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Abstract—We study the guessing variants of two distributed
source coding problems: the Gray-Wyner network and the
Slepian-Wolf network. Building on the former, we propose a new
definition of the Rényi common information as the least attainable
common rate in the Gray-Wyner guessing problem under the
no-excess-rate constraint. We then provide a variational charac-
terization of this quantity. In the Slepian-Wolf setting, we follow
up the work of Bracher-Lapidoth-Pfister with the case where the
expected number of guesses need not converge to one but must
be dominated by some given exponential.

I. INTRODUCTION AND PROBLEM STATEMENT
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Fig. 1. Gray-Wyner Guessing Setup

Gray-Wyner guessing. A length-n sequence
(Xn, Y n) , (X1, Y1), . . . , (Xn, Yn) of tuples is drawn
IID according to a PMF PXY on the finite set X ×Y . A rate
(R0, R1, R2)-encoder φ = (φ0, φ1, φ2)

φ : Xn × Yn → {0, 1}nR0 × {0, 1}nR1 × {0, 1}nR2

(xn, yn) 7→
(
φ0(xn, yn), φ1(xn, yn), φ2(xn, yn)

)
(1)

describes the sequence (Xn, Y n) as
(M0,M1,M2) , φ(Xn, Y n). The pair (M0,M1) is
revealed to Guesser 1, who wishes to recover Xn,
and the pair (M0,M2) to Guesser 2, who wishes to
recover Y n (see Fig. 1). To recover Xn, Guesser 1—after
observing (M0,M1)—chooses a guessing order

ordX : {1, . . . , |X |n} bijection−−−−→ Xn (2)

on Xn, and guesses

“Is Xn = ordX(1)?”, “Is Xn = ordX(2)?”, . . .

until correct (and Xn hence revealed). The number of guesses
taken by Guesser 1 is denoted GX(Xn), with GX being
the inverse function of ordX , i.e., ordX(GX(xn)) = xn for
all xn ∈ Xn. To recover Y n, Guesser 2 proceeds analogously,
with the guessing order on Yn and its inverse function
denoted ordY and GY . Note that, while the encoder φ and
the guessing orders ordX and ordY depend on n, we do not

make this dependence explicit; n will typically be clear from
the context.

Given ρ > 0 and a sequence of encoders and guessing
orders, we define the guessing exponents

EX , lim sup
n→∞

1

n
logE[GX(Xn)ρ] (3a)

EY , lim sup
n→∞

1

n
logE[GY (Y n)ρ]. (3b)

We say that a rate tuple (R0, R1, R2) ∈ R3
≥0 is (ĒX , ĒY )-

achievable in the Gray-Wyner guessing problem if for every
ε > 0 there exists a sequence of encoders φ and guessing
orders ordX , ordY for which

EX ≤ ĒX + ε and EY ≤ ĒY + ε. (4)

We denote the set of all (ĒX , ĒY )-achievable
rate tuples RρGW (ĒX , ĒY ), with the shorthand
exception RρGW , RρGW (0, 0). In Sections II and III
we characterize RρGW (ĒX , ĒY ) as follows:

Theorem 1. When (Xn, Y n) ∼ IIDPXY , the Gray-Wyner
guessing region RρGW (ĒX , ĒY ) equals⋂
QXY

( ⋃
QU|XY

{
(R0, R1, R2) ∈ R3

≥0 : R0 ≥ IQ(U ;X,Y ),

R1 ≥ HQ(X | U)− 1

ρ
(D(QXY ‖PXY ) + ĒX),

R2 ≥ HQ(Y | U)− 1

ρ
(D(QXY ‖PXY ) + ĒY )

})
, (5)

where U can be any chance variable whose support U is finite;
the intersection is over all PMFs QXY on X × Y; the union
is over all conditional PMFs QU |XY on U ×X ×Y; and HQ

and IQ denote the entropy and mutual information computed
w.r.t. QXYQU |XY .

