guessing exponent is zero if and only if $R \ge H_{1/(1+\rho)}(P_X)$. For a derivation of (5) see [4]. Also note that our choice of Z_n does not necessarily minimize $\mathbb{E}[G^*(X^n|Z_n)^{\rho}]$; for $\rho = 1$, an explicit construction of a minimizing Z_n can be found in [7].

III. RATE-DISTORTION GUESSING WITH SIDE-INFORMATION

We next consider a setting where $(X^n, Y^n) \sim P_{X,Y}^n$. For a given pair (d, D), the goal is to guess X^n to within distortion D after observing Y^n in as few guesses as possible. Our result is summarized in the following theorem.

Theorem 2. With access to the side-information Y^n , the minimal achievable rate-distortion guessing exponent is given in (6).

Proof. To see why no smaller exponent is achievable, we again use the duality between guessing and datacompression. For this guessing setup, the corresponding datacompression problem is the lossy description of X^n , where the side-information Y^n is revealed to both the encoder and the reconstructor. Every guessing function $G_{d,D}(\cdot|y^n)$ induces, along with its guessing order $(\hat{x}_1^n, \hat{x}_2^n, \dots, \hat{x}_{|\hat{X}^n|}^n)$, a data-compression scheme as follows: Upon observing the pair (X^n, Y^n) , the encoder describes the approximation \hat{X}^n of X^n by producing the length-l(i) string describing the positive integer $G_{d,D}(X^n|Y^n)$, where $l(i) = [\log(i^{(1+\delta)}/C(\delta))]$. Using this string and Y^n , the reconstructor recovers $G_{d,D}(X^n|Y^n)$. Finally \hat{X}^n is obtained from $G_{d,D}(X^n|Y^n)$, Y^n , and the implicit guessing order of $G_{d,D}$.

Key is that the average string length in the above datacompression problem is bounded from below by the conditional rate-distortion function. With this idea in mind, we alter (8)-(10) as follows:

$$\mathbb{E}_{P_X}[\mathcal{G}_{d,D}(X^n|Y^n)^{\rho}] \\ \geq \sup_{Q_X} 2^{\mathbb{E}_{Q_X}[\log \mathcal{G}_{d,D}(X^n|Y^n)^{\rho}] - n \operatorname{D}(Q_X||P_X)}$$
(18)

$$\geq \sup_{Q_X} 2^{\rho \frac{\mathbb{E}_{Q_X}[l(\mathbf{G}_{d,D}(X^n|Y^n))]}{1+\delta} + \rho \frac{\log C(\delta) - 1}{1+\delta} - n \operatorname{D}(Q_X||P_X)}$$
(19)

$$\geq \sup_{Q_X} 2^{\rho n \frac{\mathcal{R}_{d,D}^{\text{cond}}(Q_X|Y)}{1+\delta} + \rho \frac{\log C(\delta) - 1}{1+\delta} - n \operatorname{D}(Q_X||P_X)}.$$
(20)

The justification for the above inequalities is analogous to the justification of (8)–(10). Observe that as mentioned above, the conditional rate-distortion function has been introduced as a lower bound in the last inequality. To recover (6) as a lower bound on $\liminf_{n\to\infty} \log \mathbb{E}_{P_X}[\mathrm{G}_{d,D}(X^n|Y^n)^\rho]/n$, we again let $n \to \infty$ and observe that (20) holds for any $\delta > 0$.

To show that there exists a guessing scheme achieving (6), we need the following lemma from [4].

Lemma 2. For every $\delta \geq 0$, $D \geq 0$ and distortion measure d, there exists a positive integer n_0 , such that for all $n \geq n_0$ and every length-n sequence y^n of type $Q_Y \in \mathcal{P}^{(n)}(\mathcal{Y})$ and every conditional type $Q_{X|Y}$ satisfying $Q_X \in \mathcal{P}^{(n)}(\mathcal{X})$, there exists a codebook $C_{y^n} \subset \hat{\mathcal{X}}^n$ satisfying $|\mathcal{C}_{y^n}| \leq 2^{n(\operatorname{R}^{cond}_{d,D}(Q_{X|Y})+\delta)}$ and such that for every $x^n \in \mathcal{T}^{(n)}(Q_{X|Y}|y^n)$ there is some $\hat{x}^n \in \mathcal{C}_{y^n}$ satisfying $1/n \sum_{i=1}^n d(x_i, \hat{x}_i) \leq D$.

