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Two variations on Wyner’s common information are proposed: conditional common information and
relevant common information. These are shown to have operational meanings analogous to those of
Wyner’s common information in appropriately defined distributed problems of compression, simulation
and channel synthesis. For relevant common information, an additional operational meaning is identified:
on a multiple-access channel with private and common messages, it is the minimal common-message
rate that enables communication at the maximum sum-rate under a weak coordination constraint on the
inputs and output. En route, the weak-coordination problem over a Gray-Wyner network is solved under
the no-excess-rate constraint.
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1. Introduction

Inspired by Wyner’s common information, which he introduced to quantify the information that is shared
by two chance variables [33], we propose two notions of shared information: conditional common
information and relevant common information.1 The former can be viewed as a conditional version of
Wyner’s common information, whereas the latter measures the amount of information that—in addition
to being shared by two chance variables—is also relevant to a third. In the simplest setting where the
chance variables T1 and T2 are tuples of the form

T1 = (X1, Y , A)

T2 = (X2, Y , A),

where X1, X2, Y , and (A, S) are independent, Wyner’s common information C(T1; T2) between T1 and
T2 is H(Y) + H(A) (where H(·) denotes entropy); the conditional common information C(T1; T2 | Y)

between T1 and T2 given Y is H(A); and the relevant common information C(T1; T2 → S) between T1
and T2 of relevance to S is I(A; S) (where I(·; ·) denotes mutual information).

1 These notions were first defined in [16], which contains a subset of the present results and proofs.
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2 R. GRACZYK ET AL.

The definitions of the different common informations apply, of course, to general chance variables
that are not necessarily tuples of this form. Indeed, Wyner [33] defined the common information
C(T1; T2) between two discrete chance variables T1 and T2 of joint probability mass function (PMF)
QT1T2

as

C(T1; T2) � min
W : T1→W→T2

I(T1, T2; W), (1.1)

where the minimization is over all auxiliary chance variables W satisfying T1 → W → T2, i.e.,
conditionally on which T1 and T2 are independent. (Throughout this paper we write X → Y → Z
to indicate that X and Z are conditionally independent given Y .) When the alphabets T1 and T2 in which
T1 and T2 take values are finite, W can be restricted to take values in a finite set of cardinality |T1||T2|
[33]. Strictly speaking, C(T1; T2) is not a function of the chance variables but of their joint distribution.
Nevertheless, following common practice in Information Theory, it is denoted C(T1; T2) as though it
were.

Now known as Wyner’s common information, C(T1; T2) was shown by Wyner to have two
operational meanings. The first is related to a source-encoding network—the Gray-Wyner network—
which was studied by Gray and Wyner [12] and which is similar to the one depicted in Fig. 1 but
without Yn. In this network an encoder is presented with an n-length sequence of tuples {(T1,i, T2,i)}
that are independent and identically distributed (IID) according to some given joint distribution QT1T2

.
The encoder produces three descriptions of the sequence: a rate-R1 description, which is provided to
Decoder 1 whose task is to reproduce Tn

1 ; a rate-R2 description, which is presented to Decoder 2 whose
task is to reproduce Tn

2 ; and a rate-R0 description, which is presented to both. (We use An to denote the
n-length sequence A1, . . . , An.) The common information C(T1; T2) indicates the smallest common rate
R0 that is required to achieve (almost) lossless compression by both decoders under the no-excess-rate
condition that the sum R0 + R1 + R2 be at its minimum, i.e., at H(T1, T2).

The second operational meaning Wyner provided is related to the simulation of n-length sequences
Tn

1 and Tn
2 in a setting similar to the one in Fig. 2 but without Yn. Here the common randomness J is

used in order to ensure that the joint distribution of {(T1,i, T2,i)}n
i=1 resembles Q⊗n

T1T2
, where the latter

denotes the n-fold product of QT1T2
. (Wyner used the normalized Kullback-Leibler (KL) divergence,

a.k.a. relative entropy, to measure the resemblance, but similar results hold under Total Variation [7, 13,
35] or Rényi divergence [37, 38].)

The conditional common information C(T1; T2 | Y) that we define in Definition 1 ahead extends
Wyner’s by accounting for the side-information sequence Yn in Figs 1 and 2. For the relevant common
information the corresponding figures are Figs 4 and 6. They correspond to source-driven weak
coordination and to remote simulation over a multiple-access channel (MAC).

Over the years, additional operational meanings for Wyner’s common information were presented.
Cuff [7] considered a distributed channel synthesis network similar to the one depicted in Fig. 3 but
without Yn. Here we are presented with a sequence Tn

1 ∼ Q⊗n
T1

, and we wish to simulate the result
of feeding it to a discrete memoryless channel (DMC) whose law is the conditional distribution of T2
given T1. Aiding us in this task is the equiprobably drawn rate-RK common randomness K. The common
randomness and the sequence Tn

1 are mapped to a codeword in a communication codebook of rate R.
Based on this codeword and the common randomness, a sequence Tn

2 is generated, and it is required that
the distribution of the sequence {(T1,i, T2,i)} resemble Q⊗n

T1T2
. In this setting C(T1; T2) is the minimum of

the sum Rk + R that makes this possible. A similar result holds for the conditional common information
in the presence of Yn (Corollary 2.3 ahead).
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CONDITIONAL AND RELEVANT COMMON INFORMATION 3

Wyner’s common information has found applications, inter alia, in problems pertaining to distributed
secret key generation [28] and to the nonnegative rank of matrices [3], [2]. Other operational meanings
to Wyner’s common information, related to caching problems, were presented in [18, 19, 26, 30]. For
example, [18, 19, 26] consider a two-phase caching scenario with a single transmitter observing IID
tuples {(T1,i, T2,i)} and a single receiver wishing to learn either the sequence Tn

1 or Tn
2 (but not both).

Prior to being revealed which, the transmitter uses the first phase, the placement phase, to map (prefetch)
{(T1,i, T2,i)} to a rate-C message, which is placed in the receiver’s cache memory. In the second phase,
the delivery phase, the receiver reveals to the transmitter which of the two sequences it seeks. The
transmitter—knowing the message it placed in the receiver’s cache and now also which sequence the
receiver seeks—completes the delivery phase by sending the receiver a message that enables the receiver
to losslessly reconstruct the desired sequence. This message is of rate R1, if the desired sequence is Tn

1 ,
and of rate R2 if it is Tn

2 . Success must be guaranteed irrespective of which of the two sequences the
receiver desires. The common information C(T1; T2) is the smallest ‘cache capacity’ C for which success
can be guaranteed with delivery-phase rates R1 and R2 satisfying R1 + R2 + C = H(T1, T2). (The rate-
sum R1 + R2 + C must be at least H(T1, T2) because, with the aid of the rate-C cache message in the
placement phase and of the two possible rate R1 and R2 messages in the delivery-phase, the receiver can
reconstruct both Tn

1 and Tn
2 .)

1.1 Other Extensions of Wyner’s Common Information

Wyner’s common information was extended in a number of directions. Liu et al. [17] proposed an
extension that measures the information that is common to more than two, say N, chance variables
and that maintains Wyner’s operational meanings. This extension also maintains the channel synthesis
meaning (for an (N−1)-receivers broadcast channel) [7] and the caching meaning (for an N-files single-
user caching system) [26].

A different direction was followed by Sula and Gastpar [23, 24] who defined relaxed common
information. It is parameterized by γ ≥ 0 and is defined as

Cγ (T1; T2) � min
W : I(T1;T2|W)≤γ

I(T1; T2). (1.2)

When γ is zero, the constraint in the minimization reduces to the constraint T1 → W → T2, and
C0(T1; T2) reduces to Wyner’s common information C(T1; T2).

A lossy version of Wyner’s common information, the lossy common information, was introduced
independently in [29] and [36]. Given a pair of distortion functions d1(·, ·), d2(·, ·) and maximum
allowed expected distortions D1, D2, it is defined as

CD1,D2
(T1; T2) � min

W,T̂1,T̂2 : T̂1→W→T̂2
W→(T̂1,T̂2)→(T1,T2)

E[d1(T1,T̂1)]≤D1

E[d2(T2,T̂2)]≤D2

I(T̂1, T̂2; W). (1.3)

It reduces to Wyner’s common information when the distortion functions are Hamming distortions and
D1 = D2 = 0. It too is related to Gray-Wyner networks: it is the smallest common rate R0 required in
a Gray-Wyner lossy source coding problem when the two decoders have to reconstruct the two source
components to within distortions D1 and D2 under the no-excess-rate condition that the sum-rate R0 +
R1 + R2 is at its minimum, i.e., coincides with the joint rate-distortion function for the two sources
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4 R. GRACZYK ET AL.

[29, 36]. It has an operational meaning similar to Wyner’s common information in single-user caching
systems where the user is content with a lossy version of the file it seeks [26]. A relaxed version of lossy
common information, relaxed lossy common information, was proposed in [23].

The Gray-Wyner source-coding network, which motivated Wyner’s definition of common informa-
tion also serves as the motivation for the recently defined Rényi common information [11]. The key is to
replace the almost-lossless recovery criterion with the requirement that the ρ-th moment of the number
of guesses needed by the decoders to guess the source sequence be exponentially small.

Other notions of common information have been proposed and used in the past. A measure of
a more combinatorial nature than Wyner’s is the Gács-Körner common information K(T1; T2) [10],
which characterizes the largest normalized entropy of the random variables that can be agreed upon by
terminals that observe Tn

1 and Tn
2 , respectively, when {(T1,i, Ti,2)} ∼ Q⊗n

T1T2
. This quantity—which is zero

unless T1 = (X1, A) and T2 = (X2, A) with H(A) positive [10], [31]—never exceeds Wyner’s common
information, and

K(T1; T2) ≤ I(T1; T2) ≤ C(T1; T2). (1.4)

1.2 Organization and Sneak Preview

The conditional common information C(T1; T2 | Y) is defined in Section 2. After studying some of its
basic properties, we provide three operational meanings for it in Sections 2.1 through 2.3:

1. In the Gray-Wyner source-coding network with side information of Fig. 1, C(T1; T2 | Y) is
the smallest common rate R0 that allows the two decoders to reproduce the individual source
sequences (almost) losslessly when the encoder and both decoders observe the side information
(SI) sequence Yn, and R0 + R1 + R2 must not exceed H(T1, T2 | Y) (Corollary 2.3).

2. In the simulation problem with side information of Fig. 2, C(T1; T2 | Y) is the smallest
randomness rate allowing the two simulators to produce sequences Tn

1 , Tn
2 that, together with

Yn, have a joint distribution that closely resembles Q⊗n
T1T2Y (Theorem 2.7).

3. In the distributed channel synthesis problem with side information of Fig. 3, where (Tn
1 , Yn) ∼

Q⊗n
T1Y , it corresponds to the smallest sum RK + R of the common randomness rate RK and the

communication rate R that allows the decoder to produce a sequence Tn
2 that, together with

(Tn
1 , Yn), has a joint distribution that closely resembles Q⊗n

T1T2Y (Corollary 2.3).

The relevant common information C(T1; T2 → S) is defined in Section 3. After studying some of its
basic properties, we provide the following operational meanings in Sections 3.1 through 3.3. Section 3.4
addresses a problem (depicted in Fig. 8) to which the relevant common information is often the answer,
but not always.

1. In the Gray-Wyner network of Fig. 4 with Sn ∼ Q⊗n
S , the quantity C(T1; T2 → S) is the minimal

common rate R0 that allows encoders of no excess-rate—i.e., of rates satisfying the condition that
R0 + R1 + R2 equals I(T1, T2; S) (with the latter computed w.r.t. QT1T2S)—to produce sequences
Tn

1 and Tn
2 that are weakly coordinated with Sn in the sense that their joint empirical distribution

with Sn approaches QT1T2S in probability as n → ∞ (Corollary 2.2).2

2 We often use the adjective ‘weakly’ to indicate that the requirement is related to the empirical distribution of sequences. We
use ‘strongly’ when the requirement is that the distribution of n-length sequences be close to some product distribution.
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CONDITIONAL AND RELEVANT COMMON INFORMATION 5

2. On the discrete memoryless multiple-access channel (MAC) of inputs T1, T2 and output S
depicted in Fig. 5, C(T1; T2 → S) is the smallest common rate required to reliably transmit
common and private messages, when the joint empirical distribution of the inputs and output
must be approximately QT1T2S, where the conditional law of S given (T1, T2) under the latter is
the channel law (Corollary 3.2).

3. In the network of Fig. 6, where the input sequences Tn
1 and Tn

2 to the MAC must result in its output
sequence Sn being approximately Q⊗n

S distributed, the least required rate of common randomness
is the minimum of C(T1; T2 → S) over all joint PMFs whose S-marginal is QS and under which
the conditional distribution of S given (T1, T2) coincides with the MAC’s law (Theorem 3.9).

The theorem behind the first operational meaning of relevant common information (Item 1. above)
solves the Gray-Wyner weak coordination problem under the no-excess-rate condition. It generalizes
Ahlswede’s result on the rate-distortion region for multiple descriptions without excess rate [1], and
Ahlswede’s techniques are used heavily in the converse part of its proof in Section 4. Many of the other
proofs are provided in appendices.

