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Guessing Based on Compressed
Side Information

Robert Graczyk, Amos Lapidoth, Fellow, IEEE, Neri Merhav, Fellow, IEEE, and Christoph Pfister

Abstract—A source sequence is to be guessed with some fidelity
based on a rate-limited description of an observed sequence
with which it is correlated. The tension between the description
rate and the exponential growth rate of the power mean of the
required number of guesses is quantified. This can be viewed
as the guessing version of the classical indirect-rate-distortion
problem of Dobrushin-Tsybakov’62 and Witsenhausen’80. Ju-
dicious choices of the correlated sequence, the description rate,
and the fidelity criterion recover a number of recent and classical
results on guessing. In the context of security, the paper provides
conservative estimates on a password’s remaining security after
a number of bits from a correlated database have been leaked.

Index Terms—Compression, Guessing, Helper, Remote Helper,
Side Information.

I. INTRODUCTION

Our problem can be viewed as the guessing analogue of the
Indirect-Rate-Distortion problem a.k.a. the Remote-Sensing
problem in lossy source coding [1], [2], [3]. As in that
problem, the description of a source sequence is indirect: the
rate-limited description is based only on a noisy version of the
sequence. The problems differ, however, in their objectives: in
the Remote Sensing problem the source sequence is estimated
(with the least expected distortion), whereas in our problem
it is guessed to within some distortion (with the least power
mean of the number of required guesses). Our problem thus
relates to Arıkan and Merhav’s guessing-subject-to-distortion
problem [4] in much the same way that the Remote Sensing
problem relates to Shannon’s lossy source coding problem [5].

Rather than a source-coding flavor, the problem acquires a
password-security flavor when the description is viewed as a
data leak from some database that is correlated with a user
password that an attacker wishes to guess (to within some
distortion, e.g., a fraction of the password characters). In this
case the best description corresponds to the worst leak, and
our problem provides a worst-case analysis (from the user’s
perspective) of the post-leak security of the password.

A number of results on guessing can be recovered from the
solution to our problem. Those include the results of Arıkan-
Merhav on lossy guessing with unquantized side information
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[4] (Remark 3 ahead); those on lossless guessing with rate-
limited direct help [6, Theorem 1] (Remark 5 ahead); and those
on lossy guessing with rate-limited direct help [6, Theorem 3]
(Remark 1 ahead).

To put our problem in context, recall that in the guessing
problem pioneered by Massey [7] and Arıkan [8], a guesser
seeks to recover a finite-valued chance variable X ∈ X by
sequentially producing guesses of the form

“Is X = x1?”
“Is X = x2?”

...

where x1, x2, . . . ∈ X , and each guess is answered truthfully
with “Yes” or “No.” The number of guesses taken until the
first “Yes,” i.e., until X is revealed, depends on the guesser’s
strategy G (the order in which the elements of X are guessed)
and is denoted G(X). Given the probability mass function
(PMF) PX of X and some ρ > 0, Arıkan showed [8] that
the least achievable ρ-th moment of the number of guesses
E[G(X)ρ] required to recover X is closely related to its Rényi
entropy:

1

(1 + log |X |)ρ
2ρH1/(1+ρ)(PX)

≤ min
G

E[G(X)ρ] ≤ 2ρH1/(1+ρ)(PX), (1)

where H1/(1+ρ)(PX) denotes the order-1/(1 + ρ) Rényi en-
tropy of X in bits. When guessing a length-n random sequence
Xn , (X1, . . . , Xn) whose components are independent and
identically distributed (IID) according to PX , Inequality (1)
implies that

lim
n→∞

1

n
log
(

min
G

E[G(Xn)ρ]
)

= ρH1/(1+ρ)(PX), (2)

where, here and throughout this paper, log denotes base-2
logarithm. The Rényi entropy of X thus fully characterizes
(up to the factor ρ) the exponential growth rate of the least
ρ-th moment of the number of guesses required to recover
Xn.

Our problem differs from Massey’s and Arıkan’s in the
following two ways:

1) Instead of recovering Xn, the guesser need only produce
a guess X̂n ∈ X̂n that is close to Xn in the sense that

1

n

n∑
i=1

d(Xi, X̂i) ≤ D, (3)
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where the distortion measure d(·, ·) : X ×X̂ → R≥0 and
the maximal-allowed distortion level

D > 0 (4)

are prespecified. We assume that, for every xn ∈ Xn,
(3) is satisfied by some x̂n ∈ X̂n; this guarantees the
existence of a guessing strategy that eventually succeeds.

2) Prior to guessing, the guesser is provided with a rate-
limited description f(Y n) ∈ {0, 1}nR of a noisy obser-
vation Y n ∈ Yn of Xn. Based on f(Y n), the guesser
sequentially guesses elements X̂n of X̂n until (3) is
satisfied. (The guesser’s strategy G thus depends on
f(Y n).)

We show that when (X1, Y1), . . . , (Xn, Yn) are IID according
to PXY , the exponential growth rate of the least ρ-th moment
of the number of guesses—optimized over the description
function f and the guessing strategy G—satisfies the varia-
tional characterization (17) of Theorem 1 ahead.

Along the lines of [9], this theorem can be used to assess
the resilience of a password Xn against an adversary who has
access to nR bits of a correlated password Y n and is content
with guessing only a fraction 1 − D of the symbols of Xn.
(In this application, the distortion function is the Hamming
distance.)

Since our guessing problem is an extension of the guessing-
subject-to-distortion problem studied by Merhav and Arıkan
[4], their suggested motivation (accounting for the computa-
tional complexity of a rate-distortion encoder as measured by
the number of metric calculations) and proposed applications
(betting games, pattern matching, and database search algo-
rithms) also extend to our setup. Further applications include
sequential decoding [8], compression [10], and task encoding
[11], [12].

Numerous other variations on the Massey-Arıkan guessing
problem were studied over the years. In [13], Sundaresan
derived an expression for the smallest guessing moment when
the source distribution is only partially known to the guesser;
in [14], [15], the authors constructed and analyzed optimal
decentralized guessing strategies (for multiple guessers that
cannot communicate); in [16], Weinberger and Shayevitz
quantified the value of a single bit of side-information provided
to the guesser prior to guessing; in [17], the authors studied the
guessing problem using an information-geometric approach;
and in [18] and [12] the authors studied the distributed
guessing problem on Gray-Wyner and Slepian-Wolf networks.

The above distributed settings dealt, however, only with
“lossless” guessing, where the guessing has to be exact. Our
present setting maintains, to some degree, a distributed flavor,
but allows for “lossy” guessing, i.e., with some fidelity.

II. PROBLEM STATEMENT AND MAIN RESULTS

Consider n pairs {(Xi, Yi)}ni=1 that are drawn indepen-
dently, each according to a given PMF PXY on the finite
Cartesian product X × Y:

{(Xi, Yi)}ni=1 ∼ IIDPXY . (5)

Define the sequences

Xn , {Xi}ni=1, Y
n , {Yi}ni=1, (6)

with {Xi}ni=1 being IIDPX , where PX is the X-marginal
of PXY , and likewise {Yi}ni=1 being IIDPY . By possibly
redefining X and Y , we assume without loss of generality
that PX and PY are positive. A guesser wishes to produce a
sequence X̂n, taking values in a finite n-fold Cartesian product
set X̂n, that is “close” to Xn in the sense that

d̄(Xn, X̂n) ≤ D, (7)

where D > 0 is some prespecified maximally-allowed distor-
tion, and

d̄(xn, x̂n) ,
1

n

n∑
i=1

d(xi, x̂i) (8)

with
d: X × X̂ → R≥0 (9)

some prespecified distortion function. Since the alphabets are
finite, (9) implies that the distortion function is bounded.
Dealing with infinite alphabets is technically harder, as it
precludes the use of the Method of Types and entails non-
discrete auxiliary random variables. We assume that d(·, ·)
and D are such that for each xn ∈ Xn there exists some
x̂n ∈ X̂n for which (7) is satisfied,

∀xn ∈ Xn ∃x̂n ∈ X̂n : d̄(xn, x̂n) ≤ D. (10)

This guarantees that such X̂n can be found and in no-more-
than |X̂ |n guesses. Condition (10) is equivalent to the single-
letter condition

∀x ∈ X ∃x̂ ∈ X̂ : d(x, x̂) ≤ D (11)

as can be verified by restricting the sequence xn to be constant.
Courtesy of a “helper” fn : Yn → {0, 1}nR, the guesser is

provided, prior to guessing, with an nR-bit description fn(Y n)
of Y n. Based on fn(Y n), the guesser produces a “guessing
strategy” (also called a “guessing function”)

Gn
(
· |fn(Y n)

)
: {1, . . . , |X̂n|} → X̂n, (12)

with the understanding that its first guess is Gn
(
1
∣∣fn(Y n)

)
,

followed by Gn
(
2|fn(Y n)

)
, etc. Thus, the guesser first asks

“Does Gn
(
1
∣∣fn(Y n)

)
satisfy (7)?”