Note that substituting 0 for ĒX and ĒY in (5) and replacing
the intersection over QXY with the substitution of PXY
for QXY yields the set of achievable rates in the Gray-Wyner
source coding problem [1, Theorem 4].

For ĒX = ĒY = 0, we define the least achievable sum-rate
as

R∗ρ,Σ , inf
{
R0 +R1 +R2 : (R0, R1, R2) ∈ RρGW

}
. (6)

The following variational characterization of R∗ρ,Σ is provided
without proof.
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Theorem 2. When (Xn, Y n) ∼ IIDPXY ,

R∗ρ,Σ = sup
QXY

inf
QU|XY :

HQ(X|U)≤D(QXY ‖PXY )/ρ
HQ(Y |U)≤D(QXY ‖PXY )/ρ

IQ(U ;X,Y ),

(7)
where U can be any chance variable whose support U is finite;
the supremum is over all PMFs QXY on X × Y; and the
infimum is over all conditionals PMFs QU |XY on U ×X ×Y .

Note that when Y n is deterministic, R∗ρ,Σ equals the order-
1/(1 + ρ) Rényi entropy H1/(1+ρ)(X) of X (cf. [2, Propo-
sition 8] for the variational characterization of the Rényi
entropy).

Following Wyner’s arguments in [3], we propose the follow-
ing operational definition of the Rényi common information of
order 1/(1 + ρ) between X and Y :

C1/(1+ρ)(X;Y )

, inf

{
R0 ≥ 0: ∃(R1, R2) s.t.

(R0, R1, R2) ∈ RρGW
R0 +R1 +R2 = R∗ρ,Σ

}
. (8)

Combining Theorem 1 and 2, we obtain the following varia-
tional characterization of C1/(1+ρ)(X;Y ):

Theorem 3. The order-1/(1 + ρ) Rényi common information
C1/(1+ρ)(X;Y ) corresponding to the joint PMF PXY is

sup
QXY

inf
QU|XY : (HQ(X|U)−D(QXY ‖PXY )/ρ)+

+ (HQ(Y |U)−D(QXY ‖PXY )/ρ)+

+ IQ(U ;X,Y )≤R∗ρ,Σ

IQ(U ;X,Y ),

(9)
where (x)+ , max(x, 0); where U can be any chance
variable whose support U is finite; the supremum is over all
PMFs QXY on X×Y; and the infimum is over all conditional
PMFs QU |XY on U × X × Y .

Alternative definitions of a Rényi counterpart to Wyner’s
common information have been proposed in [4] and [5].
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Fig. 2. Slepian-Wolf Guessing Setup

Slepian-Wolf guessing. Let (Xn, Y n) ∼ IIDPXY . A rate-R1

encoder φ1 for Xn and a rate-R2 encoder φ2 for Y n

φ1 : Xn → {0, 1}nR1 , φ2 : Yn → {0, 1}nR2 , (10)

describe (Xn, Y n) as (M1,M2) , (φ1(Xn), φ2(Y n)). The
pair (M1,M2) is revealed to a guesser who wishes to recover
both Xn and Y n (see Fig. 2). To do so, the guesser—after
observing (M1,M2)—fixes a guessing order

ordXY : {1, . . . , |X × Y|n} bijection−−−−→ Xn × Yn (11)

on Xn × Yn, and guesses

“Is (Xn, Y n) = ordXY (1)?”,
“Is (Xn, Y n) = ordXY (2)?”,
. . .

until correct. Analogously to the Gray-Wyner setting, we
denote the number of guesses by GXY (Xn, Y n), with GXY
being the inverse function of ordXY .