1.3 Notation and Conventions

Unless otherwise specified, all the sets in this paper are finite, and all the chance variables take values
in finite sets. Chance variables are typically denoted using upper-case letters such as X, and their
realizations using lower-case letters such as x. Sets are typically denoted using the calligraphic font
as in X , and the random variable X usually takes value in the set X . The cardinality of the set X is
denoted |X |. The family of PMFs on the set X is denoted P(X). We write X ∼ P to indicate that
X is distributed according to P ∈ P(X). In this vein, X ∼ Unif(X ) indicates that X is equiprobably
distributed over X , and X ∼ Ber(p) indicates that X has a Bernoulli-p distribution, i.e., takes on the
values 1 and 0 with probabilities p and 1 − p. If X and Y are independent, we write X⊥⊥Y . Expectations
are denoted E[·] or EA[·], with the latter indicating that the expectation is over the chance variable A.

We use [1 : n] to denote the set {1, . . . , n}, and 11{·} for the indicator function that equals 1 if the
argument is true and 0 otherwise. The joint PMF of an n-tuple (X1, . . . , Xn) is denoted PXn , and, for
k ∈ [1 : n], we write Xk for X1, . . . , Xk and Xn

k for Xk, . . . , Xn. The n-fold product distribution of Q is
denoted Q⊗n: if X1, . . . , Xn are IID according to Q ∈ P(X), then PXn = Q⊗n.

The entropy of a chance variable X of PMF Q is denoted H(X), H(Q) or HQ(X). The mutual
information between X and Y is denoted I(X; Y), and the conditional mutual information between X
and Y given a third chance variable Z is denoted I(X; Y | Z). All entropies and mutual informations in
this paper are in nats and all logarithms natural.

The empirical distribution of a sequence xn ∈ X n is denoted πxn . It is a PMF in P(X ) with πxn(a)

being the frequency of occurrence of the symbol a ∈ X in the sequence xn. If Xn is a random sequence,
then πXn is a chance variable taking values in P(X ).

1.4 Total Variation Distance

To measure the distance between two PMFs P, Q ∈ P(X ), we use the Total Variation distance

dTV (P; Q) = 1

2

∑
x∈X

|P(x) − Q(x)| = 1

2
‖P − Q‖1, (1.5)

where ‖ · ‖1 denotes the L1-norm.
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6 R. GRACZYK ET AL.

Information measures such as entropy, mutual information, and conditional mutual information
are continuous with respect to (w.r.t.) the Total Variation metric. Consequently, since conditional
independence can be expressed in terms of conditional mutual information, the following holds:

Proposition 1.1 (Preservation of Markovity). Let {P(n)
XYZ} be a sequence of PMFs on X ×Y ×Z under

each of which X → Y → Z. If the sequence converges in Total Variation to PXYZ , then X → Y → Z
must also form a Markov chain under PXYZ .

The Triangle inequality for the L1-norm implies that the distance between two PMFs upper-bounds
the distance between the corresponding marginals:

Proposition 1.2 (Total Variation Distance between Marginals). Let PXY and QXY be two joint
distributions on X × Y of X-marginals PX and QX . Then,

dTV

(
PX; QX

) ≤ dTV

(
PXY ; QXY

)
. (1.6)

Corollary 1.1 (Convergence of the Marginals). If {P(n)
XY} ⊂ P(X ×Y) converges in Total Variation to

PXY , then the X-marginals of P(n)
XY converge in Total Variation to the X-marginal of PXY .

The following result on Total Variation and DMCs follows directly from (1.5):

Proposition 1.3 (Total Variation Distance and DMCs). Let PXY have the form PX(x) w(y | x), where PX
is the X-marginal of PXY and w(y | x) is a channel law. Likewise, let QXY have the form QX(x) w(y | x).
Then,

dTV

(
PXY ; QXY

) = dTV

(
PX ; QX

)
. (1.7)

Corollary 1.2 (Converging Sequence of Joint Input-Output PMFs). If each of the elements of a
sequence {P(n)

XY} ⊂ P(X × Y) converging to PXY has the form P(n)
X (x) w(y | x), then so does the limit:

PXY(x, y) = PX(x) w(y | x), where PX is the X-marginal of PXY .

Remark 1.1 Proposition 1.2 and Proposition 1.3 imply a Data Processing inequality for Total
Variation: the Total Variation between two input distributions to a channel upper-bounds the distance
between the corresponding output distributions.

The following bounds on the Total Variation distance follow from its coupling characterization.

Proposition 1.4 (Total Variation Distance between Product PMFs). The Total Variation distance
between two product measures is upper-bounded by the sum of the Total Variation distances between
their components

dTV

(
P1 × · · · × Pm; Q1 × · · · × Qm

) ≤
m∑

k=1

dTV

(
Pk; Qk

)
. (1.8)

Proposition 1.5 (Total Variation Distance and Random Indices). Let Xn and Yn have PMFs PXn and
PYn , and let U take values in [1 : n] independently of (Xn, Yn). Let PXU

and PYU
be the PMFs of XU and
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CONDITIONAL AND RELEVANT COMMON INFORMATION 7

YU . Then,

dTV

(
PXU

; PYU

) ≤ dTV

(
PXn ; PYn

)
. (1.9)

2. Conditional Common Information

Definition 2.1 (Conditional Common Information). Given a triple of chance variables (T1, T2, Y) of
some joint PMF PT1T2Y ∈ P(T1 × T2 × Y), the conditional common information between T1 and T2
given Y is

C(T1; T2 | Y) � min
W : T1→(W,Y)→T2

I(T1, T2; W | Y), (2.1)

where the minimization is over all finite sets W , all joint PMFs PT1T2YW ∈ P(T1 × T2 × Y × W)

whose (T1, T2, Y)-marginal is the given PT1T2Y and under which T1 → (W, Y) → T2, and where the
conditional mutual information is calculated w.r.t. PT1T2YW .

Denoting the Y-marginal of PT1T2Y by PY , we can express the minimum as being over all joint PMFs
of the form

PY(y) PW|Y(w | y) PT1|W,Y(t1 | w, y) PT2|W,Y(t2 | w, y).

For each Y = y it thus entails a minimization over PW|Y=y, PT1|W,Y=y and PT2|W,Y=y. This can be used
to represent C(T1; T2 | Y) as the expectation over Y of C(T1; T2 | Y = y):

Proposition 2.2 The conditional common information C(T1; T2 | Y) can be expressed as

C(T1; T2 | Y) =
∑
y∈Y

PY(y) C(T1; T2 | Y = y), (2.2)

where C(T1; T2 | Y = y) is Wyner’s common information between T1 and T2 when their joint
distribution is PT1T2|Y=y.

Proof. By the definition of conditional mutual information, and using T1 → (W, Y = y) → T2 to
indicate that T1 and T2 are conditionally independent given W and the event {Y = y},

C(T1; T2 | Y) = min
PW|Y=y,PT1|W,Y=y,PT2|W,Y=y

∑
y∈Y

PY(y)I(T1, T2; W | Y = y) (2.3)

=
∑
y∈Y

PY(y) min
W : T1→(W,Y=y)→T2

I(T1, T2; W | Y = y) (2.4)

=
∑
y∈Y

PY(y)C(T1; T2 | Y = y). (2.5)

�
The auxiliary chance variable in the optimization defining Wyner’s common information can be

restricted to take values in a set of cardinality |T1||T2| [33], and the optimization defining the conditional
common information can be broken up into |Y| separate such optimizations (2.2). Hence,
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8 R. GRACZYK ET AL.

Corollary 2.1 The auxiliary chance variable W in the definition of the conditional common
information C(T1; T2 | Y) may be restricted to take values in a set of cardinality |T1||T2|.

Using (2.2) and known properties of Wyner’s common information such as (1.4), we obtain:

Remark 2.1

1. If T1 and T2 are conditionally independent given Y , then C(T1; T2 | Y) is zero.

2. Conditional common information is no smaller than conditional mutual information:

C(T1; T2 | Y) ≥ I(T1; T2 | Y). (2.6)

3. If Y is independent of the pair (T1, T2), then conditional common information reduces to Wyner’s
common information:

C(T1; T2 | Y) = C(T1; T2), Y⊥⊥(T1, T2). (2.7)

4. Conditional common information is continuous in the joint distribution PT1T2Y w.r.t. the Total
Variation topology. (c.f. [32, Theorem 1 (v)]).

Example 2.3 (C(T1; T2) can exceed C(T1; T2 | Y). Suppose T1 = (A1, Y) and T2 = (A2, Y), with the
tuple (A1, A2) being independent of Y . Using (2.2), we obtain that

C(T1; T2 | Y) = C(A1; A2) (2.8)

but, as we next argue,

C(T1; T2) = H(Y) + C(A1; A2). (2.9)

Indeed, since Y is a component of both T1 and T2, the Markov condition T1 → W → T2 implies that Y
is conditionally deterministic given W. Consequently, whenever T1 → W → T2

I(T1, T2; W) = I(T1, T2; W, Y) (2.10)

= I(T1, T2; Y) + I(T1, T2; W | Y) (2.11)

= H(Y) + H(A1, A2) − H(A1, A2 | W, Y) (2.12)

= H(Y) + I(A1, A2; W) (2.13)

≥ H(Y) + C(A1; A2), (2.14)

where the second equality holds by the chain rule for mutual information; the third by the independence
between (A1, A2) and Y; the fourth because Y is determined by W; and the last inequality holds because
T1 → W → T2 implies A1 → W → A2. Minimizing over the choice of W (subject to the Markov
condition) establishes that C(T1; T2) ≥ H(Y) + C(A1; A2). Equality is established by considering W =
(W̃, Y) with W̃ achieving C(A1; A2).
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CONDITIONAL AND RELEVANT COMMON INFORMATION 9

Example 2.4 (C(T1; T2 | Y) can exceed C(T1; T2)). Let T1 and T2 be IID ∼ Ber(1/2), so

C(T1; T2) = 0, (2.15)

and let Y = T1 ⊕ T2 be their mod-2 sum (exclusive or). Conditional on Y = y, the random variables T1
and T2 determine each other, so C(T1; T2 | Y = y) = H(T1 | Y = y) = H(T1) = log 2. Thus,

C(T1; T2 | Y) = log 2. (2.16)

Remark 2.2 Our definition of conditional common information (2.1) is reminiscent of that of Braun
and Pokutta [3, Definition 3.1], [2] who defined it as

CBP(T1; T2 | Y) � min
W : T1→W→T2

W→(T1,T2)→Y

I(T1, T2; W | Y). (2.17)

As the following example shows, the two definitions are not equivalent. In fact—unlike C(T1; T2 | Y)—
CBP(T1; T2 | Y) is zero whenever T1 and T2 are independent.

Example 2.5 (C(T1; T2 | Y) and CBP(T1; T2 | Y) may differ). In the setting of Example 2.4 above,

CBP(T1; T2 | Y) = 0 (2.18)

because CBP(T1; T2 | Y) is always nonnegative and because, since T1 and T2 are independent, a
deterministic W satisfies the two constraints in (2.17). Comparing (2.16) with (2.18), we conclude that
the two notions of conditional common information differ.

In the following subsections we present three different operational meanings of conditional common
information. When the SI {Yi} is absent or deterministic, they reduce to the known operational inter-
pretations of common information: the Gray-Wyner source coding and the simulation interpretations
presented in Wyner’s original paper [33] and the channel synthesis interpretation presented by Cuff [7].

2.1 Source-Coding Interpretation

The first interpretation is related to (almost) lossless source coding over the Gray-Wyner network
with side information of Fig. 1. Here a sequence of source and SI triples {(T1,i, T2,i, Yi)} is drawn IID
according to some given joint PMF QT1T2Y ∈ P(T1 × T2 × Y).

For a given blocklength n, the encoder φ
(n)
SI observes all three sequences Tn

1 , Tn
2 , Yn and produces the

index tuple (J0, J1, J2) ∈ J0,n × J1,n × J2,n so

(J0, J1, J2) = φ
(n)
SI (Tn

1 , Tn
2 , Yn), (2.19)

where

φ
(n)
SI : T n

1 × T n
2 × Yn → J0,n × J1,n × J2,n (2.20)

is the encoding function, and J0,n, J1,n and J2,n are the (nonempty) index sets.
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10 R. GRACZYK ET AL.

Fig. 1. Lossless Gray-Wyner source coding with side information Yn.

Indices J0 and J1 are fed to Decoder 1 and Indices J0 and J2 to Decoder 2. The two decoders also
observe the side information Yn and produce the reconstruction sequences

T̂n
1 = ψ

(n)
SI,1(J0, J1, Yn) (2.21)

T̂n
2 = ψ

(n)
SI,2(J0, J2, Yn), (2.22)

where ψ
(n)
SI,1 and ψ

(n)
SI,2 are their corresponding decoding functions.

A rate-triple (R0, R1, R2) is said to be achievable on the Gray-Wyner network with SI if, for each

blocklength n, there exist index sets J0,n, J1,n and J2,n; an encoding function φ
(n)
SI as in (2.20); and

decoding functions ψ
(n)
SI,1 and ψ

(n)
SI,2 such that:

lim
n→∞ Pr

(
(Tn

1 , Tn
2 ) = (T̂n

1 , T̂n
2 )

) = 0 (2.23)

and

lim
n→∞

1

n
log |Jκ ,n| ≤ Rκ , κ ∈ {0, 1, 2}. (2.24)

By the classical (single-user) Source Coding theorem,
(
H(T1, T2 | Y), 0, 0

)
is achievable, and every

achievable tuple must satisfy

R0 + R1 + R2 ≥ H(T1, T2 | Y).