If the answer is “yes,” the guessing terminates and
Gn
(
1
∣∣fn(Y n)

)
∈ X̂n is produced. Otherwise the guesser asks

“Does Gn
(
2
∣∣fn(Y n)

)
satisfy (7)?”

etc. Since guessing the same sequence twice is pointless, we
assume (without loss of optimality) that, for every value of
fn(yn), the mapping Gn( · |fn(yn)) is injective and hence—
since its domain and codomain are of equal cardinality—
bijective. This and Assumption (10), allow us to define

Gn
(
xn
∣∣fn(yn)

)
, min

{
i ≥ 1: d̄(xn,Gn

(
i
∣∣fn(yn)

)
≤ D

}
(13)

as the number of required guesses when Xn = xn and
fn(Y n) = fn(yn).
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Given a positive constant ρ, we seek the least exponential
growth rate in n of the ρ-th moment of the number of guesses
E[Gn(Xn | fn(Y n))ρ]:

lim
n→∞

1

n
log
(

min
fn

min
Gn

E[Gn(Xn | fn(Y n))ρ]
)

(14)

(when the limit exists), where the minima in (14) are over
all maps fn : Yn → {0, 1}nR and all guessing strategies Gn.
Theorem 1 below asserts that the limit exists and provides a
variational characterization for it.

To state the theorem, we need some additional notation.
Given finite sets V and W , let P(V) denote the family of
PMFs on V , and P(V | W) the family of PMFs on V indexed
by W: for every P (· | ·) ∈ P(V | W) and every w ∈ W ,
we have P (· | w) ∈ P(V). Given PMFs PW ∈ P(W) and
PV |W ∈ P(V | W), we use PW PV |W to denote the joint PMF
PW (w) PV |W (v | w) on W × V (in this context, PV |W (· | ·)
is the conditional PMF of V given W .)

Our notation for information theoretic quantities such as
entropy, conditional entropy, and mutual information makes
the PMF under which they are calculated explicit: the entropy
of X under the PMF Q is denoted H(QX); the conditional
entropy of X given Y under Q is H(QX|Y ); the mutual
information between X and Y under Q is I(QX;Y ); and the
conditional mutual information between X and Y given Z
under Q is I(QX;Y |Z).

Given some D ≥ 0, we use Rd(QX , D) to denote
the rate-distortion (R-D) function of X under the PMF Q
when the maximal-allowed average d-distortion is D. We use
Rd(QX|U , D) to denote the conditional rate-distortion function
of X given U under Q. Here the source is X , and the side
information is U , so

Rd(QX|U , D) = inf
QX̂|X,U :

E[d(X,X̂)]≤D

I(QX;X̂|U ), (15)

where the expectation is w.r.t. QX̂|X,UQXU , with QXU de-
noting the (X,U)-marginal of Q. Alternatively, Rd(QX|U , D)
can be expressed as the infimum of∑

u

QU (u) Rd(QX|U=u, Du) (16a)

over all distortion assignments u 7→ Du satisfying∑
u

QU (u)Du ≤ D. (16b)

The relative entropy between P and Q is denoted D(P‖Q).
Theorem 1: The limit in (14) exists and equals

sup
QY

inf
QU|Y :

I(QY ;U )≤R

sup
QX|Y U

(
ρRd(QX|U , D)

−D(QXY U‖PXYQU |Y )
)
, (17)

where the outer supremum is over QY ∈ P(Y), the infimum
is over the choice of the finite set U and of QU |Y ∈ P(U | Y),
the inner supremum is over QX|Y U ∈ P(X | Y × U), and all
the expressions in (17) are evaluated w.r.t. to the joint PMF
QXY U = QYQU |YQX|Y U .

Remark 1: In the special case where the help is direct, i.e.,
when Y equals X under PXY so

(x 6= y) =⇒
(
PXY (x, y) = 0

)
, (18)

Theorem 1 recovers Theorem 3 of [6].
Proof of Remark 1: First note that the relative entropy

in (17) is finite only when QXY U � PXYQU |Y , whence
QXY � PXY .1 This and (18) imply that the inner supremum
in (17) is attained when X and Y are equal also under QXY U
so

QX|Y U (x | y, u) = I(x = y). (19)

Using (19) and denoting expectation w.r.t. QXY U by EQXYU ,
we simplify D(QXY U‖PXYQU |Y ) as follows:

D(QXY U‖PXYQU |Y )

= D(QYQU |YQX|Y U‖PXYQU |Y ) (20)

= EQXYU

[
log

(
QY (Y )QU |Y (U | Y )QX|Y U (X | Y,U)

PXY (X,Y )QU |Y (U | Y )

)]
(21)

= EQXYU

[
log

(
QY (Y )QX|Y U (X | Y,U)

PXY (X,Y )

)]
(22)

= EQXYU

[
log

(
QY (Y ) I(X = Y )

PX(X) I(Y = X)

)]
(23)

=
∑

(x,y)∈X×Y

QY (y) I(x = y) log

(
QY (y) I(x = y)

PX(x) I(y = x)

)
. (24)

To continue from (24), note that, by (19),

QY (y) I(x = y) = QX(x) I(y = x), (25)

so (24) implies that

D(QXY U‖PXYQU |Y )

=
∑

(x,y)∈X×Y

QX(x) I(y = x) log

(
QX(x) I(y = x)

PX(x) I(y = x)

)
(26)

=
∑
x∈X

QX(x) log

(
QX(x)

PX(x)

)
(27)

= D(QX‖PX). (28)

Having dispensed with the inner supremum in (17), we note
that, because X and Y are equal under QXY U , we can replace
the outer supremum in (17) with one over QX , and the
infimum with one over QU |X . From this and (28) we conclude
that (17) reduces to

sup
QX

inf
QU|X :

I(QX;U )≤R

(
ρRd(QX|U , D)−D(QX‖PX)

)
, (29)

which recovers Theorem 3 of [6].
Remark 2: When the help is useless because R is zero or

because X and Y are independent (under PXY ), Theorem 1
reduces to Corollary 1 of [4].

1We use Q � P to indicate that Q is absolutely continuous w.r.t. P .
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Proof of Remark 2: To show this, we begin by con-
sidering the choice of U as deterministic and thus establish
that (17) is upper bounded by

sup
QX

(
ρRd(QX , D)−D(QX‖PX)

)
, (30)

which is the expression in Corollary 1 of [4]. It remains to
show that, when R = 0 or when X and Y are independent,
this is also a lower bound.

We begin with R = 0. In this case, the constraint in the
infimum in (17) implies that Y and U are independent under
QXY U , so

QXY U = QY QU QX|Y U . (31)

A lower bound results when we restrict the inner supremum
to conditional laws where QX|Y U (x|y, u) is determined by x
and y, so that QXY U has the form QUQXY . With this form,
the objective function in (17) reduces to(

ρRd(QX , D)−D(QXY ‖PXY )
)

(32)

which depends on QXY U only via its marginal QXY . This
allows us to dispense with the infimum to obtain

sup
QXY

(
ρRd(QX , D)−D(QXY ‖PXY )

)
, (33)

which is attained when QY |X equals PY |X , whence it
equals (30).