Given ρ > 0 and a sequence of encoders and guessing
orders, we define the guessing exponents

EXY , lim sup
n→∞

1

n
logE[GXY (Xn, Y n)ρ]. (12)

A rate tuple (R1, R2) ∈ R2
≥0 is ĒXY -achievable in the

Slepian-Wolf guessing problem if for every ε > 0 there exist
a sequence of encoders φ1, φ2 and guessing orders ordXY for
which EXY ≤ ĒXY + ε. The set of all achievable rate tuples
is denoted RρSW (ĒXY ). In Sections IV and V we prove the
following characterization of RρSW (ĒXY ):

Theorem 4. When (Xn, Y n) ∼ IIDPXY , the Slepian-Wolf
guessing region RρSW (ĒXY ) equals⋂
QXY

{
(R1, R2) ∈ R2

≥0 :

R1 ≥ HQ(X | Y )− 1

ρ
(D(QXY ‖PXY ) + ĒXY ),

R2 ≥ HQ(Y | X)− 1

ρ
(D(QXY ‖PXY ) + ĒXY ), (13)

R1 +R2 ≥ HQ(X,Y )− 1

ρ
(D(QXY ‖PXY ) + ĒXY )

}
,

where the intersection is over all PMFs QXY on X × Y .

Note that substituting 0 for ĒXY in (13) and replacing the
intersection over QXY with the substitution of PXY for QXY
yields the set of achievable rates in the Slepian-Wolf source
coding problem [6]. Further observe that, using the variational
definition of the Rényi entropy, (13) can be simplified as
follows:

Corollary 1. The Slepian-Wolf guessing region RρSW (ĒXY )
equals the set of all (R1, R2) ∈ R2

≥0 satisfying

R1 ≥ H1/(1+ρ)(X | Y )− 1

ρ
ĒXY (14a)

R2 ≥ H1/(1+ρ)(Y | X)− 1

ρ
ĒXY (14b)

R1 +R2 ≥ H1/(1+ρ)(X,Y )− 1

ρ
ĒXY , (14c)

where H1/(1+ρ)(· | ·) is the conditional Rényi entropy of
order 1/(1 + ρ).

Note that, by [7, Theorem 1], for ĒXY = 0 any tuple
(R1, R2) satisfying (14) with strict inequalities is also achiev-
able in the stronger sense that there exists a sequence of
encoders and guessing orders for which, not only is EXY
zero, but lim supn→∞ E[GXY (Xn, Y n)ρ] = 1.
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II. GRAY-WYNER GUESSING, ACHIEVABILITY

Below we prove the direct part of Theorem 1, namely,
that for fixed ρ > 0, ĒX ≥ 0, ĒY ≥ 0, and (R0, R1, R2)
in (5), there exist for every ε > 0 a sequence of rate-
(R0, R1, R2) encoders φ and guessing orders ordX , ordY
for which EX ≤ ĒX + ε and EY ≤ ĒY + ε. Throughout
the proof we assume R0 > 0, because otherwise (5) implies
R1 ≥ H1/(1+ρ)(X)− ĒX/ρ and R2 ≥ H1/(1+ρ)(Y )− ĒY /ρ,
which is achievable by describing Xn and Y n separately [8,
Eq. (5)].

We begin by introducing some notation: for a fixed positive
integer n, let Pn(X × Y) denote the set of denominator-n
types on X × Y , i.e., the set of rational PMFs on X × Y
with denominator n. For (xn, yn) ∈ Xn × Yn, let Qxnyn
or Q̂XY (when xn and yn are clear from the context) denote
the empirical joint type of (xn, yn),

Qxnyn(x, y) =
1

n
N(x, y | xn, yn), (15)

where N(x, y | xn, yn) is the number of occurrences of (x, y)
in (xn, yn). And for Q ∈ Pn(X × Y), let T n(Q) denote the
type class of Q, i.e., the set of all (xn, yn) ∈ Xn×Yn whose
empirical type is Q.