A tuple that is achievable and also satisfies this condition with equality, i.e., for which

R0 + R1 + R2 = H(T1, T2 | Y), (2.25)

is said to be a no-excess-rate tuple.
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CONDITIONAL AND RELEVANT COMMON INFORMATION 11

The achievable rate-triples in the absence of SI were characterized in [12] and in its presence in [25,
Thm. 1 and Rem. 2):

Theorem 2.6 (Gray-Wyner Network with Side Information [25]). Given a PMF QT1T2Y , a rate-tuple
(R0, R1, R2) is achievable on the Gray-Wyner network with SI if and only if there exists an auxiliary
chance variable W and a joint PMF QT1T2YW of (T1T2Y)-marginal equal to the given QT1T2Y such that

R0 ≥ I(W; T1, T2 | Y) (2.26a)

R1 ≥ H(T1 | W, Y) (2.26b)

R2 ≥ H(T2 | W, Y). (2.26c)

The following corollary characterizes C(T1; T2 | Y) as the minimal common rate R0 enabling no-
excess-rate encoding:

Corollary 2.2 A necessary condition for (R0, R1, R2) to be a no-excess-rate tuple is

R0 ≥ C(T1; T2 | Y). (2.27)

Conversely, to each R0 satisfying (2.27) there correspond private rates R1, R2 for which (R0, R1, R2) is a
no-excess-rate tuple.

Proof of Corollary. Expressing the mutual information in (2.26a) as H(T1, T2 | Y) − H(T1, T2 | Y , W)

and summing the three inequalities establishes that every achievable rate tuple must satisfy

R0 + R1 + R2 ≥ H(T1, T2 | Y) − H(T1, T2 | Y , W) + H(T1 | W, Y) + H(T2 | W, Y). (2.28)

For a no-excess-rate tuple the left-hand side (LHS) of (2.28) equals H(T1, T2 | Y) (see (2.25)), so for
such a rate tuple (2.28) implies

H(T1, T2 | Y , W) ≥ H(T1 | W, Y) + H(T2 | W, Y).

This inequality cannot hold strictly (because the joint entropy never exceeds the sum of the entropies),
and it can therefore be replaced with equality. It is thus equivalent to the Markov condition appearing in
the minimization defining C(T1; T2 | Y) (2.1). The expression being minimized in (2.1) is identical to
the right-hand side (RHS) of (2.26a), so (2.27) must hold.

The corollary’s second claim follows by choosing W as the auxiliary that achieves C(T1; T2 | Y) and
setting the rates so that all the inequalities in (2.26) hold with equality. �

2.2 Simulation Interpretation

The second interpretation is related to the following strong coordination problem. Consider the network
in Fig. 2, where we refer to the sequence {Yi} as side information.
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12 R. GRACZYK ET AL.

Fig. 2. A simulation problem with side information. We require that dTV

(
PTn

1 Tn
2 Yn ; Q⊗n

T1T2Y

)
approach 0.

We say that a joint distribution QT1T2Y ∈ P(T1 × T2 × Y) can be strongly coordinated with rate R
and SI Y if, for each blocklength n, there exist a nonempty index set Jn satisfying

lim
n→∞

1

n
log |Jn| ≤ R (2.29)

and independent random mappings

�
(n)
SI,1 : Jn × Yn → T n

1 (2.30)

and

�
(n)
SI,2 : Jn × Yn → T n

2 (2.31)

such that when Yn ∼ Q⊗n
Y and J ∼ Unif(Jn) are independent (and independent of the random mappings

�
(n)
SI,1, �

(n)
SI,2) the PMF PTn

1 Tn
2 Yn of the sequences Tn

1 , Tn
2 and Yn, where the former two are defined by

Tn
1 = �

(n)
SI,1(J, Yn) (2.32)

Tn
2 = �

(n)
SI,2(J, Yn), (2.33)

is close to the n-fold product distribution Q⊗n
T1T2Y in the sense that

lim
n→∞dTV

(
PTn

1 Tn
2 Yn ; Q⊗n

T1T2Y

)
= 0. (2.34)
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CONDITIONAL AND RELEVANT COMMON INFORMATION 13

Note that the Yn-marginal of both PTn
1 Tn

2 Yn and Q⊗n
T1T2Y is Q⊗n

Y , so

dTV

(
PTn

1 Tn
2 Yn ; Q⊗n

T1T2Y

)

=
∑
yn

Q⊗n
Y (yn)dTV

(
PTn

1 Tn
2 |Yn=yn ; Q⊗n

Tn
1 Tn

2 |Yn=yn

)
, (2.35)

where Q⊗n
Tn

1 Tn
2 |Yn=yn is the conditional distribution of (Tn

1 , Tn
2 ) given Yn = yn under Q⊗n

T1T2Y ,

Q⊗n
Tn

1 Tn
2 |Yn=yn(t

n
1, tn2) =

n∏
i=1

QT1T2|Y=yi
(t1,i, t2,i). (2.36)

This setup, but without SI, was introduced by Wyner [33], but using the normalized KL-
divergence instead of the Total Variation distance in (2.34). Under this KL-divergence constraint, Wyner
characterized the set of all PMFs QT1T2

that can be strongly coordinated with rate R. From related work
[7, 13, 35], it is not difficult to see that Wyner’s result continues to hold under the Total Variation
distance constraint in (2.34). In fact, in a sense made precise in [7, p. 7076, Eq. (30)], the exponential
decay of the normalized KL-divergence is often similar to that of the Total Variation distance.

Theorem 2.7 The joint PMF QT1T2Y can be strongly coordinated with rate R and SI Y if and only if

R ≥ C(T1; T2 | Y), (2.37)

where the RHS is calculated w.r.t. the joint PMF QT1T2Y .

Proof. The converse is proved in Appendix A. Here we prove achievability using Wyner’s result (under
the Total Variation criterion).

Let πyn denote the empirical distribution of yn ∈ Yn, so n πyn(y) is the number of occurrences of
y ∈ Y in the sequence yn ∈ Yn. Given some ε > 0, we say that yn is typical if πyn(y) is zero whenever
QY(y) is zero, and

|πyn(y) − QY(y)| < ε, ∀y ∈ Y . (2.38)

The manner in which the simulations of (T1,i, T2,i) are produced depends on whether yn is typical or
not. If not, then Simulator 1 produces its sequence IID ∼ QT1

and Simulator 2 IID ∼ QT2
. For such yn

sequences,

dTV

(
PTn

1 Tn
2 |Yn=yn ; Q⊗n

Tn
1 Tn

2 |Yn=yn

)
(2.39)

grows linearly in n, but the probability of their occurrence decays exponentially in n, so their contribution
to (2.35) vanishes with n.

We therefore focus on the typical yn sequences. To address those, we construct a family of Wyner
simulators indexed by the SI alphabet Y , with the Wyner simulator indexed by y, ‘the y-th Wyner
simulator,’ designed for the joint distribution QT1,T2|Y=y and required to achieve Total Variation distance
smaller than ε/|Y|. The system produces the tuple it reads off from the y-th Wyner simulator whenever
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14 R. GRACZYK ET AL.

the side information Y equals y. This guarantees that the Total Variation distance in (2.39) be smaller
than ε, because the Total Variation distance between product distributions is upper-bounded by the sum
of the Total Variation distances between their respective components (Proposition 1.4).

As the y-th Wyner simulator is used nπyn(y) times, and since the latter is smaller than n(QY(y) +
ε), the y-th Wyner simulator can be implemented to produce nπyn(y) tuples with Total Variation
distance smaller than ε/|Y| (for sufficiently large n) with a chance variable Jy that takes on at most

en(QY (y)+ε)(C(T1;T2|Y=y)+δ) values (where δ > 0 can be arbitrarily small). Using independent such Jy’s
for the different Wyner simulators, we can perform the overall simulation with a chance variable J that
is equiprobably distributed over a set of size

∏
y∈Y

en(QY (y)+ε)(C(T1;T2|Y=y)+δ) = en(C(T1;T2|Y)+δ̃(ε,δ)),

where δ̃(ε, δ) tends to zero as its arguments tend to zero. �

2.3 Distributed Channel Synthesis Interpretation

The third interpretation is related to Cuff’s distributed channel synthesis problem [7]. Consider the
network in Fig. 3, where tuples {(T1,i, Yi)} of source and SI symbols are drawn IID according to some
PMF QT1Y ∈ P(T1 × Y). The goal is for the decoder to produce a sequence {T2,i} whose joint
PMF PTn

1 Tn
2 Yn with {(T1,i, Yi)} closely resembles the product distribution Q⊗n

T1T2Y , where QT1T2Y lies in
P(T1 ×T2 ×Y) and is some target PMF having as its (T1Y)-marginal the PMF QT1Y according to which
{(T1,i, Yi)} are generated.

To achieve this goal, the encoder and decoder share a common randomness K, and the encoder can
also convey to the decoder some random index J (that depends on Tn

1 and Yn). The decoder then produces
the sequence Tn

2 based on K, J and the SI Yn. For a given blocklength n, the common randomness K is
drawn equiprobably from some set JK,n independently of the source and SI sequences (Tn

1 , Yn), and the
index J takes values in some set Jn.

Fig. 3. Distributed channel synthesis with side information. The joint PMF PTn
1 Tn

2 Yn of {T2,i} with {(T1,i, Yi)} should closely

resemble Q⊗n
T1T2Y .

We say that a joint PMF QT1T2Y can be channel-synthesized with SI Y at communication rate R and
common randomness rate RK if, for each blocklength n, there exist nonempty sets Jn and JK,n satisfying

lim
n→∞

1

n
log |Jn| ≤ R (2.40)
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CONDITIONAL AND RELEVANT COMMON INFORMATION 15

and

lim
n→∞

1

n
log |JK,n| ≤ RK (2.41)

and independent random mappings

F(n)
SI : T n

1 × JK,n × Yn → Jn (2.42)

and

G(n)
SI : Jn × JK,n × Yn → T n

2 (2.43)

(that are independent of (Tn
1 , Yn, K)) such that when the tuples {(T1,i, Yi)} are drawn IID ∼ QT1Y and the

sequence Tn
2 is produced as

Tn
2 = G(n)

SI

(
F(n)

SI

(
Tn

1 , K, Yn), K, Yn) (2.44)

the resulting joint PMF PTn
1 Tn

2 Yn of (Tn
1 , Tn

2 , Yn) satisfies

lim
n→∞dTV

(
PTn

1 Tn
2 Yn ; Q⊗n

T1T2Y

)
= 0. (2.45)

In the absence of SI, the set of PMFs QT1T2
that can be strongly coordinated with rates (R, RK) was

characterized in [7]. The following theorem extends this result to the setup with SI.

Theorem 2.8 A joint PMF QT1T2Y can be channel-synthesized with SI Y at communication rate R and
common randomness rate RK if and only if it is the marginal of some joint PMF QT1T2YW under which

T1 → (W, Y) → T2 (2.46)

and

R ≥ I(W; T1 | Y) (2.47a)

R + RK ≥ I(W; T1, T2 | Y), (2.47b)

where the mutual informations are computed w.r.t. QT1T2YW .

Proof. Achievability follows from Cuff’s result [7] in much the same way that the achievability part in
the proof of Theorem 2.7 followed from Wyner’s work. It is therefore omitted. The ‘only-if’ direction
(converse) is proved in Appendix B. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaab021/6514796 by guest on 03 M

arch 2022



16 R. GRACZYK ET AL.

Remark 2.3 To exhaust the set of all the rate pairs promised in the theorem, we may restrict W to take
values in an alphabet W of cardinality |T1| |T2| + 1, e.g.,

W∗ = {
1, . . . , |T1| |T2| + 1

}
. (2.48)

Moreover, said set of rate pairs is closed.

Proof of Remark. We can consider the choice of the auxiliary W separately for each y ∈ Y . For a fixed
Y = y, we must choose QT1|W,Y=y and QT2|W,Y=y subject to the constraints

∑
w∈W

QW|Y=y(w) QT1|W=w,Y=y(t1) QT2|W=w,Y=y(t2)

= QT1T2|Y=y(t1, t2), (t1, t2) ∈ T1 × T2 (2.49)

(corresponding to |T1| |T2|−1 constraints, one for all but one pair (t1, t2), where one pair can be omitted
because the probabilities sum to one). The conditional (on Y = y) mutual informations on the RHS of
the rate inequalities are determined by {QT1T2|Y=y(t1, t2)} and

∑
w∈W

QW|Y=y(w)H(T1 | W = w, Y = y) (2.50)

and

∑
w∈W

QW|Y=y(w)H(T1, T2 | W = w, Y = y). (2.51)

It follows from Carathéodory’s theorem (for connected sets) that for each y ∈ Y we need at most
|T1| |T2| + 1 labels for W. Since all three expressions (2.49)–(2.50) do not depend on the labels of
W but only on their conditional probabilities, we can choose the same labels under each y ∈ Y . This
establishes the desired cardinality constraint. The second part of the remark follows from the first using
a compactness and continuity argument. �

We now focus on the minimum sum-rate R + RK in the distributed channel synthesis problem.

Corollary 2.3 A joint PMF QT1T2Y can be channel-synthesized with SI Y at communication rate R
and common randomness rate RK only if

R + RK ≥ C(T1; T2 | Y). (2.52)

Moreover, there exists a pair (R, RK) such that (2.52) holds with equality and such that QT1T2Y can be
channel-synthesized with SI Y at communication rate R and common randomness rate RK .