Having established that (30) is a lower bound on (17) when
R = 0, we now show that it is also a lower bound on (17)
when X and Y are independent under PXY . In this case we
obtain the lower bound by restricting the inner supremum to
be over conditional laws where QX|Y U (x|y, u) is determined
by x alone, so that QXY U has the form QXQUY . With this
form (and with X and Y being independent under PXY ), the
objective function in (17) reduces to(

ρRd(QX , D)−D(QXQY U‖PXPYQU |Y )
)

(34)

which simplifies to(
ρRd(QX , D)−D(QXQY ‖PXPY )

)
. (35)

Again U disappears, and we are back at (33), which evaluates
to the desired lower bound.

Remark 3: When R exceeds log |Y|, Theorem 1 recovers the
Arıkan-Merhav result on lossy guessing with side information
[4], i.e., (17) reduces to

sup
QY

sup
QX|Y

(
ρRd(QX|Y , D)−D(QXY ‖PXY )

)
. (36)

Proof: When R ≥ log |Y| the choice in (17) of U as Y ,
i.e., QU |Y (u|y) = I(u = y), is valid, so (17) is upper-bounded
by (36) (to which the objective function in (17) reduces when
we substitute Y for U .)

It remains to establish a lower bound on (17) that coincides
with (36). To this end, fix any QY , and let U be some
arbitrary auxiliary chance variable with conditional law QU |Y .
The inner supremum can then be bounded by restricting the

supremum to be over QX|Y U of the form QX|Y , i.e., under
which X and U are conditionally independent given Y :

sup
QX|Y U

(
ρRd(QX|U , D)−D(QXY U‖PXYQU |Y )

)
≥ sup

QX|Y U :
QX|Y U=QX|Y

(
ρRd(QX|U , D)−D(QXY U‖PXYQU |Y )

)
(37)

≥ sup
QX|Y U :

QX|Y U=QX|Y

(
ρRd(QX|Y U , D)

−D(QXYQU |XY ‖PXYQU |Y )
)

(38)

= sup
QX|Y U :

QX|Y U=QX|Y

(
ρRd(QX|Y , D)

−D(QXYQU |Y ‖PXYQU |Y )
)

(39)

= sup
QX|Y U :

QX|Y U=QX|Y

(
ρRd(QX|Y , D)−D(QXY ‖PXY )

)
(40)

= sup
QX|Y

(
ρRd(QX|Y , D)−D(QXY ‖PXY )

)
. (41)

Since this holds irrespective of QU |Y , (36) must be a lower
bound on (17).

Lossless Guessing

We next focus on the “lossless guessing exponent,” which
corresponds to d(·, ·) being the Hamming distortion and to D
being zero. Theorem 1 does not apply to this case directly,
because it assumes that D is positive; see (4). Nevertheless,
with some small extra steps, this case does follow from
the theorem. To set the stage, we shall need the following
continuity result.

Lemma 1: For Hamming distortion, (17) is continuous in D
at D = 0 where it evaluates to

sup
QY

inf
QU|Y :

I(QY ;U )≤R

sup
QX|Y U

(
ρH(QX|U )

−D(QXY U‖PXYQU |Y )
)
. (42)

Proof: See Appendix A.
Theorem 2: In the lossless guessing case, where d(·, ·) is

the Hamming distortion and D is zero, the limit in (14) exists
and equals

sup
QY

inf
QU|Y :

I(QY ;U )≤R

sup
QX|Y U

(
ρH(QX|U )

−D(QXY U‖PXYQU |Y )
)
. (43)

Proof: Lossless guessing is at least as hard as guessing to
within distortion ε > 0. Expression (17), evaluated at D = ε,
thus provides a lower bound on the desired exponent (14).
Taking its limit as ε ↓ 0 and using Lemma 1 thus establishes
that (43) lower bounds the desired exponent (14). This bound
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can be alternatively established by noting that the converse part
of the proof of Theorem 1 (Section IV) also holds when D is
zero.

For the reverse inequality we need a guessing scheme. The
idea is to replace every guess x̂n in a scheme for guessing Xn

to within Hamming distortion nε with an arbitrary ordering
of the sequences ξn that are within Hamming distortion nε
from x̂n, i.e., the sequences in the Hamming ball B(x̂n;nε)
of radius nε and center x̂n. With this scheme, the number of
guesses needed to guess xn exactly is at most the product of
the number of guesses that are needed to guess xn to within
Hamming distortion nε and the cardinality of the Hamming
ball of radius nε. The exponent achieved by this scheme
is thus at most the sum of (17) evaluated at D = ε and
limn→∞ n−1 log |B(x̂n;nε)|. Taking the limit ε ↓ 0 and noting
that [19, Lemma 4.7]

lim
ε↓0

lim sup
n→∞

1

n
log |B(x̂n;nε)| = 0, (44)

establishes that the limit as ε ↓ 0 of (17), namely (43), is
achievable with lossless guessing.

We remark that in the case of lossless guessing, the sup-
port U of U can be chosen to be of finite cardinality.

Remark 4: Restricting U to take values in a set of cardinality
|Y| + 1 does not alter (43). Consequently, the suprema and
infimum in (43) can be replaced by maxima and minimum
respectively.

Proof: See Appendix D.
For lossless guessing with direct help (i.e., when Y = X),

Theorem 2 recovers [6, (4)–(5)]:
Remark 5: In the lossless guessing case with direct help,

Expression (43) simplifies to

ρ
(
H1/(1+ρ)(PX)−R

)+
(45)

where ξ+ denotes max{ξ, 0}.
Proof: The arguments leading to (19) show that, in the

lossless case with direct help, Expression (43) reduces to

sup
QX

inf
QU|X :

I(QX;U )≤R

(
ρH(QX|U )−D(QX‖PX)

)
= sup

QX

inf
QU|X :

I(QX;U )≤R

(
ρ
(
H(QX)− I(QX;U )

)
−D(QX‖PX)

)
. (46)

When QX is fixed, the inner minimum is achieved when
I(QX;U ) is maximized, i.e., when it equals min{H(QX), R}.
(The existence of such a maximizing QU |X is guaranteed
by Lemma 4 in Appendix B.) This observation leads to the
expression

sup
QX

(
ρ
(
H(QX)−min{H(QX), R}

)
−D(QX‖PX)

)
= sup

QX

(
ρ(H(QX)−R)+ −D(QX‖PX)

)
. (47)

The supremum on the RHS is achieved by some QX for which
H(QX) < R only if that QX is equal to PX , in which case

ρ(H(QX)−R)+−D(QX‖PX) is zero. The RHS can thus be
written

ρ sup
QX

((
H(QX)−R− ρ−1 D(QX‖PX)

)+)
(48)

from which the result follows because [8]

sup
QX

(
H(QX)− ρ−1 D(QX‖PX)

)
= H1/(1+ρ)(PX). (49)

Example: Guessing a Tuple Based on Compressed Partial
Information

Using Remark 5, we next evaluate (43) for a tuple-valued
source sequence Xn = (Y n, Tn), whose first component Y n

is the described sequence, and whose second component Tn

is independent of Y n and IID Bernoulli(1/2), so T = {0, 1},

X = Y × T , (50)

and

PX(y, t) =
1

2
PY (y) (51)

PX|Y
(
(y′, t) | y

)
=

1

2
I(y′ = y), y, y′ ∈ Y, t ∈ T . (52)

By computing (43), we will show that the ρ-th moment of
the number of required guesses grows exponentially with the
exponent

ρ
(
H1/(1+ρ)(PY )−R

)+
+ ρ. (53)

We begin with the inner-most supremum over QX|Y U for
a fixed QY U , and argue that it is achieved by PX|Y . We first
note that, without loss of optimality, we can restrict QX|Y U to
be such that, for every u and y, the support of QX|Y=y,U=u

be contained in {y}×T . In other words, under QXY U the first
component of X is equal, with probability one, to Y . Indeed,
if this is not the case then the relative entropy term in (43) is
infinite.

