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Abstract—Correlated memoryless sources produce a principal
and an ancillary sequence. The exponential growth of the least
expected total number of guesses required to guess the principal
sequence is determined when, prior to guessing it, the guesser is
allowed to produce guesses (not necessarily terminating with a
correct one) of the ancillary.

I. INTRODUCTION

We study a variation on guessing with side-information:
How to guess a principal sequence Xn, when we are allowed
to do so in two phases. In the first we produce guesses of an
ancillary sequence Y n until it is guessed correctly or until
we choose to move on to the second phase, in which we
must guess Xn. The total number of guesses, namely, the
sum of the guesses in the two phases, is denoted G(Xn;Y n).
We study its behavior when {(Xi, Yi)}ni=1 are IID according
to some finite-support PMF PXY . We prove the following
variational characterization of the least achievable exponential
growth of E[G(Xn;Y n)]:

Theorem 1. If {(Xi, Yi)}ni=1 are IID according to the finite-
support PMF PXY , then

lim
n→∞

min
G

logE[G(Xn;Y n)]

n

= sup
QXY

(
min

(
H(QX),max

(
H(QY ),H(QX|Y )

))
−D(QXY ||PXY )

)
, (1)

where the minimum on the LHS is over all two-phase guessing
strategies.

Remark 1. Theorem 1 can be generalized to the ρ-th moment
of G(Xn;Y n): For any ρ ≥ 0,

lim
n→∞

min
G

logE[G(Xn;Y n)ρ]

n

= sup
QXY

(
ρmin

(
H(QX),max

(
H(QY ),H(QX|Y )

))
−D(QXY ||PXY )

)
. (2)

Example 1. If Xi = (Zi, Yi) with {(Zi, Yi)} IID PZY , then
the RHS of (2) equals

ρmax
(

H1/(1+ρ)(PY ),H1/(1+ρ)(PZ|Y )
)
, (3)

where H1/(1+ρ)(PY ) (and H1/(1+ρ)(PZ|Y )) denote the (con-
ditional) Rényi Entropy of order 1/(1 + ρ)

H1/(1+ρ)(PY ) ,
1

ρ
log

∑
y∈Y

PY (y)1/(1+ρ)

1+ρ

(4)

H1/(1+ρ)(PZ|Y ) ,
1

ρ
log
∑
y∈Y

(∑
z∈Z

PZY (z, y)1/(1+ρ)

)1+ρ

,

(5)

with Y and Z denoting the support set of the marginals PY
and PZ , respectively. In fact, the exponent of (3) is achievable
by guessing Y n until correct and then guessing Xn (see (6)
to (8) ahead). For a proof of Example 1 see Appendix A.

When Y n is deterministic, the problem reduces to the
classical Massey-Arikan guessing problem of studying the
least ρ-th moment of the number of guesses required to
learn the realization of a chance variable X of a PMF PX
having finite support X . A guess is a question of the form
“Is X = x?”, and all guesses are answered truthfully. The
optimal guessing order is in descending order of probabilities,
and Arikan [1] showed that

E[G∗(X)ρ] ≈ 2ρH1/(1+ρ)(PX), (6)

where G∗ denotes an optimal guessing order, i.e., a bi-
jection X → {1, 2, . . . , |X |} minimizing the LHS of (6).
Equality in (6) holds up to a factor dominated by log |X |.
Consequently, when guessing a sequence Xn ∼ PnX , i.e.,
whose components X1, X2, . . . , Xn are IID ∼ PX ,

lim
n→∞

logE[G∗(Xn)ρ]

n
= ρH1/(1+ρ)(PX). (7)

Various extensions to the above results are known. In [1],
Arikan also examined the setup where—prior to guess-
ing Xn—side-information is revealed to the guesser in the
form of a sequence Y n that is jointly IID with Xn. He showed
that

lim
n→∞

logE[G∗(Xn | Y n)ρ]

n
= ρH1/(1+ρ)(PX|Y ), (8)

where G∗( · | yn) is a guessing order that is optimal for the
PMF PXn|Y n=yn . Generalizations to the case where only a
rate-limited description of Y n is available to the guesser were
studied by Graczyk and Lapidoth [2], who sought a mapping
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φn : Yn → {0, 1}nR (9)

minimizing

lim
n→∞

logE[G∗(Xn | φn(Y n))ρ]

n
. (10)