With Lemma 2 at hand, we can follow Arikan's universal guessing approach [2]. After observing Y^n and determining its type Q_Y , the guesser generates, for every conditional type $Q_{X|Y}$ satisfying $Q_X \in \mathcal{P}^{(n)}(\mathcal{X})$, a codebook $\mathcal{C}_{Y^n,Q_{X|Y}}$ such that for every $X^n \in \mathcal{T}^{(n)}(Q_{X|Y}|Y^n)$ there is some $\hat{X}^n \in \mathcal{C}_{Y^n,Q_{X|Y}}$ satisfying $1/n \sum_{i=1}^n d(X_i, \hat{X}_i) \leq D$ and such that the number of entries in the codebook satisfies $|\mathcal{C}_{Y^n,Q_{X|Y}}| \leq 2^{n(\mathbb{R}^{cond}_{d,D}(Q_{X|Y})+\delta)}$. The existence of such a codebook is guaranteed by Lemma 2, and $\delta > 0$ is some small constant. Since the size of $\mathcal{C}_{Y^n,Q_{X|Y}}$ only depends on Y^n via its type Q_Y , we use the notation $|\mathcal{C}_{Q_YQ_{X|Y}}|$ whenever we refer to the cardinality of $\mathcal{C}_{Y^n,Q_{X|Y}}$.

After generating the codebooks, the guesser defines the binary relation " \preceq ", where $Q'_{X|Y} \preceq Q_{X|Y} \Longrightarrow$ $R^{cond}_{d,D}(Q'_{X|Y}) \leq R^{cond}_{d,D}(Q_{X|Y})$ and arranges the elements of $\{Q_{X|Y}\}$ in ascending order of " \preceq ". Picking an arbitrary guessing order for every codebook, the guesser then sequentially guesses elements in $\mathcal{C}_{Y^n,Q^1_{X|Y}}, \mathcal{C}_{Y^n,Q^2_{X|Y}}, \ldots, \mathcal{C}_{Y^n,Q^{|\mathcal{P}_n(X|Y)|}_{X|Y}}$. The index *i* on $Q^i_{X|Y}$ denotes the position of $Q_{X|Y}$ in the ascending arrangement with respect to " \preceq ". In the worst case we go through all codebooks until and including the one corresponding to the actual joint type of (X^n, Y^n) , so the ρ -th moment of the number of guesses can be bounded by

$$\mathbb{E}[G^{\rho}_{d,D}(X^{n}|Y^{n})] = \sum_{Q_{Y}} \mathbb{E}[G^{\rho}_{d,D}(X^{n}|Y^{n})|Y^{n} \in \mathcal{T}^{(n)}(Q_{Y})] \mathbb{P}[Y^{n} \in \mathcal{T}^{(n)}(Q_{Y})]$$

$$(21)$$

$$\leq \sum_{Q_Y} \mathbb{E}[\mathcal{G}^{\rho}_{d,D}(X^n | Y^n) | Y^n \in \mathcal{T}^{(n)}(Q_Y)] 2^{-n \operatorname{D}(Q_Y) | P_Y)}$$
(22)

$$\stackrel{(a)}{\leq} \sum_{Q_Y} \sum_{Q_{X|Y}} \left(\sum_{Q'_{X|Y} \leq Q_{X|Y}} |\mathcal{C}_{Q_Y Q'_{X|Y}}| \right)^{\rho}$$
(23)