Subject to this restriction, we now show that choosing
QX|Y U as PX|Y simultaneously maximizes H(QX|U ) and
minimizes D(QXY U‖PXYQU |Y ). To argue that—with QY U
fixed—PX|Y maximizes H(QX|U ), note that Y is computable
from X , so

H(QX|U ) = H(QXY |U ) (54)
= H(QY |U ) + H(QX|UY ) (55)
= H(QY |U ) + H(QT |UY ), (56)

where the first and third equalities follow from our restriction
that the support of QX|Y=y,U=u be contained in {y} × T
(i.e., that the first component of X be equal to Y also under
QXY U ). The first term on the RHS is fixed by QY U , and
the second is maximized by having T be drawn equiprobably
from T independently of (U, Y ), i.e., by having QX|Y U be
equal to PX|Y . Recalling that T is equiprobable over {0, 1}
under PXY , this choice of QX|Y U yields

H(QX|U ) = H(QY |U ) + 1. (57)
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To show that the choice of QX|Y U as PX|Y also minimizes
D(QXY U‖PXYQU |Y ), we expand the relative entropy as

D(QXY U‖PXYQU |Y )

= D(QY UQX|Y U‖PY PX|YQU |Y ) (58)
= D(QY U‖PYQU |Y )

+
∑
y,u

QY U (y, u) D(QX|Y=y,U=u‖PX|Y=y) (59)

and note that the first term is determined by QY U (which is
fixed), and the second is minimized when QX|Y=y,U=u equals
PX|Y=y .

Having established that choosing QX|Y U as PX|Y
simultaneously maximizes H(QX|U ) and minimizes
D(QXY U‖PXYQU |Y ), we next note that, with this choice,

D(QXY U‖PXYQU |Y ) = D(QY U‖PYQU |Y ). (60)

Dispensing with the inner-most supremum in (43) and
using (57) and (60), leads to the expression

sup
QY

inf
QU|Y :

I(QY ;U )≤R

(
ρH(QY |U )−D(QY U‖PYQU |Y )

)
+ ρ, (61)

which, but for the extra ρ, is the expression for guessing Y n

with direct help. Using Remark 5 we obtain the alternative
form (53).

III. ACHIEVABILITY

In this section we prove the direct part of Theorem 1,
namely, that when {(Xi, Yi)}ni=1 are IID according to PXY ,
then for every ε > 0 there exists a sequence of rate-R helpers
{fn} and guessing strategies {Gn} satisfying

lim sup
n→∞

1

n
log(E[Gn(Xn | fn(Y n))ρ])

≤ sup
QY

inf
QU|Y :

I(QY ;U )≤R

sup
QX|Y U

(
ρRd(QX|U , D)

− D(QXY U‖PXYQU |Y )
)

+ ε. (62)

Since we are only interested in the asymptotic behavior of
E[Gn(Xn | fn(Y n))ρ] as n tends to infinity, we shall only
consider large values of n.

We begin by constructing the helper fn. To do so, we shall
use the Type-Covering lemma [20, Lemma 1], [21, Lemma
9.1], [22, Lemma 2.34] that we restate here for the reader’s
convenience. Given finite sets V and W , let Pn(V) denote
the family of “types of denominator n” on V , i.e., the PMFs
P (·) ∈ P(V) for which nP (v) is an integer for all v ∈ V . By
a “conditional type on V given W” we refer to a conditional
PMF P (· | ·) ∈ P(V | W) for which P (· | w) is a type (of
some denominator n(w)) for every w ∈ W . Given a sequence
vn ∈ Vn, the “empirical distribution of vn” is the (unique)
type P ∈ Pn(V) for which P (v′) = 1

n |{i : vi = v′}| for every
v′ ∈ V . And given P ∈ Pn(V), we use T (n)(P ) to denote
the “type class” of P , i.e., the set of all sequences vn ∈ Vn
whose empirical distribution is P .

Lemma 2 (Type-Covering lemma): Let V and W be finite
sets. For every ε > 0 there exists some n0(ε) such that

for all n exceeding n0(ε) the following holds: For every
QV ∈ Pn(V) and every conditional type QW |V for which
QVQW |V ∈ Pn(V × W), there exists a codebook C ⊆ Wn

satisfying
|C| ≤ 2n(I(QV ;W )+ε) (63)

and

∀ vn ∈ T (n)(QV ), ∃wn ∈ C :

(vn, wn) ∈ T (n)(QVQW |V ). (64)

Lemma 2 is applied as follows: For every QY ∈ Pn(Y),
we first define

Q∗U |Y (QY ) , arg min
QU|Y :

I(QU;Y )≤R−ε′

max
QX|Y U

Rd(QX|U , D), (65)

(provided the minimum exists) where the optimization is
over the choice of the finite set U and of the types
QU |Y and QX|Y U for which QYQU |YQX|Y U ∈ Pn(Y ×
U × X ); where I(QU ;Y ) and Rd(QX|U , D) are computed
w.r.t. QYQU |YQX|Y U ; and where ε′ is a small positive
constant (to be specified later). If the minimum in (65) does
not exist, we let

R∗(QY ) , inf
QU|Y :

I(QU;Y )≤R−ε′

max
QX|Y U

Rd(QX|U , D), (66)

where the optimization is under the same conditions as in (65),
and instead define Q∗U |Y (QY ) as a conditional type satisfying

max
QX|Y U

Rd(QX|U , D) ≤ R∗(QY ) + ε′′ (67)

where the maximum is over all conditional types QX|Y U
for which QYQ

∗
U |YQX|Y U ∈ Pn(Y × U × X ); where

Rd(QX|U , D) is computed w.r.t. QYQ
∗
U |YQX|Y U ; and

where ε′′ is a small positive constant (also to be specified
later).

To construct the helper fn, we invoke Lemma 2 (assuming
that n is sufficiently large) with QV ← QY (the type of yn),
QW |V ← Q∗U |Y (QY ), and ε ← ε′ to obtain a codebook
C(QY ) ⊆ Un used by fn to produce the index of some
Un ∈ C(QY ) such that (Un, Y n) ∈ T (n)(QYQ

∗
U |Y (QY )).

We next construct a guessing strategy Gn. Let Un ∈ C(QY )
be the codeword provided by the helper and that hence satisfies
(Y n, Un) ∈ T (n)(QYQ

∗
U |Y (QY )). Let QXY U denote the

empirical joint distribution of (Xn, Y n, Un). We first argue
that the guesser can be assumed cognizant of QXY U . To that
end, we need the following lemma:

Lemma 3 (Interlaced-Guessing lemma [23, Lemma 5]): Let
V , W , and Z be finite-valued chance variables and let ρ be
nonnegative. Given any guessing strategy G for guessing V
based on W and Z, there exists a guessing strategy G̃ based
on W only such that

E[G̃(V |W )ρ] ≤ E[G(V |W,Z)ρ]|Z|ρ. (68)

By substituting V ← Xn, W ← Un, and Z ← QXY U in
Lemma 3, we infer

min
Gn

E[G(Xn | Un)ρ]

≤ min
Gn

E[G(Xn | Un, QXY U )ρ]
∣∣P(n)(X × Y × U)

∣∣ρ, (69)
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where the guessing strategy on the RHS of (69) depends
on both the helper’s description fn(Y n) of Y n and the
empirical joint distribution QXY U of (Xn, Y n, Un). Since the
cardinality of P(n)(X × Y × U) is subexponential in n,

lim
n→∞

1

n
log
∣∣P(n)(X × Y × U)

∣∣ρ = 0. (70)

Thus, by (69) and (70),

lim sup
n→∞

1

n
min
Gn

E[G(Xn | Un)ρ]

≤ lim sup
n→∞

1

n
min
Gn

E[G(Xn | Un, QXY U )ρ]. (71)

Since the RHS of (71) cannot exceed its LHS, (71) must hold
with equality, and we shall hence, for the remainder of the
proof, assume that QXY U is known to the guesser.