Upper and lower bounds on the least value that (10) can take
are given in [2, (36) and (37)]. When Y n = Xn, the optimal
value is [2, Theorem 1]

sup
QX

inf
QU|X :I(QX;U )≤R

(
ρH(QX|U )−D(QX ||PX)

)
. (11)

Weinberger and Shayevitz [3] examined one-bit descriptions

φn : Yn → {0, 1}, ∀n ∈ N, (12)

and derived bounds on the optimal guessing efficiency

lim sup
n→∞

min
φn

E[G∗(Xn | φn(Y n))ρ]

E[G∗(Xn)ρ]
. (13)

Burin and Shayevitz [4] further considered a setup where the
guesser is only revealed a noisy observation of φn(Y n).

II. PROBLEM STATEMENT

Let PXY be a PMF on the finite set X×Y and {(Xi, Yi)}ni=1

IID according to PXY . Our goal is to guess Xn in two phases.
In the first we produce guesses of Y n: We choose some
subset ∅ ⊆ G ⊆ Yn and define a linear order on its elements,
i.e., a bijection

ord: G → {1, 2, . . . , |G|}. (14)

We then take consecutive guesses of the form

“Is Y n = yn?”, yn ∈ G, (15)

until correct or until G is exhausted, and where yn is guessed
before ỹn whenever

ord(yn) < ord(ỹn). (16)

If G is empty, Phase 1 is skipped and no guesses of Y n are
taken. If G is not empty and Y n is in G, then Phase 1 will
terminate after ord(Y n) guesses with Y n revealed; otherwise,
i.e., if Y n is not in G, Phase 1 will terminate after |G| guesses
without revealing Y n but only revealing that Y n is not in G.
Given G and ord(·), the number of guesses taken in Phase 1
is G(Y n), with G(·) being the mapping

G : Y n 7→

{
ord(Y n) if Y n ∈ G
|G| else.

(17)

We emphasize that Phase 1 need not reveal Y n.
In the second phase we must guess Xn. To that end we

choose a guessing order on Xn for every possible outcome
of Phase 1. The chosen guessing order determines the number
of guesses in Phase 2, which we denote G̃(Xn | Y n). The

tilde in G̃(Xn | Y n) reminds us that, rather than Y n, Phase 1
might only reveal that Y n is not in G. The functions G(·)
and G̃(· | ·) (and their implicit domains) specify a two-phase
guessing strategy that we denote

π = (G, G̃). (18)

The total number of guesses required by π = (G, G̃) is
denoted G(Xn;Y n), so

G(Xn;Y n) , G(Y n) + G̃(Xn | Y n). (19)

We seek the least achievable exponential growth
of E[G(Xn;Y n)], i.e,

lim
n→∞

min
π

logE [G(Xn;Y n)]

n
. (20)

(We shall see that this limit exists.)

III. ANALYSIS

In this section we prove Theorem 1, namely, that
if {(Xi, Yi)}ni=1 are IID ∼ PXY , then the limit in (20) exists
and equals

sup
QXY

(
min

(
H(QX),max

(
H(QY ),H(QX|Y )

))
−D(QXY ||PXY )

)
. (21)

Proof. As in [5, Proposition 6], we first note that the cost
incurred by the guesser for not knowing the (joint) empirical
type of (Xn, Y n) is at most polynomial in n. Consequently,
the expectation of the total number of guesses G∗(Xn;Y n)
induced by an optimal two-phase guessing strategy can be
upper-bounded by

E [G∗(Xn;Y n)] ≤ E [G∗T(Xn;Y n)] poly(n), (22)

where G∗T(· ; ·) is the total number of guesses required to
guess Xn using an optimal two-phase strategy with access to
the empirical type of (Xn, Y n); and where poly(n) denotes
a monomial in n. Since the guesser is free to ignore the type,

E [G∗T(Xn;Y n)] ≤ E [G∗(Xn;Y n)] , (23)

and hence

lim
n→∞

logE [G∗(Xn;Y n)]

n
= lim
n→∞

logE [G∗T(Xn;Y n)]

n
,

(24)
whenever the limit on the RHS exists.