Proof. The necessity of (2.52) follows from the necessity of (2.47b) and from the definition of
C(T1; T2 | Y) (2.1). The second assertion follows by setting RK to zero and then using the achievability
part of the theorem. �
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CONDITIONAL AND RELEVANT COMMON INFORMATION 17

3. Relevant Common Information

The relevant common information C(T1; T2 → S) quantifies how much of the common information
C(T1; T2) is relevant to S. For example, if T1 = (X1, U, T) and T2 = (X2, U, T) with X1, X2, U and
(T , S) being independent, then the information that is common to T1 and T2 is H(U, T), but of that only
I(S; T) is relevant to S, so C(T1; T2) = H(U, T) (cf. Example 2.3) and C(T1; T2 → S) = I(S; T).

Definition 3.1 Given a triple of chance variables (S, T1, T2) of some joint PMF PST1T2
∈ P(S × T1 ×

T2), the common information of the pair (T1, T2) that is relevant to S is

C(T1; T2 → S) � min
W : T1→W→T2

W→(T1,T2)→S

I(S; W), (3.1)

where the minimization is over all finite sets W , all joint PMFs PST1T2W ∈ P(S × T1 × T2 ×W) whose
(S, T1, T2)-marginal is the given PST1T2

and under which both T1 → W → T2 and W → (T1, T2) → S
hold, and where the mutual information I(S; W) is calculated w.r.t. PST1T2W .

Remark 3.1 The relevant common information has the following basic properties:

1. If S = (T1, T2), then the relevant common information reduces to Wyner’s common information:

C
(
T1; T2 → (T1, T2)

) = C(T1; T2). (3.2)

(When S = (T1, T2), the minimization in (3.1) is identical to the minimization defining Wyner’s
common information (1.1) except for the extra constraint W → (T1, T2) → S, which—when
S = (T1, T2)—is satisfied irrespective of W.)

2. If T1 and T2 are independent, then—irrespective of S— the relevant common information is zero

C(T1; T2 → S) = 0, T1 ⊥⊥ T2 (3.3)

(In this case choosing W to be deterministic satisfies the constraints.)

3. Relevant common information is no larger than Wyner’s common information:

C(T1; T2 → S) ≤ C(T1; T2). (3.4)

(By the Data Processing inequality, the constraint W → (T1, T2) → S implies that I(S; W) ≤
I(T1, T2; W). This allows us to upper-bound C(T1; T2 → S) by a modified expression similar to
that for Wyner’s common information (1), except for the said constraint. Choosing PW|T1T2S equal
to PW|T1T2

, where the latter achieves the common information, shows that the extra constraint
does not increase the minimum in the modified expression and is, in fact, redundant there.)

4. Relevant common information is no larger than the mutual informations between T1 or T2 and S:

C(T1; T2 → S) ≤ min{I(T1; S), I(T2; S)}. (3.5)

(This holds because both W = T1 and W = T2 are admissible choices in the minimization (3.1)
defining C(T1; T2 → S).)
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18 R. GRACZYK ET AL.

5. In the minimization in (3.1), it suffices to consider auxiliary chance variables W taking values
in alphabets of cardinality |W| ≤ |T1||T2| + 1. (This holds by Carathéodory’s theorem: we have
|T1| |T2| − 1 constraints on our choice of PT1|W and PT2|W analogous to those in (2.49) (without
Y); the entropy H(S) is given; and the Markovity constraint W → (T1, T2) → S guarantees that
H(S | W) can be expressed as an expectation over W of a function of PT1|W=w and PT2|w.)

6. Relevant common information C(T1; T2 → S) is continuous in the PMF of the triple (T1, T2, S).
(The proof of continuity in PT1T2

for a fixed PS|T1T2
is very similar to Witsenhausen’s proof of

the continuity of Wyner’s common information [32, Theorem 1(v)]: instead of H(T1, T2 | W),
we maximize H(S | W); the term hn(p) + hm(q) in the mapping (p, q) �→ (

pqt, hn(p) + hm(q)
)

in [32] is therefore replaced with the entropy h̄
(
p, q; PS|T1T2

)
of the distribution on S that assigns

each s ∈ S the probability
∑

(t1,t2) PS|T1T2
(s | t1, t2) p(t1) q(t2) (with the resulting mapping

also being continuous); and the co-domain of the mapping is now Δnm × [0, log |S|] instead of

Δnm × [0, log nm]. Continuity in (PS|T1T2
, PT1T2

) is now established by noting that when P(1)
S|T1T2

and P(2)
S|T1T2

are close, maxp,q

∣∣h̄(
p, q; P(1)

S|T1T2

) − h̄
(
p, q; P(2)

S|T1T2

)∣∣ is small, e.g., with the help of
[4, Theorem 17.3.3)].

7. Relevant common information is related to lossy common information (1.3) in much the same
way that weak coordination is related to rate-distortion theory [6]:

CD1,D2
(T1; T2)

= min
T̂1,T̂2 : E[d1(T1,T̂1)]≤D1

E[d2(T2,T̂2)]≤D2

C(T̂1; T̂2 → (T1, T2)). (3.6)

Example 3.2 In the setting of Example 2.3, the common information of T1 and T2 that is relevant to
Y is

C(T1; T2 → Y) = H(Y). (3.7)

Indeed, C(T1; T2 → Y) ≥ H(Y) because Y must be computable from any auxiliary chance variable W
for which (A1, Y) → W → (A2, Y), and equality holds when W is chosen as (A1, A2, Y).

From (2.8), (2.9), and (3.7) we infer that, for the setting of Example 2.3, C(T1; T2 | Y)+C(T1; T2 →
Y) equals C(T1; T2). But this does not hold in general. As shown by the following two examples, the
LHS can be smaller or larger than the RHS.

Example 3.3 (Example 2.4 Contd.) Since T1 and T2 are independent, the common information of
T1 and T2 relevant to Y is zero (3.3). The conditional common information is log(2) (2.16), and
consequently, in this example,

log 2 = C(T1; T2 | Y) + C(T1; T2 → Y) > C(T1; T2) = 0. (3.8)

Example 3.4 Let Y ∼ Ber(1/2), B1 ∼ Ber(p) and B2 ∼ Ber(q) be independent Bernoulli random
variables, where p, q ∈ [0, 1/2] and p ≥ q. Define T1 = Y ⊕ B1 and T2 = Y ⊕ B2. Since (T1, T2) is
a doubly symmetric binary source whose parameter r equals p(1 − q) + (1 − p)q, Wyner’s common
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CONDITIONAL AND RELEVANT COMMON INFORMATION 19

information is given by [33, Example on p. 167]

C(T1; T2) = log 2 + Hb(r) − 2Hb(r1), (3.9)

where r1 = 0.5 − 0.5 · √
1 − 2r, and Hb(·) denotes the binary entropy function. Since T1 and T2 are

conditionally independent given Y , the conditional common information is

C(T1; T2 | Y) = 0. (3.10)

The relevant common information can be upper bounded as (see Item 4 in Remark 3.1)

C(T1; T2 → Y) ≤ I(T1; Y) = log 2 − Hb(p). (3.11)

Evaluating the bounds in (3.9)–(3.11) for p = 0.4 and q = 0.2 yields (in nats)

C(T1; T2 | Y) + C(T1; T2 → Y) ≤ 0.020 < 0.115 = C(T1; T2). (3.12)

In the following, we present various operational interpretations of relevant common information. The
first is presented in Corollary 3.1 ahead and is related to the source-driven weak coordination network
depicted in Fig. 4. The second is presented in Corollary 3.2 and is related to combined transmission and
weak coordination on a MAC (Fig. 5). The third is related to remote simulation through a MAC (Fig. 6)
and is presented in Theorem 3.9.

3.1 Source-Driven Weak Coordination

The source-driven weak coordination of a PMF QST1T2
∈ P(S × T1 × T2) is depicted in Fig. 4. A

sequence {Si} is drawn IID according to the marginal distribution QS of QST1T2
and is presented to a

Gray-Wyner-like encoder.

Fig. 4. The source-driven weak-coordination problem. We require that the joint empirical distribution π(Sn,Tn
1 ,Tn

2 ) converge in

probability to QST1T2 (78).

For a given blocklength n, the encoder

φRel
(n) : Sn → J0,n × J1,n × J2,n (3.13)

produces three indices

(J0, J1, J2) = φ
(n)
Rel(S

n) (3.14)
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20 R. GRACZYK ET AL.

taking values in the index sets J0,n, J1,n and J2,n. Indices J0 and J1 are presented to Decoder 1 and

indices J0 and J2 to Decoder 2. The two decoders ψ
(n)
Rel,1 and ψ

(n)
Rel,2 produce the sequences

Tn
1 = ψ

(n)
Rel,1(J0, J1) (3.15)

Tn
2 = ψ

(n)
Rel,2(J0, J2). (3.16)

The joint empirical distribution of (Sn, Tn
1 , Tn

2 ), namely π(Sn,Tn
1 ,Tn

2 ), takes values in P(S × T1 × T2) and
is random because Sn is random. We require that it approach QST1T2

in the sense that

plim
n→∞

dTV

(
π(Sn,Tn

1 ,Tn
2 ); QST1T2

)
= 0, (3.17)

where plim stands for limit in probability.
We say that the rates (R0, R1, R2) allow for the source-driven weak coordination of QST1T2

, if for
every blocklength n, there exist index sets J0,n,J1,n, J2,n satisfying

lim
n→∞

1

n
log |Jκ ,n| ≤ Rκ , κ ∈ {0, 1, 2}; (3.18)

an encoding function φ
(n)
Rel as in (3.13); and decoder functions ψ

(n)
Rel,1 and ψ

(n)
Rel,2 such that (3.17) holds.

Similar setups were addressed in [6] and [20]. In [6], however, the encoder only conveys individual
indices J1 and J2 to the decoders and no common index J0. In [20] the goal is different: rather than
(3.17), the requirement is that the empirical distributions π(Sn,Tn

1 ) and π(Sn,Tn
2 ) approach target PMFs QST1

and QST2
; no requirement is imposed on the joint empirical distribution π(Sn,Tn

1 ,Tn
2 ). Like us, [20] only

presents a sufficient condition for achievability but no necessary condition. We do, however, provide
a complete characterization in the no-excess-rate case (Theorem 3.6 ahead). The work in [6] presents
non-matching sufficient and necessary conditions.

The following theorem presents our sufficient conditions for a rate triple (R0, R1, R2) to allow for
the source-driven weak coordination of QST1T2

.

Theorem 3.5 The rates (R0, R1, R2) allow for the source-driven weak coordination of QST1T2
whenever

there exists a random variable W taking values in a finite set W and a joint PMF QWST1T2
on W, S, T1, T2

whose ST1T2-marginal is QST1T2
and under which

R0 ≥ I(S; W) (3.19a)

R0 + R1 ≥ I(S; T1, W) (3.19b)

R0 + R2 ≥ I(S; T2, W) (3.19c)

R0 + R1 + R2 ≥ I(S; T1, T2, W) + I(T1; T2 | W). (3.19d)
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CONDITIONAL AND RELEVANT COMMON INFORMATION 21

Proof. Let (S, T1, T2, W) be distributed according to the postulated PMF QWST1T2
. Apply the random

coding scheme described in [39, Proof of Theorem 1] with the substitutions

X ← S X0 ← W X1 ← T1 X2 ← T2 (3.20)

and φ1(a, b) = φ2(a, b) = b. As shown in [39, Eqns. (39)–(48)], the limit (3.17) holds on average over
the random choice of the codebooks if the following conditions are satisfied:

R0 ≥ I(S; W) (3.21a)

R1 ≥ I(S; T1 | W) (3.21b)

R2 ≥ I(S; T2 | W) (3.21c)

R1 + R2 ≥ I(S; T1, T2 | W) + I(T1; T2 | W). (3.21d)

A random-coding argument establishes that Conditions (3.21) gurantee the existence of a sequence of
deterministic schemes that attains the weak coordination in (3.17). We next show using a rate-transfer
argument [27] that, in fact, Conditions (3.19) suffice.

Key is that the decoders can reproduce the same reconstructions if the encoder splits the private
indices J1 and J2 into pairs of subindices and—together with the common index J0—sends one subindex
of each pair over the common link. This argument shows that

(
R̃0 + R′′

1 + R′′
2, R′

1, R′
2

)
is achievable

whenever
(
R̃0, R′

1+R′′
1, R′

2+R′′
2

)
is achievable and hence whenever this latter triple satisfies the sufficient

conditions we derived using the random coding argument.
Substituting R′

0 − R′′
1 − R′′

2 for R̃0, we obtain that the nonnegative triple (R′
0, R′

1, R′
2) is achievable

whenever there exist R′′
1, R′′

2 ≥ 0 such that the triple (R0, R1, R2) given by

R0 = R′
0 − R′′

1 − R′′
2 (3.22a)

R1 = R′
1 + R′′

1 (3.22b)

R2 = R′
2 + R′′

2 (3.22c)

is achievable. Using the sufficient condition we obtained via random coding, we conclude that
(R′

0, R′
1, R′

2) is achievable whenever there exist R′′
1, R′′

2 ≥ 0 such that

R′
0 − R′′

1 − R′′
2 ≥ I(S; W) (3.23a)

R′
1 + R′′

1 ≥ I(S; T1 | W) (3.23b)

R′
2 + R′′

2 ≥ I(S; T2 | W) (3.23c)

R′
1 − R′′

1 + R′
2 − R′′

2 ≥ I(S; T1, T2 | W) + I(T1; T2 | W). (3.23d)
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22 R. GRACZYK ET AL.