Our guessing strategy Gn will thus depend on both the
helper’s description Un of Y n and the empirical joint dis-
tribution QXY U of (Xn, Y n, Un). To construct Gn, we will
use of the following corollary [6, Lemma 2] which follows
from the conditional version of Lemma 2:

Corollary 1: Let V , W , and Z be finite sets, let d(·, ·) be
a distortion function on V ×W , let d̄(·, ·) be its extension to
sequences, and let D be positive. For every ε > 0 there exists
some n0(ε) such that for all n exceeding n0(ε) the following
holds: For every QV Z ∈ Pn(V×Z) and every zn ∈ T (n)(QZ)
there exists a codebook C ⊆ Wn that satisfies

|C| ≤ 2n(Rd(QV |Z ,D)+ε) (72)

and

∀ vn ∈ T (n)(QV |Z |zn), ∃wn ∈ C : d̄(vn, wn) ≤ D. (73)

To construct Gn, we now invoke Corollary 1 with the
substitutions QV Z ← QXU , zn ← Un, W ← X̂ , and ε← ε′′,
where ε′′ is some small nonnegative constant (to be specified
later) to obtain the codebook C(QXY U ) ⊆ X̂n. The guessing
strategy Gn is then chosen such that Gn|{1,...,|C(QXYU )|} is a
bijection from {1, . . . , |C(QXY U )|} to C(QXY U ), i.e., such
that the first |C(QXY U )| guesses are those in C(QXY U ) in
some arbitrary order. Note that (73) guarantees that some
X̂n in Gn|{1,...,|C(QXYU )|} satisfies (7), and thus the guesser
succeeds after at most |C(QXY U )| guesses.

We now show that (62) holds for our proposed helper fn
and guessing strategy Gn:

E[Gn(Xn | fn(Y n))ρ]
(a)
= E[Gn(Xn | Un)ρ] (74)
(b)
=
∑
QY

∑
QX|Y U

(
Pr[Y n ∈ T (n)(QY )]

Pr[Xn ∈ T (n)(QX|Y U ) | Y n ∈ T (n)(QY )]

E
[
Gn(Xn | Un)ρ∣∣ (Xn, Y n, Un) ∈ T (n)(QYQ

∗
U |Y (QY )QX|Y U )

])
(75)

(c)
≤
∑
QY

∑
QX|Y U

(
Pr[Y n ∈ T (n)(QY )]

Pr[Xn ∈ T (n)(QX|Y U ) | Y n ∈ T (n)(QY )]

2nρ(Rd(QX|U ,D)+ε′′)
)

(76)

(d)
≤
∑
QY

∑
QX|Y U

(
2−nD(QY ‖PY ) 2−nD(QX|Y U‖PX|Y )

2nρ(Rd(QX|U ,D)+ε′′)
)

(77)

(e)
≤ max

QY
max
QX|Y U

(
2−nD(QY ‖PY ) 2−nD(QX|Y U‖PX|Y )

2nρ(Rd(QX|U ,D)+ε′′)
)∣∣P(n)(X × Y × U)

∣∣ρ (78)

(f)
= max

QY
min
QU|Y :

I(QU;Y )≤R−ε′

max
QX|Y U

(
2−nD(QY ‖PY )

2−nD(QX|Y U‖PX|Y ) 2nρ(Rd(QX|U ,D)+ε′′)∣∣P(n)(X × Y × U)
∣∣ρ) (79)

(g)
≤ sup

QY

inf
QU|Y :

I(QU;Y )≤R−ε′

sup
QX|Y U

(
2−nD(QY ‖PY )

2−nD(QX|Y U‖PX|Y ) 2nρ(Rd(QX|U ,D)+ε′′) 2nδn
)

·
∣∣P(n)(X × Y × U)

∣∣ρ (80)
(h)
≤ sup

QY

inf
QU|Y :

I(QU;Y )≤R

sup
QX|Y U

(
2−nD(QY ‖PY )

2−nD(QX|Y U‖PX|Y ) 2nρRd(QX|U ,D) 2nδn 2nε
)

·
∣∣P(n)(X × Y × U)

∣∣ρ, (81)

where (a) holds because we have assumed that the empirical
distribution QY of Y n is known to the guesser who can thus
recover Un from fn(Y n) and C(QY ); in (b) we have used the
law of total expectation, averaging over the types QY ∈ Pn(Y)
and conditional types QX|Y U for which QYQU |YQX|Y U is
in Pn(Y × U × X ) (recall that QU |Y = Q∗U |Y (QY ) is fixed
by fn); (c) is due to (72); (d) follows from [24, Theorem
11.1.4]; in (e) we have upper-bounded the sum by the largest
term times the number of terms (the number of terms is
the number of types QY and QX|Y U that we have in turn
upper-bounded by the number of types QXY U ); (f) is due to
(65); in (g) we have lifted the constraint on QY , Q∗U |Y (QY ),
and QX|Y U to be types at a cost of at most 2nδn , where
δn ↓ 0 as n → ∞, and where the step is justified because
any PMF can be approximated arbitrarily well by a type of
sufficiently large denominator; and in (h) we have used the fact
that all exponents are continuous functions of their respective
arguments, and that ε′ and ε′′ were chosen sufficiently small.

Dividing the log of (81) by n, taking the lim sup as n tends
to infinity, and applying (70) yields (62).

IV. CONVERSE

In this section we prove the converse part of Theorem 1,
namely, that if {(Xi, Yi)}ni=1 are IID according to PXY ,
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then for any sequence of rate-R helpers {fn} and guessing
strategies {Gn},

lim inf
n→∞

1

n
log(E[Gn(Xn | fn(Y n))ρ])

≥ sup
QY

inf
QU|Y :

I(QY ;U )≤R

sup
QX|Y U

(
ρRd(QX|U , D)

−D(QXY U‖PXYQU |Y )
)
. (82)

Fix a sequence of helpers {fn} and guessing strategies
{Gn}. We begin by observing that for any probability law Q
of (Xn, Y n)-marginal QXnY n ,

EPXnY n [Gn(Xn | fn(Y n))ρ]

≥ 2ρEQ[log(Gn(X
n|fn(Y n)))]−D(QXnY n‖PXnY n ), (83)

where EP denotes expectation w.r.t. the PMF P . Indeed,

EPXnY n [Gn(Xn | fn(Y n))ρ]

=
∑

(xn,yn)∈Xn×Yn
PXn,Y n(xn, yn)Gn(xn | fn(yn))ρ (84)

=
∑

(xn,yn)∈Xn×Yn
QXn,Y n(xn, yn)Gn(xn | fn(yn))ρ

· PX
n,Y n(xn, yn)

QXn,Y n(xn, yn)
(85)

=
∑

(xn,yn)∈Xn×Yn
QXn,Y n(xn, yn)

· 2
log

(
Gn(x

n|fn(yn))ρ
PXn,Y n (xn,yn)

QXn,Y n (xn,yn)

)
(86)

(a)
≥ 2

∑
xn,yn QXn,Y n log

(
Gn(x

n|fn(yn))ρ
PXn,Y n (xn,yn)

QXn,Y n (xn,yn)

)
(87)

= 2ρEQ[log(Gn(X
n|fn(Y n)))]−D(QXnY n‖PXnY n ), (88)

where (a) follows from Jensen’s inequality.
In order to describe the law Q to which we shall apply (83),

let [1 : n] denote the set {1, . . . , n} and define the auxiliary
variables

M , fn(Y n) (89)
Ui , (Xi−1, Y i−1,M), i ∈ [1 : n] (90)

taking values in the sets

M , {0, 1}nR (91)

and
Ui , X i−1 × Yi−1 ×M, i ∈ [1 : n]. (92)

Given any QY ∈ P(Y) and any n Markov kernels
{QXi|YiUi}ni=1, define the law QXnY nMUnX̂n on Yn×Xn×
M×