 $2^{-n D(Q_X|Y}||P_X|Y)}2^{-n D(Q_Y}||P_Y)$

$$\stackrel{(b)}{\leq} \sum_{Q_Y} \sum_{Q_{X|Y}} \left(\sum_{Q'_{X|Y} \preceq Q_{X|Y}} 2^{n(\mathcal{R}_{d,D}^{\text{cond}}(Q_Y Q'_{X|Y}) + \delta)} \right)^{\rho}$$
(24)

$$2^{-n\operatorname{D}(Q_YQ_{X|Y}||P_{X,Y})}$$

$$\stackrel{(c)}{\leq} \sum_{Q_Y} \sum_{Q_{X|Y}} 2^{n\rho(\mathcal{R}_{d,D}^{\text{cond}}(Q_Y Q_{X|Y}) + \delta + \delta_n)} 2^{-n \operatorname{D}(Q_Y Q_{X|Y}) ||P_{X,Y})}$$
(25)

$$\stackrel{(d)}{\leq} \sup_{Q_{X,Y}} 2^{n\rho(\mathcal{R}_{d,D}^{\text{cond}}(Q_Y Q_{X|Y}) + \delta + \delta_n)} 2^{-n \operatorname{D}(Q_Y Q_{X,Y}||P_{X,Y})},$$
(26)

where the sums \sum_{Q_Y} and $\sum_{Q_{X|Y}}$ are read as $\sum_{Q_Y \in \mathcal{P}^{(n)}(\mathcal{Y})}$ and $\sum_{Q_{X|Y} \in \mathcal{P}^{(n)}(\mathcal{X}|\mathcal{Y})}$, respectively, and with the following justification: To recover (a), observe that the size of all codebooks up to and including the one corresponding to the actual type of (X^n, Y^n) constitutes an upper bound on the expected number of guesses; (b) follows from Lemma 2; (c) is a result of the guessing order induced by " \preceq " and further follows from absorbing the sum overhead into the exponent δ_n ; and (d) is due to a maximization over all types where the sum overhead is again included in δ_n . By letting δ approach 0 from above and $\delta_n \downarrow 0$, it follows that (6) is indeed achievable. \Box

IV. RATE-DISTORTION GUESSING WITH A HELPER

We consider a rate-distortion guessing problem where, as in section II, nR bits are alotted to create a description Z_n to help the guesser.

Theorem 3. The minimal achievable rate-distortion guessing exponent with side-information $Z_n \triangleq \phi_n(X^n)$ over all ϕ_n : $\mathcal{X}^n \to \{1, 2, \dots, 2^{nR}\}$ is given in (7).

Proof. In order to prove that no choice of Z_n allows for a guessing exponent below (7), we begin by reintroducing the data-compression setup from section II. However, instead of requiring that the reconstructor recovers X^n from (W_n, Z_n) , we content ourselves with an approximation \hat{X}^n that satisfies $\frac{1}{n} \sum_{i=1}^n d(X_i, \hat{X}_i) \leq D$.

For a given guessing tuple $(\phi_n, G_{d,D})$, we instantiate this data-compression setup as follows: The helper generates $Z_n = \phi_n(X^n)$ and the encoder, observing Z_n , describes X^n by the string for the positive integer $G_{d,D}(X^n|Z_n)$. This string has length l(i), where $l(i) = \lceil \log(i^{(1+\delta)}/C(\delta)) \rceil$. From this description and Z_n the reconstructor recovers $G_{d,D}(X^n|Z_n)$. It then recovers \hat{X}^n from $G_{d,D}(X^n|Z_n)$, Z_n , and the implicit guessing order of $G_{d,D}$.

To continue, we need a lower bound for the above datacompression setup. The bound is stated in the following lemma from [4].

Lemma 3. Suppose $X^n \sim Q_X^n$ and let $Z_n = \phi_n(X^n)$ denote the chosen side-information about X^n , where for some positive constant R the side-information is generated by applying a helper $\phi_n : \mathcal{X}^n \to \{1, 2, \dots, 2^{nR}\}$. An encoder $\varphi_n : \mathcal{X}^n \times \{1, 2, \dots, 2^{nR}\} \to \{1, 2, \dots, 2^{nR_0}\}$ produces a description of X^n based on Z_n . This description is revealed to a reconstructor ψ_n along with the side-information Z_n . From the description and Z_n the reconstructor produces $\hat{X}^n = \psi_n(\varphi_n(X^n, Z_n), Z_n)$ satisfying

$$\frac{1}{n}\sum_{i=1}^{n} \mathbb{E}[d(X_i, \hat{X}_i)] \le D.$$
(27)