Using Fourier–Motzkin elimination, it can be shown that this condition is equivalent to

R′
0 ≥ I(S; W) (3.24a)

R′
0 + R′

1 ≥ I(S; T1, W) (3.24b)

R′
0 + R′

2 ≥ I(S; T2, W) (3.24c)

R′
0 + R′

1 + R′
2 ≥ I(S; T1, T2, W) + I(T1; T2 | W), (3.24d)

which, but for the primes, is identical to (3.19). �
The next theorem establishes a converse result under the no-excess-rate condition, i.e., for rate tuples

satisfying

R0 + R1 + R2 = I(S; T1, T2). (3.25)

Notice that I(S; T1, T2) is the smallest rate required to weakly coordinate the reconstruction sequences
Tn

1 and Tn
2 with the source Sn according to a target PMF QST1T2

when a single decoder observes all three
indices J0, J1, J2 and produces both Tn

1 and Tn
2 [6, Thm. 3].

Theorem 3.6 Consider a PMF QST1T2
∈ P(S × T1 × T2) and a rate-tuple (R0, R1, R2) satisfying the

no-excess-rate condition (3.25) when the RHS of the latter is calculated w.r.t. QST1T2
. Said rate tuple

allows for the source-driven weak coordination of QST1T2
, if and only if there exists some joint PMF on

(W, S, T1, T2) whose ST1T2-marginal is QST1T2
and under which

R0 ≥ I(S; W) (3.26a)

R0 + R1 ≥ I(S; T1, W) (3.26b)

R0 + R2 ≥ I(S; T2, W) (3.26c)

W → (T1, T2) → S (3.26d)

T1 → W → T2. (3.26e)

Proof. To prove achievability, we will establish (3.19d) and then invoke Theorem 3.5. To establish
(3.19d) we note that the no-excess-rate condition (3.25) implies that its LHS equals I(S; T1, T2), and the
Markov conditions (3.26d)–(3.26e) imply that its RHS is also equal to I(S; T1, T2).

The converse is proved in Section 4. �
The following corollary shows that C(T1; T2 → S) is the smallest common rate that allows

achievabity with no excess-rate.
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CONDITIONAL AND RELEVANT COMMON INFORMATION 23

Corollary 3.1 Consider a PMF QST1T2
∈ P(S × T1 × T2). If the rate tuple (R0, R1, R2) satisfies the

no-excess-rate condition (3.25) (when the RHS of the latter is calculated w.r.t. QST1T2
) and also allows

for the source-driven weak coordination of QST1T2
, then

R0 ≥ C(T1; T2 → S). (3.27)

Moreover, there exists such a rate tuple for which (3.27) holds with equality.

Proof. To establish (3.27), we discard (3.26b)–(3.26c) and optimize over the conditional law of W
given (S, T1, T2) subject to the Markov conditions (3.26d)–(3.26e).

As to the claim that (3.27) can be achieved with equality, fix some chance variable W and a joint
PMF on (W, S, T1, T2) that achieves C(T1; T2 → S), so I(S; W) equals C(T1; T2 → S) and the Markov
conditions (3.26d)–(3.26e) both hold.

Define R0 as I(S; W) and R1 as I(S; T1, W) − I(S; W), so that R0 = C(T1; T2 → S) and both (3.26a)
and (3.26b) hold with equality. Define R2 as I(S; T2, W) − I(S; W) + Δ, so that (3.26c) would hold
whenever Δ is positive. Choose Δ so that the no-excess-rate condition (3.25) holds with equality. It
remains to establish that, with this choice, Δ is nonnegative or, equivalently, that

I(S; T1, W) + I(S; T2, W) − I(S; W) ≤ I(S; T1, T2). (3.28)

This is, indeed, the case because

I(S; T1, W) + I(S; T2, W) − I(S; W)

= I(S; T1 | W) + I(S; T2, W) (3.29)

= H(T1 | W) − H(T1 | W, S) + I(S; T2, W) (3.30)

≤ H(T1 | W) − H(T1 | W, S, T2) + I(S; T2, W) (3.31)

= H(T1 | W, T2) − H(T1 | W, S, T2) + I(S; T2, W) (3.32)

= I(S; T1 | W, T2) + I(S; T2, W) (3.33)

= I(S; W, T1, T2) (3.34)

= I(S; T1, T2), (3.35)

where (3.31) holds because conditioning cannot increase entropy; (3.32) follows from the Markov
condition (3.26e); and (3.35) follows from the Markov condition (3.26d). �

3.2 Combined Transmission and Weak Coordination on a MAC

The scenario we consider next is the classical two-to-one MAC (with a common message) depicted in
Fig. 5, but with the extra twist that we require that the joint empirical distribution of the input and output
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24 R. GRACZYK ET AL.

sequences approximate a given PMF QST1T2
. For this to be at all possible, QST1T2

must have the form

QST1T2
(s, t1, t2) = QT1T2

(t1, t2) pc(s | t1, t2), (3.36)

where pc(s|t1, t2) is the MAC’s law, and QT1T2
is some PMF in P(T1 × T2). We refer to such a PMF

QST1T2
as having conditional law pc(s|t1, t2). Here T1 and T2 are the MAC’s input alphabets, and S

denotes its output alphabet. The common message is denoted M0 and the two private messages M1, M2.
The three are independent and, given a blocklength n, equiprobably distributed over the corresponding
message sets M0,n, M1,n, and M2,n. Employing the mapping ϕ

(n)
Rel,1, Encoder 1 maps the pair (M0, M1)

to the n-tuple of channel inputs

Tn
1 = η

(n)
Rel,1(M0, M1). (3.37)

Similarly, Encoder 2 maps (M0, M2) to

Tn
2 = η

(n)
Rel,2(M0, M2). (3.38)

The decoder observes the MAC’s output sequence Sn and, employing the mapping ζ
(n)
Rel, produces its

guess (M̂0, M̂1, M̂2) ∈ M0,n × M1,n × M2,n of the message triple:

(M̂0, M̂1, M̂2) = ζ
(n)
Rel(S

n). (3.39)

A MAC pc(s|t1, t2) supports transmission at rates (R0, R1, R2) with weak coordination w.r.t. the
PMF QST1T2

of conditional law pc(s|t1, t2) if, for each blocklength n, there exist discrete message sets

M0,n,M1,n and M2,n; encoding functions η
(n)
Rel,1 and η

(n)
Rel,2; and a decoding function ζ

(n)
Rel guaranteeing

that the following three requirements (3.40)–(3.43) are satisfied:

lim
n→∞

1

n
log |Mκ ,n| ≥ Rκ , κ ∈ {0, 1, 2}; (3.40)

the input and output sequences are weakly coordinated w.r.t. QST1T2

plim
n→∞

dTV

(
π(Sn,Tn

1 ,Tn
2 ); QST1T2

)
= 0, (3.41)

i.e.,

plim
n→∞

π(Sn,Tn
1 ,Tn

2 )(s, t1, t2) = QST1T2
(s, t1, t2), ∀(s, t1, t2) ∈ S × T1 × T2; (3.42)

and the decoding error vanishes with the blocklength

lim
n→∞ Pr

[
(M0, M1, M2) = (M̂0, M̂1, M̂2)

] = 0. (3.43)
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CONDITIONAL AND RELEVANT COMMON INFORMATION 25

Fig. 5. Combined transmission and weak coordination on a MAC. In addition to reliable communication, we require that the
MAC’s terminals be weakly coordinated w.r.t. some QT1T2S.

Theorem 3.7 The MAC pc(s|t1, t2) supports transmission at rates (R0, R1, R2) with weak coordination
w.r.t. a PMF QST1T2

of conditional law pc(s|t1, t2) if and only if there exists a joint distribution on
(W, S, T1, T2) of ST1T2-marginal QST1T2

satisfying the Markov conditions

T1 → W → T2 (3.44)

W → (T1, T2) → S (3.45)

and the rate constraints

R1 ≤ I(T1; S | T2, W) (3.46a)

R2 ≤ I(T2; S | T1, W) (3.46b)

R1 + R2 ≤ I(T1, T2; S | W) (3.46c)

R0 + R1 + R2 ≤ I(T1, T2; S). (3.46d)

Proof. We begin with the proof of achievability. Denote the postulated joint PMF QST1T2W , and
let (R0, R1, R2) satisfy (3.46) with strict inequalities (under QST1T2W ). Consider the random code
construction that was proposed by Slepian and Wolf for the MAC with common and private messages
[21]. They showed that if a joint PMF QT1T2W is used in this scheme, then the average probability of
error tends to zero

lim
n→∞ Pr

[
(M0, M1, M2) = (M̂0, M̂1, M̂2)

] = 0, (3.47)

where the probability is over the messages (M0, M1, M2), the random code construction and the
channel’s randomness. Moreover, in this random code construction, the codewords are drawn IID
∼ QT1T2W and, consequently, for every triple (s, t1, t2) ∈ S×T1 ×T2, the distribution of πSnTn

1 Tn
2
(s, t1, t2)

is that of the empirical average of n IID mean-QST1T2
(s, t1, t2) random variables. It therefore follows

from the Weak Law of Large Numbers that, under random coding,

plim
n→∞

dTV

(
π(Sn,Tn

1 ,Tn
2 ); QST1T2

)
= 0. (3.48)
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26 R. GRACZYK ET AL.

We next need to show the existence of good determinstic codes. Let C denote a generic code for
our network, and dTV(C) the Total Variation distance induced by it, i.e., the conditional expectation of
dTV(π(Sn,Tn

1 ,Tn
2 ); QST1T2

) given that the randomly chosen code is C. By (3.48) there exists an increasing

sequence {n′
k} such that

Pr
({
C : dTV(C) <

1

k

})
>

1

2
, ∀n > n′

k. (3.49)

As to the probability of error, (3.47) implies the existence of an increasing sequence {n′′
k } such that

Pr
[
(M0, M1, M2) = (M̂0, M̂1, M̂2)

]
<

1

2k
, ∀n > n′′

k (3.50)

and, consequently, by Markov’s inequality,

Pr
({
C : Pe(C) <

1

k

})
>

1

2
, ∀n > n′′

k , (3.51)

where Pe(C) denotes average probability of error associated with C (i.e., the conditional probability
of (M0, M1, M2) = (M̂0, M̂1, M̂2) given that the randomly chosen code is C). It follows from (3.49) and
(3.51) that, for every max{n′

k, n′′
k } ≤ n, we can find a code C for which neither dTV(C) nor Pe(C) exceeds

1/k. This choice establishes the direct part.
To prove the converse we follow the steps in [21], [14, Sec. 8.4] to obtain that, for every

blocklength n,

R1 ≤ I(T1,U ; SU | T2,U , W) + εn (3.52a)

R2 ≤ I(T2,U ; SU | T1,U , W) + εn (3.52b)

R1 + R2 ≤ I(T1,U , T2,U ; SU | W) + εn (3.52c)

R0 + R1 + R2 ≤ I(T1,U , T2,U ; SU) + εn, (3.52d)

where the chance variable U is equiprobably distributed over [1 : n] and independent of {(Si, T1,i,
T2,i)}n

i=1; where W is an auxiliary chance variable satisfying

W → (T1,U , T2,U) → S (3.53a)

T1,U → W → T2,U; (3.53b)

and where εn tends to zero as n tends to infinity. Carathéodory’s theorem shows that there exists a
chance variable W̃ taking values in a set of cardinality |T1||T2| + 2 and having some joint PMF with the
triple (SU , T1,U , T2,U) such that, when W is replaced by W̃, the rate constraints (3.52) and the Markov
conditions (3.53) are satisfied.
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The limit in probability in (3.42) is of bounded random variables, so the convergence in probability
implies the convergence of the expectations

lim
n→∞E

[
πSn,Tn

1 ,Tn
2
(s, t1, t2)

] = QST1T2
(s, t1, t2), ∀(s, t1, t2) ∈ S × T1 × T2, (3.54)

where the expectation is over the messages (M0, M1, M2) and the randomness in the channel. This
expectation equals PSUT1,UT2,U

(s, t1, t2), and we thus conclude that

lim
n→∞dTV

(
PSUT1,UT2,U

; QST1T2

)
= 0. (3.55)

Compactness implies the existence of a subsequence of blocklengths along which the joint PMF of
(SU , T1,U , T2,U , W̃) converges. The converse now follows from continuity by considering limits along
this subsequence using (3.55), the rate-constraints in (3.52) and the Markov chains (3.53) where W is
replaced by W̃ in both. �

The RHS of (3.46d) is fully determined by QST1T2
, and R0 + R1 + R2 ≤ I(T1, T2; S) is a necessary

condition for the channel to support (R0, R1, R2) and QST1T2
. Equality can be achieved, for example,

by the rate triple
(
I(T1, T2; S), 0, 0

)
, where the private messages are absent. But this need not be the

only supported tuple with this sum-rate. We say that (R0, R1, R2) is of maximum sum rate (for the law
pc(s|t1, t2) and target PMF QST1T2

) if

R0 + R1 + R2 = I(T1, T2; S), (3.56)

where the RHS is computed w.r.t. QST1T2
.

How small can the common rate R0 be in a maximal-sum-rate triple? As the following corollary
shows, it can be as low as C(T1; T2 → S) and no lower.

Corollary 3.2 Consider a PMF QST1T2
whose conditional S-given-(T1, T2) distribution is the MAC’s

channel law pc(s|t1, t2). If the rates (R0, R1, R2) are such that (3.56) holds and that the MAC supports
transmission at rates (R0, R1, R2) with weak coordination w.r.t. QST1T2

, then

R0 ≥ C(T1; T2 → S). (3.57)

Moreover, there exists such a rate tuple for which (3.57) holds with equality.