∏n
i=1 Ui × X̂n as

QXnY nMUnX̂n

, Q×nY PM |Y n
n∏
i=1

(
QUi|Xi−1Y i−1MQXi|YiUi

)
PX̂n|MXn ,

(93a)

where PM |Y n is specified by the helper as

PM |Y n(m | yn) = I(m = fn(yn)), (93b)

QUi|Xi−1Y i−1M is specified through the definition of Ui
in (90) as

QUi|Xi−1Y i−1M (ui | xi−1yi−1m)

= I(ui = (xi−1, yi−1,m)), (93c)

and PX̂n|MXn is determined by the guessing strategy as

PX̂n|MXn(x̂n | m,xn) = I(x̂n = Gn(Gn(xn | m))). (93d)

Thus,

QXnY nMUnX̂n(yn, xn,m, un, x̂n)

= Q×nY (yn) I(m = fn(yn))

·
n∏
i=1

(
I(ui = (xi−1, yi−1,m))QXi|YiUi(xi | yi, ui)

)
· I(x̂n = Gn(Gn(xn | m))), (93e)

where Gn(·) is defined in (13).
Note that (93a) implies that

Xi−1 → (M,Y i−1)→ Yi under Q (94)

because the (Xi−1, Y n,M,U i−1)-marginal of Q can be writ-
ten as

QXi−1Y nMUi−1

= Q×nY (yn)PM |Y n
i−1∏
j=1

(
QUj |Xj−1Y j−1MQXj |YjUj

)
, (95)

which implies that

(Xi−1, U i−1)→ (M,Y i−1)→ Y ni under Q (96)

because the product is a function of (m, yi−1) and
(xi−1, ui−1), and the pre-product Q×nY (yn)PM |Y n is a func-
tion of (m, yi−1) and yni .

Next define for every i ∈ [1 : n]

Di , E[d(Xi, X̂i)], (97)

where the expectation is w.r.t. to the PMF QXnY nMUnX̂n .
Under the latter, x̂n = Gn(Gn(xn | m)) so d̄(xn, x̂n) ≤ D for
every xn ∈ Xn and, also in expectation (over QXnY nMUnX̂n )

1

n

n∑
i=1

Di ≤ D. (98)

Further define

Q∗
X̂′i|MXi

, arg min
QX̂′

i
|MXi :

E[d(Xi,X̂
′
i)]≤Di

I(Xi; X̂
′
i |M,Xi−1), (99)

where the minimum is over all conditional PMFs QX̂′i|MXi

in P(X̂ | M × X i), and where I(Xi; X̂
′
i | M,Xi−1)

and E[d(Xi, X̂
′
i)] are evaluated w.r.t. QX̂′i|MXiQMXi , with

QMXi being the (M,Xi)-marginal of QXnY nMUnX̂n . Using
{Q∗

X̂′i|MXi
}ni=1, we extend QXnY nMUnX̂n to a law Q on

Yn ×Xn ×M×
∏n
i=1 Ui × X̂n × X̂n as follows:

Q , QXnY nMUnX̂n

n∏
i=1

Q∗
X̂′i|MXi

. (100)



GRACZYK, LAPIDOTH, MERHAV, PFISTER: GUESSING BASED ON COMPRESSED SIDE INFORMATION 9

Note that the factorization in (100) implies that

X̂ ′i → (M,Xi)→ Y i−1 (101)

because it implies that—conditional on (M,Xi)—X̂ ′i is inde-
pendent of the tuple (Xn, Y n,M,Un, X̂n) and hence also of
Y i−1 (which is a function of this tuple).

For the remainder of this section we shall assume that,
unless stated otherwise, all expectations and information-
theoretic quantities are evaluated w.r.t. Q. To study (83) for
this Q, we begin by lower-bounding E[log(Gn(Xn | M))]
using the conditional R-D function. To this end, we note that,
conditional on M = m, there is a one-to-one correspondence
between Gn(Xn | M) and X̂n so, by the Reverse Wyner
inequality of Corollary 2 in Appendix C,

E[log(Gn(Xn |M)) |M = m] ≥ H(X̂n |M = m)− nδn
(102)

where H(X̂n | M = m) denotes the conditional entropy of
X̂n given the event {M = m}, and where δn tends to zero
as n tends to infinity. Averaging over M ,

E[log(Gn(Xn |M))]

≥ H(X̂n |M)− nδn (103)
≥ I(X̂n;Xn |M)− nδn (104)

=

n∑
i=1

(
H(Xi |M,Xi−1)−H(Xi |M, X̂n, Xi−1)

)
− nδn (105)

≥
n∑
i=1

(
H(Xi |M,Xi−1)−H(Xi |M, X̂i, X

i−1)
)

− nδn (106)

=

n∑
i=1

I(Xi; X̂i |M,Xi−1)− nδn (107)

(a)
≥

n∑
i=1

I(Xi; X̂
′
i |M,Xi−1)− nδn (108)

=

n∑
i=1

(
H(X̂ ′i |M,Xi−1)−H(X̂ ′i |M,Xi)

)
− nδn (109)

≥
n∑
i=1

(
H(X̂ ′i |M,Xi−1, Y i−1)−H(X̂ ′i |M,Xi)

)
− nδn (110)

(b)
=

n∑
i=1

(
H(X̂ ′i |M,Xi−1, Y i−1)−H(X̂ ′i |M,Xi, Y i−1)

)
− nδn (111)

(c)
=

n∑
i=1

(
H(X̂ ′i | Ui)−H(X̂ ′i | Ui, Xi)

)
− δn (112)

=

n∑
i=1

I(Xi; X̂
′
i | Ui)− nδn, (113)

where in (a) we have replaced X̂i by X̂ ′i , and the inequality
hence follows from (99); (b) follows from (101); and in
(c) we have identified the auxiliary variable Ui defined in
(90). To continue from (113), let T be equiprobable over

[1 : n], independent of (Y n,M,Xn, Un, (X̂ ′)n), and define
the chance variable

(Y,X,U, X̂ ′) , (YT , XT , UT , X̂
′
T ) (114)

taking values in the set Y×X×(∪ni=1Ui)×X̂ . Note that, since
the sets {Ui} of (92) are disjoint, T is a deterministic function
of U , and we can define ι(·) as mapping each u ∈ ∪ni=1Ui to
the unique i ∈ [1 : n] for which u ∈ Ui. With this definition,
the PMF of (Y,X,U, X̂ ′) can be expressed as

Q̃Y XUX̂′(y, x, u, x̂
′) ,

1

n
QYι(u)Xι(u)Uι(u)X̂′ι(u)

(y, x, u, x̂′),

(115)
where QYiXiUiX̂′i is the (Yi, Xi, Ui, X̂

′
i)-marginal of Q. We

next observe that, under Q̃, E[d(X, X̂ ′)] is upper-bounded
by D. Indeed,

EQ̃[d(X, X̂ ′)] =
1

n

n∑
i=1

EQ[d(Xi, X̂
′
i)] (116)

≤ 1

n

n∑
i=1

Di (117)

≤ D, (118)

where the first inequality follows from the constraint in the
optimization on the RHS of (99) and the second from (98).
Also note that, since T is a deterministic function of U , the
RHS of (113) can be expressed in terms of (Y,X,U, X̂ ′) as

n I(X; X̂ ′ | U)− nδn, (119)

so,

EQ[log(Gn(Xn |M))] ≥ n I(X; X̂ ′ | U)− nδn, (120)

where the conditional mutual information on the RHS is
w.r.t. Q̃. Using (118), we can lower-bound the RHS of (120)
in terms of the conditional R-D function (15),

n I(X; X̂ ′ | U)− nδn ≥ nRd,D(Q̃X|U )− nδn, (121)

and, using (121) and (120), we obtain the desired lower bound

EQ[log(Gn(Xn |M))] ≥ nRd,D(Q̃X|U )− nδn. (122)

We next return to (83) and derive a single-letter expression for
D(QXnY n‖PXnY n), where QXnY n is the (Xn, Y n)-marginal
of Q, and

PXnY n = P×nXY . (123)