To prove Theorem 1, we evaluate the RHS of (24).
We do so by first studying our problem when, rather than
IID ∼ PXY , the pair (Xn, Y n) is drawn uniformly over a type
class T (n)(QXY ), where QXY is known and belongs to the
family Tn(X ×Y) of joint types on X ×Y of denominator n.
This situation arises when (Xn, Y n) ∼ PnXY and we condition
on (Xn, Y n) ∈ T (n)(QXY ). We will show that in this case
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lim
n→∞

logE
[
G∗T(Xn;Y n) | (Xn, Y n) ∈ T (n)(QXY )

]
n

= min
(

H(QX),max
(

H(QY ),H(QX|Y )
))
, (25)

where the convergence is uniform w.r.t. QXY . Once (25) is
established, the RHS of (24) can be evaluated by averaging
over the empirical type of (Xn, Y n) as follows:

lim
n→∞

logE[G∗(Xn;Y n)]

n
(a)
= lim

n→∞

logE[G∗T(Xn;Y n)]

n
(26)

(b)
= lim

n→∞
max

QXY ∈Tn(X×Y)

(
−D(QXY ||PXY )

+
logE[G∗T(Xn;Y n) | (Xn, Y n) ∈ T (n)(QXY ))]

n

)
(27)

(c)
= lim

n→∞
max

QXY ∈Tn(X×Y)

(
−D(QXY ||PXY )

+ min
(

H(QX),max
(

H(QY ),H(QX|Y )
)))

(28)

(d)
= sup

QXY

(
min

(
H(QX),max

(
H(QY ),H(QX|Y )

))
−D(QXY ||PXY )

)
, (29)

where (a) is due to (24); (b) is justified in Appendix B; (c)
follows from (25); and (d) holds because every PMF can be
approximated by a type of sufficiently large denominator, and
because the functions in (29) are all continuous w.r.t. QXY .

In the remainder of this section we prove (25). Achiev-
ability is straightforward: Setting G to be empty yields the
exponent H(QX) (cf. [5, Example 1]), whereas setting G to
be T (n)(QY ) yields the exponent max(H(QY ),H(QX|Y )),
because with this choice of G Phase 1 and Phase 2 require
roughly 2nH(QY ) and 2nH(QX|Y ) guesses, respectively. This
strategy also results in a uniform convergence w.r.t. QXY .

Having proved that the RHS of (25) is achievable, we now
show that no two-phase guessing strategy πT = (GT, G̃T)
(cognizant of QXY ) can do better. Let the exponential growth
of the expected number of guesses in Phase 1 and Phase 2
under πT be denoted EY (πT;QXY ) and EX|Y (πT;QXY ),

EY (πT;QXY )

, lim inf
n→∞

logE[GT(Y n) | (Xn, Y n) ∈ T (n)(QXY )]

n
(30)

EX|Y (πT;QXY )

, lim inf
n→∞

logE[G̃T(Xn | Y n) | (Xn, Y n) ∈ T (n)(QXY )]

n
,

(31)

and let EXY (πT;QXY ) denote the exponential growth of the
expected total number number of guesses,

EXY (πT;QXY )

, lim inf
n→∞

logE
[
GT(Xn;Y n) | (Xn, Y n) ∈ T (n)(QXY )

]
n

.

(32)

The exponential growth of a sum is dominated by that of the
largest of the addends, so (accounting for the limit inferior)

EXY (πT;QXY ) ≥ max
(
EX|Y (πT;QXY ), EY (πT;QXY )

)
.