To prove the direct part of Theorem 1, we proceed as
follows: Given ρ, ĒX , ĒY , (R0, R1, R2) as above and an
arbitrary ε > 0, we will construct a sequence of rate-
(R0, R1, R2) encoders φ and guessing orders ordX and ordY
for which EX ≤ ĒX + ε and EY ≤ ĒY + ε. Our con-
struction will be based on the following two observations: 1)
Because |Pn(X × Y)| grows only polynomially in n [9,
Theorem 11.1.1], the encoder can describe the joint type Q̂XY
of (Xn, Y n) as part of the common message M0 without
increasing its rate. 2) For every ε′′ > 0 there exists a positive
integer nε′′ , such that for all n ≥ nε′′ the following holds: For
every QXY ∈ Pn(X ×Y) and every conditional type QU |XY
(for which Q , QXYQU |XY is in Pn(X × Y × U)), there
exists a codebook C(QXY , QU |XY ) ⊆ Un, later denoted
C(QXY ), whose size is at most 2n(IQ(U ;X,Y )+ε′′) and sat-
isfying that for every (xn, yn) ∈ T n(QXY ) there is some
codeword un ∈ C(QXY , QU |XY ) with (xn, yn, un) ∈ T n(Q).
This fact is sometimes referred to as the Type Covering
Lemma [10, Lemma 2.34].

Using the above observations, we construct an encoder φ as
follows: First, we fix ε′ and ε′′ sufficiently small and n ≥ nε′′
sufficiently large (how to choose ε′, ε′′, and n will become
apparent later in the proof). Every QXY ∈ Pn(X × Y) we
map to a conditional type QU |XY (QXY ) satisfying

R0 ≥ IQ(U ;X,Y ) + ε′ + ε′′ (16a)

R1 ≥ HQ(X | U)− 1

ρ
(D(QXY ‖PXY ) + ĒX + ε) (16b)

R2 ≥ HQ(Y | U)− 1

ρ
(D(QXY ‖PXY ) + ĒY + ε), (16c)

where Q = QXYQU |XY (QXY ). Such a conditional type
exists because (R0, R1, R2) lies by assumption in (5) and
because every PMF can be approximated arbitrary well by a

type of sufficiently large denominator n. Our chosen map-
ping QXY 7→ QU |XY (QXY ) is revealed to the encoder
and guessers. For every QXY ∈ Pn(X × Y), let C(QXY )
be the codebook whose existence is guaranteed by Obser-
vation 2. Reveal this codebook to all parties. Finally, for
every QXY ∈ Pn(X × Y) and un ∈ C(QXY ), we
partition the conditional type class T n(QX|U |un) (i.e., the
set of all xn ∈ T n(QX) for which xn and un are jointly
typical w.r.t QXU , where QX and QXU are the X-marginal
and (X,U)-marginal of Q) into 2nR1 equally sized bins,
and T n(QY |U |un) into 2nR2 equally sized bins. Reveal these
partitions to all parties. The encoder can now be described
as follows: To describe (Xn, Y n), it uses the first nε′ bits
of the common message M0 to describe the empirical joint
type Q̂XY of (Xn, Y n). It then uses the remaining n(R0−ε′)
bits of M0 to describe some Un ∈ C(Q̂XY ) that is jointly typ-
ical with (Xn, Y n) w.r.t. Q̂XYQU |XY (Q̂XY ). Finally, the en-
coder uses message M1 to describe the bin of T n(Q̂X|U |Un)
containing Xn, and message M2 to describe the bin of
T n(Q̂Y |U |Un) containing Y n.

From the first nε′ bits of M0 both guessers recover Q̂XY ;
from Q̂XY they recover the conditional type QU |XY (Q̂XY )

and the codebook C(Q̂XY ); and from C(Q̂XY ) and the
last n(R0 − ε′) bits of M0 they recover Un. Knowing Un

and the empirical joint type Q̂XU of (Xn, Un), Guesser 1
picks an arbitrary guessing order on the elements of the bin
indexed by M1, namely,

{xn ∈ T n(Q̂X|U |Un) : φ1(xn) = M1} (17)

(ignoring all xn not belonging to (17)). Guesser 2 proceeds
analogously, picking an arbitrary guessing order on the set of
all yn ∈ T n(Q̂Y |U |Un) assigned to M2.