We first express it as

D(QXnY n‖PXnY n) = D
(
QXnY nPM |Y nQUn|XnY nM

∥∥
PXnY nPM |Y nQUn|XnY nM

)
, (124)

and then observe that, by (93b), QXnY nPM |Y nQUn|XnY nM
is (a factorization of) the (Xn, Y n,M,Un)-marginal of Q,
which can be expressed as

QXnY nPM |Y nQUn|XnY nM

= Q×nY

(
n∏
i=1

QXi|YiUi

)
PM |Y nQUn|XnY nM , (125)
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because, by (93a) (or (90)),

QUn|XnY nM =

n∏
i=1

QUi|Xi−1Y i−1M . (126)

From (123), (125) and (124)

D(QXnY n‖PXnY n)

= D
(
QXnY nPM |Y nQUn|XnY nM

∥∥
PXnY nPM |Y nQUn|XnY nM ) (127)

= D

(
Q×nY

( n∏
i=1

QXi|YiUi

)
PM |Y nQUn|XnY nM

∥∥∥∥∥
P×nXY PM |Y nQUn|XnY nM

)
. (128)

We now continue the derivation of a single-letter expression
for D(QXnY n‖PXnY n) by studying the RHS of (128):

D(QXnY n‖PXnY n)

= D

(
Q×nY

n∏
i=1

QXi|YiUiPM |Y nQUn|XnY nM

∥∥∥∥∥
P×nXY PM |Y nQUn|XnY nM

)
(129)

(a)
= EQ

[
log

(
Q×nY (Y n)

∏n
i=1QXi|YiUi(Xi | Yi, Ui)

P×nXY (Xn, Y n)PM |Y n(M | Y n)

·
PM |Y n(M | Y n)QUn|XnY nM (Un | Xn, Y n,M)

QUn|XnY nM (Un | Xn, Y n,M)

)]
(130)

= EQ

[
log

(
Q×nY (Y n)

∏n
i=1QXi|YiUi(Xi | Yi, Ui)
P×nXY (Xn, Y n)

)]
(131)

(b)
=

n∑
i=1

EQXiYiUi

[
log

(
QY (Yi)QXi|YiUi(Xi | Yi, Ui)

PXY (Xi, Yi)

)]
(132)

=

n∑
i=1

∑
(xi,yi,ui)∈
X×Y×Ui

QXiYiUi(xi, yi, ui)

· log

(
QY (yi)QXi|YiUi(xi | yi, ui)

PXY (xi, yi)

)
(133)

(c)
=

n∑
i=1

∑
(xi,yi,ui)∈
X×Y×Ui

QXiYiUi(xi, yi, ui)

· log

(
QYi(yi)QXi|YiUi(xi | yi, ui)

PXY (xi, yi)

)
(134)

= n

n∑
i=1

∑
(xi,yi,ui)∈
X×Y×Ui

1

n
QXiYiUi(xi, yi, ui)

· log

(
QYi(yi)QUi|Yi(ui | yi)QXi|YiUi(xi | yi, ui) 1

n

PXY (xi, yi)QUi|Yi(ui | yi) 1
n

)
(135)

(d)
= n

n∑
i=1

∑
(xi,yi,ui)∈
X×Y×Ui

Q̃(xi, yi, ui)

· log

(
Q̃(xi, yi, ui)

PXY (xi, yi)Q̃U |Y (ui | yi)

)
(136)

= n
∑

(x,y,u)∈
X×Y×(∪ni=1Ui)

Q̃(x, y, u)

· log

(
Q̃(x, y, u)

PXY (x, y)Q̃U |Y (u | y)

)
(137)

= nD(Q̃XY U‖PXY Q̃U |Y ), (138)

where (a) follows from the definition of the relative entropy
and the fact that Q×nY

∏n
i=1QXi|YiUiPM |Y nQUn|XnY nM is (a

factorization of) the (Xn, Y n,M,Un)-marginal of Q; in (b)
we have used that for nonnegative x and y, log(xy) = log(x)+
log(y), and we used QXiYiUi to denote the (Xi, Yi, Ui)-
marginal of Q; (c) holds because under Q, Y n ∼ IIDQY ; and
in (d) we have identified 1

nQXiYiUi as the (X,Y, U)-marginal
of Q̃.

We next show that, I(Q̃Y ;U )—the mutual information be-
tween Y and U under Q̃—is upper-bounded by R. To that end
first observe that by definition of Q̃ (in (114) and (115)) we
can express I(Q̃Y ;U ) as

I(Q̃Y ;U ) =
1

n

n∑
i=1

(
H(QYi)−H(QYi|Ui)

)
. (139)

Continuing from the RHS of (139) with all information-
theoretic quantities implicitly evaluated w.r.t. Q,

1

n

n∑
i=1

(
H(Yi)−H(Yi | Ui)

)
=

1

n

n∑
i=1

(
H(Yi)−H(Yi | Xi−1, Y i−1,M)

)
(140)

(a)
=

1

n

n∑
i=1

(
H(Yi)−H(Yi | Y i−1,M)

)
(141)

(b)
=

1

n

n∑
i=1

(
H(Yi | Y i−1)−H(Yi | Y i−1,M)

)
(142)

=
1

n

n∑
i=1

I(Yi;M | Y i−1) (143)

=
1

n
I(Y n;M) (144)

≤ 1

n
H(M) (145)

(c)
≤ R, (146)

where (a) holds because, under Q, Xi−1 → (Y i−1,M)→ Yi
(94); (b) holds because Y n is IID under Q; and (c) holds
because M can assume at most 2nR distinct values.

We now use (83), (121), (138), and (146) to derive the
converse part of Theorem 1 as stated in (82). Starting with
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(83), we use (121) and (138) to obtain

EPXnY n [Gn(Xn | fn(Y n))ρ]

≥ 2n(ρRd(Q̃X|U ,D)−D(Q̃XYU‖PXY Q̃U|Y )−δn), (147)

where the PMF Q̃ on the RHS of (147) is defined in (115).
Taking the logarithm and dividing by n on both sides,

1

n
log(E[Gn(Xn | fn(Y n)ρ])

≥ ρRd(Q̃X|U , D)−D(Q̃XY U‖PXY Q̃U |Y )− δn. (148)

Since the choice of QY and {QXi|YiUi}ni=1 in (93a) is
arbitrary, so is that of Q̃Y and Q̃X|Y U in the (X,Y, U)-
marginal Q̃XY U = Q̃Y Q̃U |Y Q̃X|Y U of Q̃ (115). We are
therefore at liberty to choose those so as to obtain the tightest
bound. Things are different with regard to Q̃U |Y , because
it is influenced by the helper fn, and we must ensure that
the bound is valid for all helpers. Ostensibly, we should
therefore consider the choice of Q̃U |Y that yields the loosest
bound. However, Q̃U |Y cannot be arbitrary: irrespective of our
choice of Q̃Y , the mutual information I(Q̃Y ;U ) must be upper
bounded by R (146).

These considerations allow us to infer from (148) that

1

n
log(E[Gn(Xn | fn(Y n)ρ])

≥ sup
Q̃Y

inf
QŨ|Y :

I(Q̃Y ;U )≤R

sup
Q̃X|Y U

(
ρRd(Q̃X|U , D)

−D(Q̃XY U‖PXY Q̃U |Y )
)
− δn, (149)

which, upon taking n to infinity, yields (82).

APPENDIX A

Below we present a proof of Lemma 1, namely that when
d(·, ·) is the Hamming distortion, then (17) is continuous in D
at D = 0. Throughout this section we use RH(·, D)—rather
than the generic Rd(·, D)—to denote the (conditional) R-D
function with maximal-allowed Hamming distortion D.