Proof. To prove that (3.57) is necessary, we note that (3.56) and (3.46c) imply that

R0 ≥ I(T1, T2; S) − I(T1, T2; S | W) (3.58)

= I(T1, T2, W; S) − I(T1, T2; S | W) (3.59)

= I(W; S), (3.60)

where the first equality follows from the Markov condition (3.45) and the second from the chain rule.
Minimizing the RHS subject to (3.44)–(3.45) establishes (3.57).
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We next turn to the second part of the corollary. Fix a joint distribution achieving C(T1; T2 → S)

and set R0 = I(W; S). Now choose R1 and R2 so that (3.46c) holds with equality and so that (3.46a) and
(3.46b) both hold. This is possible because (3.46a)–(3.46c) and (3.44) are the constraints that appear on
a MAC without a common message, and on a MAC the sum-rate constraint is always pinching [4]. �

3.3 Remote Simulation Through a MAC

The network depicted in Fig. 6 is required to produce a sequence Sn that appears IID ∼ QS, where
QS ∈ P(S) is an inducible output distribution on the MAC pc(s|t1, t2), i.e., an output distribution for
which the set DT1T2

⊆ P(T1 ×T2) comprising the joint input distributions that induce QS, i.e., for which

∑
t1,t2

QT1T2
(t1, t2) pc(s|t1, t2) = QS(s), ∀s ∈ S , (3.61)

is nonempty. To achieve this goal, a chance variable J that is equiprobably distributed is fed to the two
stochastic simulators, which produce the respective channel inputs. We shall see that the least entropy
of J (normalized by the blocklength) that makes this possible is

min
QT1T2S∈DT1T2S

C(T1; T2 → S), (3.62)

where DT1T2S ⊆ P(T1 × T2 × S) comprises the joint PMFs whose conditional law is pc(s|t1, t2) and
whose S-marginal is the given QS, i.e., having the form

QT1T2
(t1, t2) pc(s|t1, t2), QT1T2

∈ DT1T2
. (3.63)

Fig. 6. Remote simulation through a multiple-access channel. The goal is for Sn to appear approximately IID ∼ QS (131).

The single-user version of this problem—which corresponds to pc(s|t1, t2) being a function of s and
t1 only—was studied by Wyner (under the normalized divergence criterion) [33, Thm. 6.3] and by Han
and Verdú [13] and Cuff [7] (under the Total Variation criterion.) They showed that it suffices that the
rate of J exceeds the minimum, over all input distributions that induce the given output distribution, of
the mutual information between the channel terminals.

A naive approach to our problem would be to choose some QT1T2
from DT1T2

and to use J to induce
input sequences of a joint law that closely approximates Q⊗n

T1T2
. This would require J to have normalized

entropy C(T1; T2) or, upon optimizing over the choice of QT1T2
∈ DT1T2

,

min
QT1T2∈DT1T2

C(T1; T2). (3.64)

As the following example shows, this is in general suboptimal: (3.64) can exceed (3.62).
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CONDITIONAL AND RELEVANT COMMON INFORMATION 29

Example 3.8 Consider a MAC with binary input alphabets, T1 = T2 = {0, 1}, and the four-element
output alphabet S = T1 ∪ {ι, δ}. If its inputs differ, the MAC produces the output δ (for ‘differ’).
Otherwise, it behaves like an erasure channel: it produces the output ι (for ‘identical’) w.p. ρ and the
output that is equal to the inputs (which are identical) w.p. 1 − ρ:

pc(s|t1, t2)

= 11{s = δ and t1 = t2}
+(1 − ρ) · 11{s = t1 = t2} + ρ · 11{s = ι and t1 = t2}. (3.65)

Consider now the target PMF

QS(s) =

⎧⎪⎨
⎪⎩

0 s = δ

ρ s = ι

(1 − ρ) 1
2 s ∈ T1

. (3.66)

Since QS(δ) is zero, this output distribution can only be induced by a joint PMF under which T1 and T2
never differ. Moreover, to induce this output, T1 must be distributed equiprobably. Thus, only the PMF

Q̃T1T2
(t1, t2) = 1

2
11{t1 = t2}

induces this output distribution, and DT1T2
is a singleton. Under this PMF, T1 = T2 deterministically, so

C(T1; T2) is the entropy of T1, and (3.64) equals log(2). In contrast, (3.62) equals C(T1; T2 → S), when
the latter is computed under Q̃T1T2

(t1, t2)pc(s|t1, t2). It thus equals (1 − ρ) log(2), which is smaller than
log(2) whenever ρ is positive.

The suboptimality of the naive approach is in failing to exploit the randomness introduced by the
erasure channel: to simulate its output, it is unnecessary to have Tn

1 (= Tn
2 ) be (roughly) uniform

over {0, 1}n: as we know from the single-user simulation problem, it suffices that it be uniform over
a codebook containing approximately en(1−ρ) log(2) codewords.

We turn now to a formal statement of the problem. We say that the ‘target PMF’ QS ∈ P(S) can be
remotely simulated through the MAC pc(s|t1, t2) with rate R if, for each blocklength n, there exists an
index set Jn satisfying

lim
n→∞

1

n
log |Jn| ≤ R (3.67)

and independent random mappings Φ
(n)
Rel,1 and Φ

(n)
Rel,2, such that when J is drawn independently of them

and equiprobably over Jn, and their outputs

Tn
1 = Φ

(n)
Rel,1(J) (3.68)

Tn
2 = Φ

(n)
Rel,2(J) (3.69)
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30 R. GRACZYK ET AL.

are sent over the MAC, the distribution PSn of the MAC’s output sequence Sn closely resembles Q⊗n
S in

the sense that

lim
n→∞dTV

(
PSn ; Q⊗n

S

) = 0. (3.70)

Theorem 3.9 Let the target PMF QS ∈ P(S) be inducible at the output of the MAC pc(s|t1, t2) in the
sense that DT1T2

above is nonempty. The PMF QS can be remotely simulated through the MAC with
rate R if and only if

R ≥ min
QT1T2S∈DT1T2S

C(T1; T2 → S), (3.71)

where DT1T2S is defined above.

Proof. The necessity of (3.17) (converse) is proved in Appendix C. Sufficiency (achievability) can be
established using the scheme of Fig. 7 as follows. Let QST1T2W ∈ P(S×T1 ×T2 ×W) be a PMF having
a (T1, T2)-marginal QT1T2

in DT1T2
(i.e., for which (3.61) holds) and having the form

QST1T2W(s, t1, t2, w) = QW(w) QT1|W(t1 | w) QT2|W(t2 | w) pc(s|t1, t2), (3.72)

where W is an auxiliary chance variable that takes values in a set W and that has the PMF QW . This
form guarantees that the Markov conditions in (3.1) are satisfied. Consider the scheme depicted in
Fig. 7, where J is mapped to the codeword w(J) ∈ Wn in a codebook {w(j)} indexed by j ∈ [1 : enR].
Simulator 1, which is random, feeds w(J) to the DMC QT1|W(t1 | w) and produces the resulting n-length
output sequence. Simulator 2 does the same, but to the DMC QT2|W(t2 | w). This setup is reminiscent of
the one in Steinberg’s resolvability problem over a MAC [22].

Fig. 7. A scheme for remote simulation through a MAC.

We need to show that if R exceeds I(W; S), then a codebook as above can be found for which the
distibution of the MAC’s output sequence PSn closely resembles Q⊗n

S in the sense of (3.70). This can be
proved using a random coding argument, where the codewords of the codebook {w(j)} are drawn IID
∼ Q⊗n

W : We claim that if R exceeds I(W; S), then the expectation (over the codebook) of dTV

(
PSn ; Q⊗n

S

)
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CONDITIONAL AND RELEVANT COMMON INFORMATION 31

(where PSn is the PMF of the n-length output sequence induced by the codebook) tends to zero. Once
the claim is established, we can infer the existence of a deterministic sequence of codebooks (indexed
by the blocklength) for which dTV

(
PSn ; Q⊗n

S

)
tends to zero. The claim follows directly from [7, Lemma

IV.1] with the substitutions

V ← S, U ← W, (3.73a)

and

ΦV|U ← QS|W(s | w) =
∑
t1,t2

QT1|W(t1 | w)QT2|W(t2 | w)pc(s|t1, t2). (3.73b)

�

3.4 Remote Simulation Through a State-Dependent DMC

In the network of Fig. 8, the relevant common information plays an important, but not decisive, role.
A state-dependent discrete memoryless channel (SD-DMC)

(
pc(s|t1, t2), QT1

(t1)
)

is driven by a state
sequence {T1,i} that is drawn IID ∼ QT1

. The goal is to produce a channel output sequence Sn whose
law PSn resembles the product distribution Q⊗n

S in the sense that

lim
n→∞dTV

(
PSn ; Q⊗n

S

) = 0. (3.74)

This is accomplished by having the state encoder describe the state sequence to the channel encoder
using the codeword J in a rate-R codebook Jn of cardinality enR, and by having the shared common
randomness K be drawn equiprobably and independently of Tn

1 from a rate-RK set JK,n of cardinality
enRK . We seek the rate pairs (R, RK) that make this possible.

A PMF QS ∈ P(S) can be channel-synthesized with state-description rate R and common
randomness rate RK over the SD-DMC

(
pc(s|t1, t2), QT1

(t1)
)

if, for each blocklength n, there exist sets
Jn and JK,n satisfying

lim
n→∞

1

n
log |Jn| ≤ R (3.75)

Fig. 8. Remote simulation over a state-dependent channel. The goal is for Sn to appear approximately IID ∼ QS (135).
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32 R. GRACZYK ET AL.

and

lim
n→∞

1

n
log |JK,n| ≤ RK (3.76)

and independent random mappings

F(n)
Rel : T n

1 × JK,n → Jn (3.77)

and

G(n)
Rel : Jn × JK,n × Sn → T n

2 (3.78)

(that are independent of (Tn
1 , K)) such that when the sequence

Tn
2 = G(n)

Rel

(
F(n)

Rel

(
Tn

1 , K
)
, K

)
(3.79)

is fed to the SD-DMC
(
pc(s|t1, t2), QT1

(t1)
)
, the PMF PSn of the output sequence Sn satisfies (3.74).

We say that the desired output law QS is inducible over the SD-DMC
(
pc(s|t1, t2), QT1

(t1)
)

if there
exists a joint PMF QT1T2S of the following three properties: its T1-marginal is the state law, its conditional
QS|T1T2

is the channel law pc(s|t1, t2), and its S-marginal is the desired output law. The subset of P(T1 ×
T2 × S) comprising all such joint PMFs is denoted D(pc(s|t1, t2), QT1

, QS).

Theorem 3.8 An output law QS that is inducible over the SD-DMC of laws
(
pc(s|t1, t2), QT1

(t1)
)

can be channel-synthesized over the said SD-DMC at rates (R, RK) if and only if there exists a joint
PMF QT1T2SW whose T1T2S-marginal is in D(pc(s|t1, t2), QT1

, QS) and that satisfies the following four
conditions:

T1 → W → T2 (3.80a)

W → (T1, T2) → S (3.80b)

R ≥ I(W; T1) (3.81a)

R + RK ≥ I(W; S). (3.81b)

Before proving the theorem, we make the following remark, whose proof is omitted.

Remark 3.2 To exhaust the rate pairs promised in the theorem, we may restrict W to take values in an
alphabet W of cardinality |T1| |T2| + 1, e.g.,

W∗′ = {1, . . . , |T1| |T2| + 1}. (3.82)

Moreover, said set of rate pairs is closed.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaab021/6514796 by guest on 03 M

arch 2022



CONDITIONAL AND RELEVANT COMMON INFORMATION 33

Proof of Theorem. 3.7 The proof of necessity (converse) resembles the one in [7, Section V]. The main
differences are that in the steps recovering Inequality (3.81b) the source reconstruction pairs (Tn

1 , Tn
2 )

(called (Xn, Yn) in [7]) should be replaced by the SD-DMC’s output sequence Sn and that the Markov
condition (3.80b) requires justification. This and other details are presented in Appendix D.

Also the proof of the sufficiency (achievability) closely follows the proof of the main result in [7].
Let QST1T2W ∈ P(S × T1 × T2 × W) be a PMF whose T1-marginal is the given state PMF QT1

, whose
S-marginal is the target PMF QS, and having the form

QST1T2W(s, t1, t1, w) = QW(w) QT1|W(t1 | w) QT2|W(t2 | w) pc(s|t1, t2), (3.83)

where W is an auxiliary chance variable that takes values in a set W and that has the PMF QW . This
form guarantees that the Markov conditions in (3.1) are satisfied.

Consider the random code construction and the simulators of Fig. 7 that were used to prove
sufficiency for the MAC in Theorem 3.9 in Section 3.3, but denote the random index J̃ = (J, K)

instead of J and its alphabet J̃n = Jn × JK,n instead of Jn. Let P̃JKTn
1 Tn

2 Sn|C denote the conditional-on-
the-random-codebook-being-C joint PMF induced by the simulators described in Section 3.3 and the
MAC pc(s|t1, t2), when J and K are independent and equiprobably distributed:

P̃JKTn
1 Tn

2 Sn|C = P̃JKP̃Tn
1 |JKC P̃Tn

2 |JKC P̃Sn|Tn
1 Tn

2
, (3.84)

where P̃JK is uniform over JK,n ×Jn, the conditional PMFs P̃Tn
1 |JKC and P̃Tn

2 |JKC describe the operations

of the two simulators and P̃Sn|Tn
1 Tn

2
is the n-fold product of the MAC’s transition law (which is also our

SD-DMC’s transition law) pc(s|t1, t2).
Returning to our SD-DMC, to perform the remote simulation, we propose to randomly draw the

codebook as in Section 3.3 for the MAC, and for any given realization of the codebook C apply the
scheme illustrated in Fig. 9 based on the PMF P̃JKTn

1 Tn
2 Sn|C above.

Fig. 9. A coding scheme for remote simulation over a state-dependent discrete memoryless channel.