We next analyze the proposed guessing scheme, beginning
with an upper bound on E[GX(Xn)ρ]. Denoting conditional
expectation given the event {Q̂XY = QXY } by EQXY ,

E[GX(Xn)ρ] (18)
(a)
=
∑
QXY

EQXY [GX(Xn)ρ]P[Q̂XY = QXY ] (19)

(b)

≤
∑
QXY

EQXY [GX(Xn)ρ]2−nD(QXY ‖PXY ) (20)

(c)

≤
∑
QXY

(∣∣{xn ∈ T n(QX|U |Un) : φ1(xn) = M1}
∣∣ρ

2−nD(QXY ‖PXY )
)

(21)

(d)
=
∑
QXY

2n(ĒX+ε+D(QXY ‖PXY ))2−nD(QXY ‖PXY ) (22)

(e)
= 2n(ĒX+ε+δn), (23)

where (a) follows from the law of total expectation; (b)
is due to Sanov’s Theorem [9, Theorem 11.4.1]; (c) holds
because the guesser will at most try every element from (17)
(with Q̂XU = QXU ); (d) holds because the conditional type
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class T n(QX|U |Un) contains at most 2nHQ(X|U) elements,
because it is evenly partitioned into 2nR1 bins, and because
R1 ≥ HQ(X | U) − 1

ρ (D(QXY ‖PXY ) + ĒX + ε); and (e)
follows from the fact that the number of denominator-n types
on X ×Y grows polynomially in n, and where δn is hence a
sequence tending to zero as n tends to infinity. From (23) we
see that

EX = lim sup
n→∞

1

n
logE[GX(Xn)ρ] ≤ ĒX + ε, (24)

and by adapting (19)–(23) to E[GY (Y n)ρ],

EY = lim sup
n→∞

1

n
logE[GY (Y n)ρ] ≤ ĒY + ε, (25)

which completes the proof of the direct part of Theorem 1.

III. GRAY-WYNER GUESSING, CONVERSE

We now prove the converse part of Theorem 1. Fix ρ > 0,
ĒX ≥ 0, ĒY ≥ 0, and (R0, R1, R2) ∈ R3

≥0. We will
show that if for every ε > 0 there exists a sequence of rate-
(R0, R1, R2) encoders φ and guessing orders ordX , ordY for
which EX ≤ ĒX + ε and EY ≤ ĒY + ε, then for every
PMF Q̃XY on X ×Y there exists a conditional PMF QU |XY
such that

R0 ≥ IQ̃(U ;X,Y ) (26a)

R1 ≥ HQ̃(X | U)− 1

ρ
(D(Q̃XY ‖PXY ) + ĒX) (26b)

R2 ≥ HQ̃(Y | U)− 1

ρ
(D(Q̃XY ‖PXY ) + ĒY ), (26c)

where Q̃ = Q̃XYQU |XY . To show this, fix a rate tuple
(R0, R1, R2) and ε > 0, and consider a sequence of en-
coders φ (of these rates) and guessing orders ordX , ordY
satisfying EX ≤ ĒX + ε/2 and EY ≤ ĒY + ε/2. Starting
with (19) and this time invoking the lower bound bound in
Sanov’s Theorem, we obtain

E[GX(Xn)ρ] ≥
∑
QXY

EQXY [GX(Xn)ρ]2−n(D(QXY ‖PXY )−δn),

(27)
where the sum is over all QXY ∈ Pn(X × Y). Define

EX(QXY ) ,
1

n
logEQXY [GX(Xn)ρ]. (28)

The assumption EX ≤ ĒX + ε/2 and (27) imply that for all
large enough n and all QXY ∈ Pn(X × Y),

EX(QXY )−D(QXY ‖PXY ) ≤ ĒX + ε. (29)

Analogously,

EY (QXY )−D(QXY ‖PXY ) ≤ ĒY + ε, (30)

where EY (QXY ) , 1
n logEQXY [GY (Y n)ρ].