Since Expression (17) is monotonically decreasing in D,
and since the only term in that expression that depends on D
is RH(QX|U , D), it suffices to show that to every ε > 0 there
exists some positive δ̃(ε, |X |) such that(
D < δ̃(ε, |X |)

)
=⇒

(
RH(QX|U , D) > H(QX|U )− 2ε, ∀QXY U

)
. (150)

We emphasize that δ̃(ε, |X |) may not depend on QXY U .
To show this, recall that RH(QX , D) is a continuous

function of (QX , D) [21, Lemma 7.2]. Consequently, it is
uniformly continuous on the compact set P(X )× [0, 1], where
P(X ) is the set of PMFs on X , and 1 is the maximum value
of the Hamming distortion function. Given any ε > 0 there
thus exists some δ(ε, |X |) > 0 such that(
D < δ(ε, |X |)

)
=⇒

(
RH(QX , D) > H(QX)− ε, ∀QX ∈ P(X )

)
. (151)

Consider now any PMF QXU and the corresponding condi-
tional R-D function RH(QX|U , D). The latter is the infimum
of ∑

u

QU (u) RH(QX|U=u, Du) (152a)

over all distortion assignments u 7→ Du satisfying∑
u

QU (u)Du ≤ D. (152b)

For small Du we have, by (151),(
Du < δ(ε, |X |)

)
=⇒

(
RH(QX|U=u, Du) > H(QX|U=u)− ε

)
. (153a)

For larger values of Du we have the trivial bound

RH(QX|U=u, Du) > H(QX|U=u)− log |X |. (153b)

By breaking up the sum in (152a) into two, depending on
whether Du is small or not, we obtain from (153)∑

u

QU (u) RH(QX|U=u, Du)

≥ H(QX|U )− ε− log(|X |)
∑

u : Du≥δ(ε,|X |)

QU (u). (154)

The average expectation constraint (152b) and Markov’s
inequality imply that most of the weight is on u’s for which
Du is small ∑

u : Du≥δ(ε,|X |)

QU (u) ≤ D

δ(ε, |X |)
. (155)

This and (154) imply that∑
u

QU (u) RH(QX|U=u, Du)

≥ H(QX|U )− ε− log(|X |) D

δ(ε, |X |)
. (156)

Since this is true for every u 7→ Du satisfying (152b), we
conclude that

RH(QX|U , D) ≥ H(QX|U )− ε−D log |X |
δ(ε, |X |)

. (157)

In particular,(
D <

ε δ(ε, |X |)
log |X |

)
=⇒

(
RH(QX|U , D) ≥ H(QX|U )− 2ε

)
(158)

and we can set

δ̃(ε, |X |) =
ε δ(ε, |X |)

log |X |
. (159)
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APPENDIX B

Lemma 4: Given some PMF QX on a finite set X and some
rate R ≤ H(QX), there exists a chance variable U of finite
support and some conditional law QU |X such that the mutual
information I(QX;U ) between X and U , calculated w.r.t. the
law QX(x)QU |X(u|x) equals R

I(QX;U ) = R. (160)

Proof: Let U = (X̃, T ) take value in the finite set
X × {0, 1} and let the joint law of X and U be as follows:
T ∼ Bernoulli(ρ) independently of X (for some 0 ≤ ρ ≤ 1);
conditional on T = 0 the chance variables X and X̃ are IID;
and conditional on T = 1 they are identical. By the chain law

I(QX;U ) = I
(
(X̃, T );X) (161)

= I(X̃;X|T ) (162)
= Pr[T = 1] I(X̃;X|T = 1) (163)
= ρH(QX). (164)

The result now follows by choosing ρ as R/H(QX).

APPENDIX C

Lemma 5: Let X be a chance variable taking values in the
finite set X according to some PMF P , and let f be a bijection
from X to [1 : |X |]. Then, for X ∼ P ,

E[log(f(X))] ≥ H(X)− log(ln(|X |) + 3/2). (165)

Proof: Outcomes of zero probability contribute neither to
the LHS nor to the RHS of (165), and we therefore assume
w.l.g. that P (x) > 0 for every x ∈ X . We then have

E[log(f(X))] =
∑
x∈X

P (x) log(f(x)) (166)

=
∑
x∈X

P (x) log

(
f(x)P (x)

P (x)

)
(167)

= H(X) +
∑
x

P (x) log(f(x)P (x)) (168)

= H(X)−
∑
x

P (x) log

(
1

f(x)P (x)

)
(169)

(a)
≥ H(X)− log

(∑
x

1

f(x)

)
(170)

(b)
= H(X)− log

 |X |∑
i=1

1

i

 (171)

(c)
≥ H(X)− log(ln(|X |) + 3/2), (172)

where (a) follows from Jensen’s inequality; (b) holds because
f maps onto [1 : |X |]; and (c) holds because

∑n
i=1 1/i is

upper-bounded by ln(n) + 3/2.
Corollary 2: Let X be a finite set, and let f be a bijection

from Xn to [1 : |X |n]. Then, for any chance variable Xn on
Xn,

E[log(f(Xn))] ≥ H(Xn)− nδn, (173)

where δn = δn(|X |) and for every fixed |X |,

δn → 0. (174)

Proof: The corollary follows from Lemma 5 and the fact
that when |X | is fixed,

lim
n→∞

log(ln(|Xn|) + 3/2)

n
= 0. (175)

APPENDIX D

We prove that in the case of lossless guessing, namely when
d(·, ·) is the Hamming distortion and D = 0, restricting U
to take values in a set of cardinality |Y| + 1 does not alter
(17). To that end, we first recall that in the case of lossless
guessing, (17) simplifies to (43). We next express the objective
function in (43) as an expectation over U of a quantity
Ψ(QY |U=u, QX|Y U=u) that depends explicitly on QY |U=u,
QX|Y U=u and implicitly on the given joint PMF PXY and
the PMF QY (which is determined in the outer maximization).
Specifically,

ρH(QX|U )−D(QXY U‖PXYQU |Y )

=
∑
u∈U

QU (u) Ψ(QY |U=u, QX|Y U=u), (176a)

with

Ψ(QY |U=u, QX|Y U=u)

= ρH(QX|U=u) +H(QY )−H(QY |U=u)

−D(QY |U=uQX|Y,U=u‖PXY ) (176b)

where H(QX|U=u) is determined by QY |U=u and QX|Y U=u

via the relation

QX|U=u(x|u) =
∑
y∈Y

QY |U=u(y|u)QX|Y U=u(x|y, u). (177)

Indeed, (176) follow from

D(QXY U‖PXYQU |Y )

= EQXYU

[
log

(
QXY |U (XY | U)QU (U)

PXY (X,Y )QU |Y (U | Y )

)]
(178)

= −H(QU ) +H(QU |Y )

+ EQXYU

[
log

(
QXY |U (XY |U)

PXY (X,Y )

)]
(179)

= −H(QY ) +H(QY |U )

+ EQXYU

[
log

(
QXY |U (XY |U)

PXY (X,Y )

)]
(180)

= −H(QY ) +H(QY |U )

+ EQXYU

[
log

(
QY |U (Y | U)QX|Y U (X | Y U)

PXY (X,Y )

)]
(181)

= −
∑
u∈U

QU (u)

(
H(QY )−H(QY |U=u)

−
∑

(x,y)∈X×Y

QY |U=uQX|Y U=u(x|y, u)
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· log
QY |U (y | u)QX|Y U=u(x | y, u)

PXY (x, y)

)
. (182)

The representation (176) shows that the inner maximization
in (43) can be performed separately for every u. Defining

Ψ∗(QY |U=u) = max
QX|Y U=u

Ψ(QY |U=u, QX|Y U=u) (183)

we can express (43) as

sup
QY

inf
QU|Y :

I(QY ;U )≤R

∑
u∈U

QU (u) Ψ∗(QY |U=u). (184)

We next view the inner minimization above as being over all
pairs (QU , QY |U ) with the objective function being∑

u∈U
QU (u) Ψ∗(QY |U=u); (185)

with the constraint on the Y -marginal∑
u∈U

QU (u)QY |U (y|u) = QY (y), ∀y ∈ Y; (186)

and the constraint on the mutual information∑
u∈U

QU (u)H(QY |U=u) ≥ H(QY )−R. (187)

Since the objective function and constraints are linear in QU ,
it follows from Carathéodory’s theorem (for connected sets)
that the cardinality of U can be restricted to |Y|+ 1.
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