Specifically, the Channel Encoder performs the same operations as Simulator 2 of Section 3.3,
which is characterized by the conditional PMF P̃Tn

2 |JKC , and the state encoder uses the reverse encoder

corresponding to the conditional PMF P̃J|KTn
1C .

We analyze the expected Total Variation distance in (3.74) induced by the described state and channel
encoders, averaged over the random choice of the codebook. Let PJKTn

1 Tn
2 Sn|C (without tilde) denote the
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34 R. GRACZYK ET AL.

joint PMF induced on (J, K, Tn
1 , Tn

2 , Sn) by the state and channel encoders of Fig. 9 for a given code C.
By the Triangle inequality

EC

[
dTV

(
PSn|C; Q⊗n

S

)]

≤ EC

[
dTV

(
PSn|C; P̃Sn|C

)]
+ EC

[
dTV

(
P̃Sn|C; Q⊗n

S

)]
(3.85)

≤ EC

[
dTV

(
PJKTn

1 Tn
2 Sn|C; P̃JKTn

1 Tn
2 Sn|C

)]
+ EC

[
dTV

(
P̃Sn|C; Q⊗n

S

)]
(3.86)

(a)= EK

[
EC

[
dTV

(
Q⊗n

T1
; P̃Tn

1 |KC

)]]
+ EC

[
dTV

(
P̃Sn|C; Q⊗n

S

)]
(3.87)

where the second inequality follows from Proposition 1.2, and (a) holds by Proposition 1.3 because for
each realization C of C the following hold: the PMFs P̃K|C and PK coincide (they are both uniform over

the same set); the conditional PMF P̃J|KTn
1C coincides with PJ|KTn

1C ; and the conditional PMF P̃Tn
2 Sn|JKTn

1C
coincides with PTn

2 Sn|JKTn
1C . We now study the two expectations on the RHS of (3.87) separately, starting

with the second. By [7, Lemma IV.1] (with the substitutions in (3.73) and J ← (J, K)), the expectation

EC

[
dTV

(
P̃Sn|C; Q⊗n

S

) ]
tends to 0 as n → ∞ if

1

n
log |Jn| + 1

n
log |JK,n| ≥ I(S; W) + ε. (3.88)

As to the first, we fix a realization K = k and employ again Lemma IV.1 of [7], but now only for the
random index J and using the substitutions

V ← T1, U ← W, ΦV|U ← QT1|W . (3.89)

The lemma implies that, for each realization of K = k, the expectation EC

[
dTV

(
Q⊗n

T1
; P̃Tn

1 |K=k,C

)]
tends to 0 as n → ∞ if

1

n
log |Jn| ≥ I(T1; W) + ε. (3.90)

Under the two conditions (3.88) and (3.90) there must thus be a sequence (one for each n) of realizations
of the code construction C such that the Total Variation distance in (3.74) vanishes.

It remains to get rid of the ε. This is just a technical matter: Since ε can be any positive number, for
any (R, RK) satisfying (142), there exists a sequence {εn}∞n=1 ↓ 0 such that for each n it is possible to
choose sets Jn = {1, . . . , �en(R+εn)�} and JK,n = {1, . . . , �en(RK+εn)�} and a deterministic codebook C
so that our proposed encoders produce sequences (Tn

1 , Tn
2 ) satisfying (3.74). Now

lim
n→∞

1

n
log |Jn| = R (3.91)

lim
n→∞

1

n
log |JK,n| = RK , (3.92)

and the achievability proof is complete. �
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CONDITIONAL AND RELEVANT COMMON INFORMATION 35

We now focus on the minimum sum-rate R + RK that allows an inducible output law QS to be
channel-synthesized over an SD-DMC

(
pc(s|t1, t2), QT1

(t1)
)
. This minimum sum-rate is achieved when

RK = 0, because a bit of state description is at least as valuable as a bit of common randomness. Indeed,
since we allow for random state encoders, the state encoder can always include in its description a
random bit that is then common. The minimum sum-rate is thus

min
QT1T2S∈D(pc(s|t1,t2),QT1 ,QS)

min
QW|T1T2S

max
{
I(W; T1), I(W; S)

}
, (3.93)

where the second minimization is subject to (3.80a) and (3.80b). As the following two examples show,
the minimum sum-rate is sometimes, though not always, related to the relevant common information.
Whether it is or not depends on which term in the maximum is largest. We begin with an example where
the common relevant information is key.

Example 3.11 Consider an SD-DMC that is noiseless in the sense that its output is the tuple comprising
its input and state, so S = T1 × T2 and

S = (T1, T2). (3.94)

Irrespective of W and of the output PMF QS,

I(S; W) = I(T1; W) + I(T2; W | T1) (3.95)

≥ I(T1; W), (3.96)

and max{I(W; T1), I(W; S)} thus equals I(W; S). Consequently, the minimum sum-rate (3.93) for this
channel is

min
QT1T2S∈D(pc(s|t1,t2),QT1 ,QS)

C(T1; T2 → S). (3.97)

In our next example the relevant common information does not play a role, because, rather than
being I(W; S), the maximum between I(W; T1) and I(W; S) in (3.93) is I(W; T1).

Example 3.12 Consider an SD-DMC whose law is as in (3.65) of Example 3.8 and whose state T1 is
drawn equiprobably from {0, 1}. Let the target output PMF QS be as in (3.66) of that example. As in that
example, since QS(δ) is zero, this output distribution can only be induced by a joint PMF under which
T1 and T2 never differ. The sole element of D(pc(s|t1, t2), QT1

, QS) is thus the PMF

QT1T2S(t1, t2, s) =
(

1

2
11{t1 = t2 = 0} + 1

2
11{t1 = t2 = 1}

)
pc(s|t1, t2) (3.98)

and the first mimization in (3.93) is superfluous. Moreover, since T1 and T2 never differ, the Markov
condition (3.80a) implies that T1 is computable from W, and consequently I(W; T1) = H(T1) = log 2.
The minimum sum-rate in (3.93) thus equals max{log 2, C(T1; T2 → S)}. Since C(T1; T2 → S) equals
(1 − ρ) log 2, the minimum sum-rate is log 2 and unrelated to C(T1; T2 → S).
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4. The Converse Part of the Proof of Theorem 3.2

To prove the converse part of Theorem 3.6, fix a target PMF QST1T2
and an achievable rate triple

(R0, R1, R2) satisfying the no-excess-rate condition (3.25). The achievability of the rate triple guarantees
the existence, for every blocklength n, of index sets J0,n,J1,n,J2,n satisfying

lim
n→∞

1

n
log |J0,n| ≤ R0 (4.1a)

lim
n→∞

1

n
log |J1,n| ≤ R1 (4.1b)

lim
n→∞

1

n
log |J2,n| ≤ R2 (4.1c)

and the existence of corresponding encoder φ
(n)
Rel and decoders ψ

(n)
Rel,1 and ψ

(n)
Rel,2 for which the sequences

Tn
1 and Tn

2 satisfy the weak coordination constraint (3.17) that the random empirical distribution
π(Sn,Tn

1 ,Tn
2 ) approach the target PMF QST1T2

in probability

plim
n→∞

dTV

(
π(Sn,Tn

1 ,Tn
2 ); QST1T2

)
= 0, (4.2)

or, equivalently,

plim
n→∞

π(Sn,Tn
1 ,Tn

2 )(s, t1, t2) = QST1T2
(s, t1, t2), ∀(s, t1, t2) ∈ S × T1 × T2. (4.3)

The convergence in probability of bounded random variables implies their convergence in expecta-
tion. Since the expectation of π(Sn,Tn

1 ,Tn
2 )(s, t1, t2) is the evaluation of the uniform mixture of the PMFs

{PSiT1,iT2,i
}n
i=1 at (s, t1, t2), it follows that n−1 ∑n

i=1 PSiT1,iT2,i
converges componentwise to QST1T2

or,
equivalently, PSUT1,UT2,U

converges in Total Variation to QST1T2
whenever the chance variable U is drawn

equiprobably from [1 : n] and independently of {(Si, T1,i, T2,i)}:

lim
n→∞dTV

(
PSUT1,UT2,U

; QST1T2

)
= 0,

U ∼ Uni([1 : n]), U⊥⊥{(Si, T1,i, T2,i)}n
i=1. (4.4)

This latter statement will be crucial to the converse. By the continuity of mutual information we also
obtain, under the same assumptions on U,

lim
n→∞ I(T1,U , T2,U ; SU) = I(T1, T2; S), (4.5)

where the RHS is computed w.r.t. QT1T2S.
We shall need the following lemma.

Lemma 4.1 Assume that Sn, Tn
1 , Tn

2 , J0 are as above and, in particular, that they are produced under the
no-excess-rate condition (3.25) and that the weak coordination constraint (4.2) is satisfied. Let PSnTn

1 Tn
2 J0

denote their joint PMF. Then for every blocklength n, there exist
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• a positive εn for which {εn} ↓ 0;

• a chance variable W taking values in an alphabet W of size

|W| ≤ |T1|nε
2/5
n |T2|nε

2/5
n (4.6)

and having some conditional PMF PW|SnTn
1 Tn

2 J0
given (Sn, Tn

1 , Tn
2 , J0); and

• a subset N ⊆ [1 : n] of size

|N | ≥ (
1 − 2 log(2) α ε1/5

n

)
n, (4.7)

where

α � log(|T1||T2|) + ε3/5
n (4.8)

such that for any ρ ∈ (0, 1) and under the joint PMF

P(sn, tn1, tn2, j, w) = PSnTn
1 Tn

2 J0
(sn, tn1, tn2, j) · PW|SnTn

1 Tn
2 J0

(w | sn, tn1, tn2, j) (4.9)

over Sn × T n
1 × T n

2 × J0,n × W the following three requirements are satisfied

1. I(T1,i; T2,i | J0, W) ≤ ε
3/5
n , ∀i ∈ [1 : n];

2. 1
n

∑n
i=1 I(Si; J0 | T1,i, T2,i, W) ≤ α ε

2/5
n ;

3. Pr
({

w ∈ W : ‖PSi|W(· | w) − PS(·)‖1 ≤ ρ
}) ≥ 1 − ε

1/10
n ρ−1, ∀i ∈ N .

Proof. The proof is based on Dueck’s and Ahlswede’s Wringing Lemmas [8, 1] and is provided in
Appendix E. �

Fix a blocklength n, and let εn, W, and N be as in the above lemma. Let U be drawn equiprobably
from [1 : n] and independently of

(
Sn, Tn

1 , Tn
2 , W

)
. Let PSnTn

1 Tn
2 J0U , or P for short, be the extension of the

PMF in (4.9) that also includes U:

P(sn, tn1, tn2, j, w, i) = PSnTn
1 Tn

2 J0
(sn, tn1, tn2, j) · PW|SnTn

1 Tn
2 J0

(w | sn, tn1, tn2, j) · 1

n
. (4.10)

Define the following subsets of [1 : n] × W:

A =
{
(i, w) : I(T1,i; T2,i | J0, W = w) ≤ ε1/5

n

}
(4.11)

B =
{
(i, w) : I(Si; J0 | T1,i, T2,i, W = w) ≤ αε1/5

n

}
(4.12)

C =
{
(i, w) : i ∈ N and ‖PSi|W(· | w) − PS(·)‖1 ≤ ρ

}
(4.13)
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D = A ∩ B ∩ C, (4.14)

where mutual informations are again w.r.t. the PMF P in (4.10).
We next show that, for any fixed ρ ∈ (0, 1), P(D) tends to one when εn tends to zero and hence

lim
n→∞P(D) = 1, ∀ρ ∈ (0, 1). (4.15)

To show this we note that, by Lemma 4.1 and Markov’s inequality,

P
(
(U, W) ∈ A

) ≥ 1 − ε2/5
n (4.16)

and

P
(
(U, W) ∈ B

) ≥ 1 − ε1/5
n . (4.17)

Moreover, by (4.7) and Requirement (3) in Lemma 4.1,

P
(
(U, W) ∈ C)

≥ P
(
(U, W) ∈ C | U ∈ N

) · P(
U ∈ N ) (4.18)

≥ P
(
(U, W) ∈ C | U ∈ N

) · (1 − 2 log(2) · αε1/5
n ) (4.19)

≥ (1 − ε1/10
n ρ−1) · (1 − 2 log(2) αε1/5

n ). (4.20)

From (4.16), (4.17), (4.20), and the definition of D (4.14),

P
(
(U, W) ∈ D

)

= 1 − P

((
(U, W) ∈ Ac) ∪ (

(U, W) ∈ Bc) ∪ (
(U, W) ∈ Cc)) (4.21)

≥ 1 − P
(
(U, W) ∈ Ac) − P

(
(U, W) ∈ Cc) (4.22)

≥ (1 − ε1/10
n ρ−1) · (1 − 2 log 2αε1/5

n ) − ε1/5
n − ε2/5

n , (4.23)

which concludes the proof of (4.15) because, as n tends to infinity, εn tends to zero.
We turn now to the cardinality constraints. In what follows, all mutual informations are calculated

w.r.t. the PMF P (4.10). Beginning with the common rate,

1

n
log |J0,n|

≥ 1

n
H(J0 | W) (4.24)

= 1

n
H(J0, W) − 1

n
H(W) (4.25)
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≥ 1

n
I(Sn; J0, W) − 1

n
H(W) (4.26)

= 1

n

n∑
i=1

I(Si; J0, W | Si−1) − 1

n
H(W) (4.27)

= 1

n

n∑
i=1

I(Si; J0, W, Si−1) − 1

n
H(W) (4.28)

≥ 1

n

n∑
i=1

I(Si; J0 | W) − 1

n
H(W) (4.29)

(a)=
∑

(i,w)∈[1:n]×W

1

n
· P(W = w) · I(Si; J0 | W = w, U = i)

− 1

n
H(W) (4.30)

(b)≥
∑

(i,w)∈D
P(U = i, W = w) · I(Si; J0 | W = w, U = i)

− ε2/5
n log(|T1||T2|), (4.31)

where (a) holds because U is drawn equiprobably from [1 : n] and independently of (Sn, J0, W); and in
(b) we restricted the sum and used the cardinality bound (4.6) on W .