Next we show that since (29) and (30) hold for every ε > 0,
(26) must hold. To that end, first note that by [11, Theorem 1]
and the fact that the Rényi entropy Hα(·) is non-increasing
in α,

EQXY [GX(Xn)ρ] ≥ 2ρHQ(Xn|M0,M1)−nδn , (31)

where Q is the joint law of (Xn, Y n,M0,M1,M2) condi-
tioned on the event {Q̂XY = QXY },

Q(xn, yn,m0,m1,m2)

=
1

|T n(QXY )|
·


1, if Qxnyn = QXY

and (m0,m1,m2) = φ(xn, yn)

0, else.
(32)

We next lower-bound HQ(Xn |M0,M1) as follows:

HQ(Xn |M0,M1)
(a)

≥ HQ(Xn |M0)− nR1 (33)

=

n∑
i=1

HQ(Xi | Xi−1,M0)− nR1 (34)

(b)

≥
n∑
i=1

HQ(Xi | Ui)− nR1 (35)

(c)
= n(HQ(XT | UT , T )−R1) (36)
(d)
= n(HQ̃(X | U)−R1), (37)

where (a) holds because M1 can assume at most 2nR1

distinct values; in (b) we have conditioned on Y i−1 (in
addition to (Xi−1,M0)) and defined the chance variable
Ui , (Xi−1, Y i−1,M0) taking values in Ui , X i−1 ×
Yi−1 × {0, 1}nR0 ; in (c) we have introduced the chance
variable T that is uniform over {1, . . . , n} and indepen-
dent of (Xn, Y n,M0,M1,M2) (and implicitly extended the
domain of Q to include T ); and in (d) we have defined
U , (UT , T ) and the PMF Q̃ on X × Y ×

(
∪ni=1 Ui

)
×

{1, . . . , n}:

Q̃(x, y, u, t) =
1

n
P[(Xt, Yt, Ut) = (x, y, u)], (38)

where the probability on the RHS is computed w.r.t. Q. Recall
that under Q, (Xn, Y n) is uniform over T n(QXY ), and thus
the (X,Y )-marginal Q̃XY of Q̃ equals QXY ,

Q̃XY (x, y) = QXY (x, y), ∀(xn, yn) ∈ T n(QXY ). (39)

Combining (39), (37), (31), (29), and (28), we obtain a lower
bound on R1:

R1 ≥ HQ̃(X | U)− 1

ρ
(D(Q̃XY ‖PXY ) + ĒX)− ε

ρ
− δn.

(40)

Analogously,

R2 ≥ HQ̃(Y | U)− 1

ρ
(D(Q̃XY ‖PXY )+ ĒY )− ε

ρ
−δn. (41)

Having established that (29) and (30) imply (40) and (41),
whose right-hand sides (RHSs) approach those of (26b)
and (26c), we next consider R0.

nR0 ≥ HQ(M0) (42)
≥ IQ(Xn, Y n;M0) (43)
= HQ(Xn, Y n)−HQ(Xn, Y n |M0) (44)
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(a)

≥ n(HQ̃(X,Y )− δn)−HQ(Xn, Y n |M0) (45)

= n(HQ̃(X,Y )− δn)−
n∑
i=1

HQ(Xi, Yi | Ui) (46)

= n(IQ̃(U ;X,Y )− δn), (47)

where (a) holds because under Q, (Xn, Y n) is uniform
over T n(QXY ) and because |T n(QXY )| ≥ 2n(HQ̃(X,Y )−δn).

We now observe that the RHSs of (40), (41), and (47)
approach those of (26) as we let ε tend to zero and n to
infinity. Note that while Q̃XY in (40), (41), and (47) is a
type, (26) nevertheless holds for arbitrary PMFs because the
RHS of (26) is continuous in Q̃XY , and because any PMF
can be approximated arbitrarily well by an appropriate type
of sufficiently large denominator. This concludes the proof of
the converse part of Theorem 1.