(33)
Also,

EX|Y (πT;QXY ) ≥ H(QX|Y ), (34)

because H(QX|Y ) is the exponent in Phase 2 when Y n

is revealed in Phase 1. To conclude the proof, we will
show that the RHS of (33) is lower-bounded by the
RHS of (25). This is clearly the case when EY (πT;QXY )
equals H(QY ) because of (34). We therefore focus on the
case where EY (πT;QXY ) < H(QY ). We will show that

EY (πT;QXY ) < H(QY ) =⇒ EX|Y (πT;QXY ) = H(QX),
(35)

and thus conclude the proof, because in this case the RHS
of (33) is at least H(QX).

We establish (35) via its contrapositive,

EX|Y (πT;QXY ) < H(QX) =⇒ EY (πT ;QXY ) = H(QY ),
(36)

by proving that

EX|Y (πT;QXY ) < H(QX) =⇒ |G| = Θ(|T (n)(QY )|),
(37)

where |G| = Θ(|T (n)(QY )|) indicates that for some α > 0
and all sufficiently large n,

|G| ≥ α|T (n)(QY )|. (38)

To show (37) we also argue by contraposition and therefore
assume that |G| = o(|T (n)(QY )|), i.e.,

lim sup
n→∞

|G|
|T (n)(QY )|

= 0. (39)

We define the indicator variable

E ,

{
0 if Y n ∈ G
1 else,

(40)

and observe that (39) implies

lim
n→∞

P[E = 1] = 1, (41)

and consequently,
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lim
n→∞

H(E) = 0. (42)

Since

H(Xn)−H(Xn | E) = I(Xn;E) (43)
≤ H(E), (44)

we infer from (42) that

lim
n→∞

(
H(Xn)−H(Xn | E)

)
= 0. (45)

This and (41) implies that

lim
n→∞

1

n
H(Xn) = lim

n→∞

1

n
H(Xn | E = 1) (46)

as can be seen by expanding H(Xn | E) and noting that

1

n
H(Xn | E = 0) ≤ log |X |. (47)

To conclude the proof that (39) implies the negation of the
LHS of (37) we proceed as follows:

EX|Y (πT;QXY )

= lim inf
n→∞

logE[G̃T(Xn | Y n) | (Xn, Y n) ∈ T (n)(QXY )]

n
(48)

(a)

≥ lim inf
n→∞

1

n
logE[G̃T(Xn | Y n)

| (Xn, Y n) ∈ T (n)(QXY ), E = 1] (49)

(b)

≥ lim inf
n→∞

1

n
H1/2(Xn | E = 1) (50)

(c)

≥ lim inf
n→∞

1

n
H(Xn | E = 1) (51)

(d)
= lim

n→∞

1

n
H(Xn) (52)

= H(QX), (53)

where (a) follows from the law of total expectation and (41);
(b) holds by the relationship between guessing and Rényi
Entropy, namely (6); (c) follows from the monotonicity of the
Rényi Entropy in its parameter; and (d) holds by (46).

APPENDIX

A. Derivation of (3)

We prove that when X has the form (Z, Y ) with Z and Y
of some arbitrary joint PMF PZY ,

sup
QXY

(
ρmin

(
H(QX),max

(
H(QY ),H(QX|Y )

))
−D(QXY ||PXY )

)
(54)

equals

ρmax
(

H1/(1+ρ)(PY ),H1/(1+ρ)(PZ|Y )
)
. (55)

Using the given form of X , we first provide an alternative
expression for (54):

sup
QXY

(
ρmin

(
H(QX),max

(
H(QY ),H(QX|Y )

))
−D(QXY ||PXY )

)
= sup
QZY

(
ρmin

(
H(QZY ),max

(
H(QY ),H(QZ|Y )

))
−D(QZY ||PZY )

)
(56)

(a)
= sup

QZY

(
ρmax

(
H(QY ),H(QZ|Y )

)
−D(QZY ||PZY )

)
,

(57)

where (a) holds because H(QZY ) is lower-bounded
by max

(
H(QY ),H(QZ|Y )