For every $n \in \mathbb{Z}_{>0}$ the least achievable R_0 in this setup is lower-bounded by

$$R_0 \ge \inf_{Q_{U|X}: I(Q_{X|U}) \le R} \mathcal{R}_{d,D}^{cond}(Q_{X|U}).$$
(28)

With (28) we can lower-bound the ρ -th moment of the number of guesses by

$$\mathbb{E}_{P_X}[\mathcal{G}_{d,D}(X^n|Z_n)^{\rho}] \\ \geq \sup_{Q_X} 2^{\mathbb{E}_{Q_X}[\log \mathcal{G}_{d,D}(X^n|Z_n)^{\rho}] - n \operatorname{D}(Q_X||P_X)}$$
(29)

$$\geq \sup_{Q_X} 2^{\rho \frac{\mathbb{E}_{Q_X}[l(\mathbf{G}_{d,D}(X^n|Z_n))]}{1+\delta} + \rho \frac{\log C(\delta) - 1}{1+\delta} - n \operatorname{D}(Q_X||P_X)}$$
(30)

$$\geq \sup_{Q_{\mathbf{X}}} \left[2^{\rho n} \frac{\inf_{Q_{U|X}: \mathbf{I}(Q_{X};U) \leq R} \mathbf{R}_{d,D}^{\mathrm{cond}}(Q_{X|U})}{1+\delta} + \rho \frac{\log C(\delta) - 1}{1+\delta} \right]$$
(31)

$$2^{-n\operatorname{D}(Q_X||P_X)}$$

The above arguments differ from those of the preceding two setups only in the last inequality, which is now due to Lemma 3. We recover the exponent in (7) as a lower bound on $\liminf_{n\to\infty} \log \mathbb{E}_{P_X}[G_{d,D}(X^n|Z_n)^{\rho}]/n$ by again letting *n* tend to infinity and observing that (31) holds for any $\delta > 0$.

To derive a guessing scheme that asymptotically achieves the optimal exponent (7), we combine the ideas introduced in sections II and III. We begin by fixing two small constants $\delta > 0$, $\delta' > 0$ and, for every type class $\mathcal{T}^{(n)}(Q_X)$ on \mathcal{X}^n , select a conditional type $Q_{U|X}$ that-among all those satisfying $I(Q_{X|U}) \leq R - \delta$ and $Q_U \in \mathcal{P}^{(n)}(U)$ minimizes $R_{d,D}^{\text{cond}}(Q_{X|U})$. We observe that for large enough nthere exists a codebook \mathcal{C}_{Q_X} , such that $\log |\mathcal{C}_{Q_X}|/n \leq R - \delta/2$ and such that for every $x^n \in \mathcal{T}^{(n)}(Q_X)$ we can find some $u^n \in \mathcal{C}_{Q_X}$ satisfying $(x^n, u^n) \in \mathcal{T}^{(n)}(Q_XQ_{U|X})$.

The side-information Z_n is again made up of two parts. The first is of length at most $(\delta/2)n$ and describes the type of X^n . The second part is the index of some $U^n \in C_{Q_X}$ satisfying $(X^n, U^n) \in \mathcal{T}^{(n)}(Q_X Q_{U|X})$. This description requires no more than $(R - \delta/2)n$ bits.

The guesser uses the first part of Z_n to recover the type of X_n and from it identifies the codebook C_{Q_X} . Next the guesser uses the second part of Z_n to recover U_n from C_{Q_X} . With U^n and the joint type of (X^n, U^n) at hand, the guesser applies Lemma 2 to generate a codebook C_{U^n} that satisfies $\log |\mathcal{C}_{U^n}|/n \leq \mathrm{R}_{d,D}^{\mathrm{cond}}(Q_{X|U}) + \delta'$ and such that for every $X^n \in \mathcal{T}^{(n)}(Q_{X|U}|U^n)$ there is some $\hat{X}^n \in \mathcal{C}_{U^n}$ satisfying $1/n \sum_{i=1}^n d(X_i, \hat{X}_i) \leq D$. The guesser then finds a suitable \hat{X}^n by sequentially guessing the elements of \mathcal{C}_{U^n} in an arbitrary order. The ρ -th moment of the number of guesses can be upper-bounded as follows:

$$\mathbb{E}\left[\mathbf{G}_{d,D}(X^{n}|Z_{n})^{\rho}\right]$$

$$=\sum_{Q_{X}\in\mathcal{P}^{(n)}(\mathcal{X})}\mathbb{E}\left[\mathbf{G}_{d,D}(X^{n}|Z_{n})^{\rho}|X^{n}\in\mathcal{T}^{(n)}(Q_{X})\right] \quad (32)$$

$$\mathbb{P}[X^{n}\in\mathcal{T}^{(n)}(Q_{X})]$$

$$\leq \sum_{Q_X \in \mathcal{P}^{(n)}(\mathcal{X})} \mathbb{E}[\mathcal{G}_{d,D}(X^n | Z_n)^{\rho} | X^n \in \mathcal{T}^{(n)}(Q_X)] \quad (33)$$

 $2^{-n\operatorname{D}(Q_X||P_X)}$

To see why (a) holds, observe that for X^n of type Q_X the guesser performs at most $2^{(\mathrm{R}^{\mathrm{cond}}_{d,D}(Q_{X|U})+\delta')n}$ many guesses. Here $\mathrm{R}^{\mathrm{cond}}_{d,D}(Q_{X|U})$ is minimized with respect to the type $Q_{U|X}$ under the constraint that $\mathrm{I}(Q_{X;U}) \leq R - \delta$. In (b) we upper-bound the sum over $\mathcal{P}^{(n)}(\mathcal{X})$ by its dominating term and absorb the overhead into the exponent δ_n . We relax the minimization over types to a minimization over all probability distributions at a small surplus in the exponent δ'_n , satisfying $\delta'_n \downarrow 0$. We next let δ and δ' approach 0 from above, and drop the requirement that Q_X must be a type in the first maximization.

V. GUESSING WITH CORRELATED SIDE-INFORMATION

The preceding sections present instances of a setup where $(X^n, Y^n) \sim P_{X,Y}^n$, and X^n is to be guessed to within distortion D after observing a rate-R description of Y^n . If X^n is to be guessed exactly, then the optimal guessing exponent E^* satisfies

$$\sup_{Q_Y} \inf_{Q_U|_Y: I(Q_U;_Y) \le R} \sup_{Q_X|_{Y,U}} (\rho H(Q_X|_U) - D(Q_X|_{Y,U}||P_X|_Y) - D(Q_Y||P_Y)) \ge E^*$$
(36)

$$\geq \sup_{Q_Y} \inf_{Q_U|_Y: I(Q_U;_Y) \leq R} \sup_{Q_X|_Y} (\rho H(Q_X|_U) - D(Q_{X,Y}||P_{X,Y})).$$
(37)

References

- E. Arikan, "An inequality on guessing and its application to sequential decoding," *IEEE Trans. Inf. Theory*, vol. 42, no. 1, pp. 99 – 105, Jan. 1996.
- [2] E. Arikan and N. Merhav, "Guessing subject to distortion," *IEEE Trans. Inf. Theory*, vol. 44, no. 3, pp. 1041 1056, May 1998.
- [3] R. Sundaresan, "Guessing based on length functions," in 2007 IEEE Int. Symp. Inf. Theory, June 2007, pp. 716–719.
- [4] R. Graczyk, "Guessing with a helper," Master's thesis, ETH Zurich, Aug. 2017.
- [5] S. Moser, *Advanced Topics in Information Theory*, 2013, version 2.10 from 12 May 2017.
- [6] A. Bracher, E. Hof, and A. Lapidoth, "Guessing attacks on distributedstorage systems," arXiv:1701.01981, Jan. 2017.
- [7] A. Burin and O. Shayevitz, "Reducing guesswork via an unreliable oracle," arXiv:1703.01672, Mar. 2017.