IV. SLEPIAN-WOLF GUESSING, ACHIEVABILITY

We now prove the direct part of Theorem 4. Fix ρ > 0
and ĒXY ≥ 0. We show that for every ε > 0 and (R1, R2)
in (13), there exists a sequence of rate-R1 encoders φ1,
rate-R2 encoders φ2 and guessing orders ordXY for which
EXY ≤ ĒXY + ε. We prove the existence of those using
a random binning argument: For every QX ∈ Pn(X ),
we assign every xn ∈ T n(QX) a random index
M1
QX

(xn) ∈ {1, . . . , 2nR1} (chosen independently and uni-
formly), and likewise for every QY ∈ Pn(Y), we assign every
yn ∈ T n(QY ) a random index M2

QY
(yn) ∈ {1, . . . , 2nR2}.

The assignments xn 7→ M1
Qxn

(xn) and yn 7→ M1
Qyn

(yn)
are revealed to the encoders and guesser. The message M1

produced by Encoder 1 is M1
Q̂X

(Xn), and the message M2

produced by Encoder 2 is M2
Q̂Y

(Y n). To construct the guess-
ing order ordXY , we use the Interlaced Guessing Lemma [2,
Proposition 6] which, for the purpose of this proof, asserts that
we may assume that the guesser is cognizant of the empirical
joint type Q̂XY of (Xn, Y n). Under this assumption, the
guesser chooses an arbitrary guessing order on the set

G(Xn, Y n) ,
{

(ξn, ηn) ∈ T n(Q̂XY ) : M1
Q̂X

(ξn) = M1,

M2
Q̂Y

(ηn) = M2

}
(48)

(all (ξn, ηn) not belonging to (48) are ignored). We next
examine the proposed guessing scheme. In the following all
probabilities and expectations are computed over Xn, Y n, and
the binning. For lack of space, some of the arguments are
abbreviated.

Because the number of guesses is at most the number of
elements in (48), our goal is to upper-bound E[|G(Xn, Y n)|ρ].
By the law of total expectation and Sanov’s Theorem,

E[|G(Xn, Y n)|ρ] ≤
∑
QXY

(
EQXY [|G(Xn, Y n)|ρ]

2−nD(QXY ‖PXY )
)
, (49)

where EQXY denotes expectation (over Xn, Y n, and the
binning) conditioned on the event {Q̂XY = QXY }. For
every QXY ∈ Pn(X × Y) and (ξn, ηn) ∈ T n(QXY ),
let ZQXY (ξn, ηn) be one if (ξn, ηn) ∈ G(Xn, Y n), and zero
otherwise (whether it is one or zero hence depends on Xn,
Y n, and the random mapping to the bins). Observe that

EQXY [|G(Xn, Y n)|ρ] = EQXY

[( ∑
(ξn,ηn)

ZQXY (ξn, ηn)

)ρ]
,

(50)
where the sum is over all (ξn, ηn) ∈ T n(QXY ).
Denoting the conditional probability measure given the
event {Q̂XY = QXY } by PQXY , one can show that for
every (ξn, ηn) ∈ T n(QXY ),

PQXY [ZQXY (ξn, ηn) = 1] ≤ 2−n(HQ(X,Y )−δn) + 2−n(R1+R2)

+ 2−nR12−n(HQ(Y )−δn) + 2−nR22−n(HQ(X)−δn). (51)

After using this to upper-bound the RHS of (50), one can
further show that

EQXY [|G(Xn, Y n)|ρ] ≤
(

1 + 2nρ(HQ(X|Y )−R1)

+ 2nρ(HQ(Y |X)−R2) + 2nρ(HQ(X,Y )−R1−R2)
)

2nδn . (52)

From (52) and (49),

EQXY [|G(Xn, Y n)|ρ] ≤ 2n(ĒXY +δ′n), (53)

where the sequence {δ′n(δn)}n∈N tends to zero as n tends to
infinity. Taking the logarithm and letting n→∞ on both sides
in (53) concludes the proof of the direct part of Theorem 4.

V. SLEPIAN-WOLF GUESSING, CONVERSE

Omitted.
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