)
. Having established that (54)

equals (57), it now suffices to show that (57) equals (55). To
that end, we first argue that (57) is upper-bounded by (55):

sup
QZY

(
ρmax

(
H(QY ),H(QZ|Y )

)
−D(QZY ||PZY )

)
(a)
= sup

QZY

(
max

(
ρH(QY )−D(QZY ||PZY ),

ρH(QZ|Y )−D(QZY ||PZY )
))

(58)

(b)

≤ max
(

sup
QZY

(
ρH(QY )−D(QZY ||PZY )

)
,

sup
QZY

(
ρH(QZ|Y )−D(QZY ||PZY )

))
(59)

(c)
= ρmax

(
H1/(1+ρ)(PY ),H1/(1+ρ)(PZ|Y )

)
, (60)

where (a) holds because dmax(a, b) equals max(da, db)
and max(a, b)− c equals max(a− c, b− c) for any real a, b, c
and positive d; in (b) we independently optimize the arguments
to max(·, ·); and (c) follows from the variational characteri-
zation of the Rényi Entropy [5, Proposition 8].

To conclude the proof, we show that (55) lower-bounds (57).
We do so by proving that (57) is lower-bounded by
both ρH1/(1+ρ)(PY ) and ρH1/(1+ρ)(PZ|Y ) (the claim then
follows because (55) is the maximum of the two):

sup
QZY

(
ρmax

(
H(QY ),H(QZ|Y )

)
−D(QZY ||PZY )

)
(61)

(a)

≥ sup
QZY

(
ρH(QY )−D(QZY ||PZY )

)
(62)

= ρH1/(1+ρ)(PY ), (63)

where (a) holds because max
(

H(QY ),H(QZ|Y )
)
≥ H(QY ).

Likewise, max
(

H(QY ),H(QZ|Y )
)
≥ H(QZ|Y ), so (54) is

also lower-bounded by ρH1/(1+ρ)(PZ|Y ).
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B. A Proof of (27)

We prove (27) by showing that for sufficiently large n,

E[G∗T(Xn;Y n)]

≈ max
QXY ∈Tn(X×Y)

(
2−nD(QXY ‖PXY )

E[G∗T(Xn;Y n) | (Xn, Y n) ∈ T (n)(QXY )]
)
. (64)

Concretely,

E[G∗T(Xn;Y n)]

(a)
=

∑
QXY ∈Tn(X×Y)

E[G∗T(Xn;Y n) | (Xn, Y n) ∈ T (n)(QXY )]

P[(Xn, Y n) ∈ T (n)(QXY )] (65)

(b)

≤
∑

QXY ∈Tn(X×Y)

E[G∗T(Xn;Y n) | (Xn, Y n) ∈ T (n)(QXY )]

2−nD(QXY ||PXY ) (66)

(c)

≤ poly(n) max
QXY ∈Tn(X×Y)

(
2−nD(QXY ||PXY )

E[G∗T(Xn;Y n) | (Xn, Y n) ∈ T (n)(QXY )]
)
, (67)

where (a) follows from the law of total expectation; (b)
is due to Sanov’s Theorem [6, Theorem 11.4.1]; and (c)
holds because there are at most polynomially many types of
denominator n. Similarly,

E[G∗T(Xn;Y n)]

=
∑

QXY ∈Tn(X×Y)

E[G∗T(Xn;Y n) | (Xn, Y n) ∈ T (n)(QXY )]

P[(Xn, Y n) ∈ T (n)(QXY )] (68)

(a)

≥ max
QXY ∈Tn(X×Y)

E[G∗T(Xn;Y n) | (Xn, Y n) ∈ T (n)(QXY )]

P[(Xn, Y n) ∈ T (n)(QXY )] (69)

(b)

≥ 1

poly(n)
max

QXY ∈Tn(X×Y)

(
2−nD(QXY ||PXY )

E[G∗T(Xn;Y n) | (Xn, Y n) ∈ T (n)(QXY )]
)
, (70)

where (a) follows from dropping all terms but one; and (b) is
again due to Sanov’s Theorem.
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