Similarly,

1

n
log |J0,n| + 1

n
log |J1,n|

≥ H(J0, J1 | W) (4.32)

= 1

n
H(J0, J1, W) − 1

n
H(W) (4.33)

≥ 1

n
H(J0, Tn

1 , W) − 1

n
H(W) (4.34)

≥ 1

n
I(Sn; J0, Tn

1 , W) − 1

n
H(W) (4.35)

= 1

n

n∑
i=1

I(Si; J0, Tn
1 , W | Si−1) − 1

n
H(W) (4.36)

= 1

n

n∑
i=1

I(Si; J0, Tn
1 , W, Si−1) − 1

n
H(W) (4.37)

≥ 1

n

n∑
i=1

I(Si; J0, T1,i | W) − 1

n
H(W) (4.38)
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≥
∑

(i,w)∈D
P(U = i, W = w) · I(Si; J0, T1,i | W = w, U = i)

− ε2/5
n · log(|T1||T2|). (4.39)

Likewise, by swapping J1,n and J2,n,

1

n
log |J0,n| + 1

n
log |J2,n|

≥
∑

(i,w)∈D
P(U = i, W = w) · I(Si; J0, T2,i | W = w, U = i)

− ε2/5
n · log(|T1||T2|). (4.40)

Finally,

1

n
log |J0,n| + 1

n
log |J1,n| + 1

n
log |J2,n|

≥ H(J0, J1, J2 | W) (4.41)

= 1

n
H(J0, J1, J2, W) − 1

n
H(W) (4.42)

≥ 1

n
H(Tn

1 , Tn
2 , W) − 1

n
H(W) (4.43)

≥ 1

n
I(Sn; Tn

1 , Tn
2 , W) − 1

n
H(W) (4.44)

= 1

n

n∑
i=1

I(Si; Tn
1 , Tn

2 , W | Si−1) − 1

n
H(W) (4.45)

= 1

n

n∑
i=1

I(Si; Tn
1 , Tn

2 , W, Si−1) − 1

n
H(W) (4.46)

≥ 1

n

n∑
i=1

I(Si; T1,i, T2,i | W) − 1

n
H(W) (4.47)

≥
∑

(i,w)∈D
P(U = i, W = w) · I(Si; T1,i, T2,i | W = w, U = i)

− ε2/5
n · log(|T1||T2|). (4.48)
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Define now the new PMF

λ(sn, tn1, tn2, i, w)

= P(U = i, W = w)

P
(
(U, W) ∈ D

) · �{(u, w) ∈ D}

· P(Sn = sn, Tn
1 = tn1, Tn

2 = tn2, J0 = j | W = w), (4.49)

and note that the mutual informations

I(Si; J0 | W = w) (4.50)

I(Si; J0, T1,i | W = w) (4.51)

I(Si; J0, T2,i | W = w) (4.52)

I(Si; T1,i, T2,i | W = w) (4.53)

I(Si; J0 | T1i, T2i, W = w) (4.54)

I(T1,i, T2,i | J0, W = w) (4.55)

are the same under the PMFs P and λ. We can therefore rewrite the inequalities (4.31), (4.39), (4.40),
and (4.48) as in Equation (4.56), where the mutual informations are w.r.t. λ. (To make this dependence
explicit, we add the subscript λ to the mutual informations.)

1

n
log |J0,n|

≥ P
(
(U, W) ∈ D

) ∑
(i,w)∈D

λ(U = i, W = w) · Iλ(Si; J0 | W = w)

− ε2/5
n log(|T1||T2|), (4.56a)

1

n
log |J0,n| + 1

n
log |J1,n|

≥ P
(
(U, W) ∈ D

) ·
∑

(i,w)∈D
λ(U = i, W = w) · Iλ(Si; J0, T1i | W = w)

− ε2/5
n log(|T1||T2|), (4.56b)
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1

n
log |J0,n| + 1

n
log |J2,n|

≥ P
(
(U, W) ∈ D

) ·
∑

(i,w)∈D
λ(U = i, W = w) · Iλ(Si; J0, T2i | W = w)

− ε2/5
n log(|T1||T2|), (4.56c)

1

n
log |J0,n| + 1

n
log |J1,n| + 1

n
log |J2,n|

≥ P
(
(U, W) ∈ D

) ·
∑

(i,w)∈D
λ(U = i, W = w) · Iλ(Si; T1i, T2i | W = w)

− ε2/5
n log(|T1||T2|). (4.56d)

Notice further that by the definition of the set D, for each pair (i, w) ∈ D the following inequalities
hold:

Iλ(T1i; T2i | J0, W = w) ≤ ε1/5
n (4.57a)

Iλ(Si; J0 | T1i, T2i, W = w) ≤ α · ε1/5
n (4.57b)

‖λSi|W=w − PS‖1 ≤ ρ. (4.57c)

We next cast (4.4) in terms of λ. To this end, note that by its definition (4.49),

λ
(
SU = s, T1,U = t1, T2,U = t2

)
= P

(
SU = s, T1,U = t1, T2,U = t2

∣∣ (U, W) ∈ D
)

(4.58)

and by the law of total probability

P(SU = s, T1,U = t1, T2,U = t2)

= P
(
SU = s, T1,U = t1, T2,U = t2, and (U, W) ∈ D

)
+ P

(
SU = s, T1,U = t1, T2,U = t2, and (U, W) /∈ D

)
. (4.59)

Consequently, since P
(
(U, W) ∈ D

)
approaches 1 as n tends to ∞ (4.23),

lim
n→∞dTV

(
λSUT1,UT2,U

;PSUT1,UT2,U

)
= 0. (4.60)

It follows from this and (4.4), using the Triangle inequality, that

lim
n→∞dTV

(
λSUT1,UT2,U

; QST1T2

)
= 0 (4.61)
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and a fortiori (since ρ is positive) that for all sufficiently large values of n

‖λSUT1,UT2,U
− QST2T1

‖1 ≤ ρ, n large. (4.62)

We continue the proof by studying the implications of (4.56), (4.57), and (4.62), which deal with
λ rather than P. The next step is to analyze the limiting behavior of these inequalities as n → ∞ (and
thus εn → 0) and ρ → 0. The main difficulty is in analyzing the limiting behavior of the constraints in
(4.56) and the sums in (4.57), because the range of the index i and the alphabets of the chance variables
J0 and W grow with the blocklength n. We circumvent this problem with the following lemma, whose
proof requires two consecutive applications of Carathéodory’s theorem.

Lemma 4.2 There exists a subset E ⊆ D whose size is at most |S||T1||T2| + 4 with a corresponding
PMF on it α ∈ P(E), and for each (i, w) ∈ E there exists a subset Ji,w ⊆ J0,n whose size is at most
|S||T1||T2| + 5 with a corresponding PMF on it βi,w ∈ P(Ji,w), so that the conditions in (4.56), (4.57),
and (4.62) remain valid when the PMF λ is replaced by the PMF

ν(sn, tn1, tn2, w, i, j)

= α(i, w) · βi,w(j) · PSn,Tn
1 ,Tn

2 |W,J0
(sn, tn1, tn2 | w, j) (4.63)

and the summations is over (i, w) ∈ E (instead of over (i, w) ∈ D).

Proof. See Appendix F. �
Notice that conditions (4.56), (4.57), and (4.62) depend on the elements of the sets E and {Ji,w}

only through the conditional probability distribution PSn,Tn
1 ,Tn

2 |W,J0
(sn, tn1, tn2 | w, j). By relabeling these

conditional distributions, we can assume that E does not depend on n and is equal to E�, where

E� = {1, . . . , |S||T1||T2| + 4}. (4.64)

Similarly, we can assume that Ji,w depends on neither n, i, or w and is equal to J �, where

J � = {1, . . . , |S||T1||T2| + 5}. (4.65)

Since the alphabets are now all fixed and finite, the class of joint PMFs on them is compact, and we can
pick a subsequence of blocklengths along which they converge. Let ν� ∈ P(S × T1 × T2 × E� × J �)

denote the limiting PMF, and let (S�, T�
1 , T�

2 , Ξ�, J�) ∼ ν�.
We now consider the limits of the relevant quantities in (4.56), (4.57), and (4.62) (with λ replaced

by ν and with the summations in (4.56) being over (i, w) ∈ E�) along this subsequence (with εn
consequently tending to zero) and then let ρ approach zero. Since all involved chance variables are
over fixed and finite alphabets, standard continuity arguments allow us to conclude that a rate-triple
(R0, R1, R2) is achievable with no excess-rate only if the following two-auxiliary condition holds: there
exists a joint distribution satisfying

S�⊥⊥Ξ�; (4.66)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaab021/6514796 by guest on 03 M

arch 2022



44 R. GRACZYK ET AL.

T�
2 → (J�, Ξ�) → T�

1 (4.67)

J� → (Ξ�, T�
1 , T�

2) → S�, (4.68)

under which the following inequalities hold

R0 ≥ I(S�; J� | Ξ�) (4.69a)

R1 + R0 ≥ I(S�; J�, T�
1 | Ξ�) (4.69b)

R2 + R0 ≥ I(S�; J�, T�
2 | Ξ�) (4.69c)

R2 + R1 + R0 ≥ I(S�; T�
1 , T�

2 | Ξ�) (4.69d)

R2 + R1 + R0 = I(S�; T�
1 , T�

2), (4.69e)

where the last equality accounts for the no-excess-rate condition and follows from (3.25) and (4.61).
We next show that this two-auxiliary condition implies the following one-auxiliary condition: there

exists a joint distribution satisfying

T�
1 → (J�, Ξ�) → T�

2 (4.70)

and

(J�, Ξ�) → (T�
1 , T�

2) → S� (4.71)

under which

R0 ≥ I(S�; J�, Ξ�) (4.72a)

R1 + R0 ≥ I(S�; T�
1 , J�, Ξ�) (4.72b)

R2 + R0 ≥ I(S�; T�
2 , J�, Ξ�). (4.72c)

From this the converse will follow by defining W� as

W� = (J�, Ξ�). (4.73)

Condition (4.70) is just a restatement of (4.67); (4.72a) follows from (4.69a) and the independence
condition (4.66); (4.72b) follows from (4.69b) and (4.66); and (4.72c) follows from (4.69c) and (4.66).
It remains to establish (4.71).
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To this end, we first observe that (4.69d) and the independence condition (4.66) imply that

R2 + R1 + R0 ≥ I(S�; T�
1 , T�

2 , Ξ�). (4.74)

This, (4.69e), and the chain rule imply that

I(S�; Ξ� | T�
1 , T�

2) = 0. (4.75)

Consequently,

I(S�; J�, Ξ� | T�
1 , T�

2) = I(S�; Ξ� | T�
1 , T�

2) + I(S�; J� | T�
1 , T�

2 , Ξ�) (4.76)

= I(S�; J� | T�
1 , T�

2 , Ξ�) (4.77)

= 0, (4.78)

where the first equality follows from the chain rule, the second from (4.75) and the last from (4.68).
This establishes (4.71) and concludes the proof of the converse.
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A. The Converse Part of Theorem 2.7

Before proceeding to the converse part of the proof of Theorem 2.7, we recall a lemma from [7].

Lemma A.1 (Lemma VI-3 in [7]). Let A be a finite set, and let An ∼ PAn ∈ P(An) be approximately
IID in the sense that there exists some Q ∈ P(A) for which

dTV

(
PAn ; Q⊗n) ≤ ε (A.1)

for some ε < 1/4. Let the time-sharing chance variable U be uniform over [1 : n] and independent of
An. Then,

1

n

n∑
i=1

I(Ai; Ai−1) ≤ 4ε log
|A|
ε

, (A.2)

and

I(AU; U) ≤ 4ε log
|A|
ε

. (A.3)

We now establish the desired converse to Theorem 2.7.

The converse part of the proof of Theorem 2.7.
Consider a sequence of simulators {Φ(n)

SI,1}∞n=1 and {Φ(n)
SI,2}∞n=1 for which the induced outputs {Tn

1 }∞n=1
and {Tn

2 }∞n=1 and the SI sequence {Yn}∞n=1 satisfy (2.34), i.e., for which there exists a positive sequence
{εn}∞n=1 ↓ 0 such that

dTV

(
PTn

1 Tn
2 Yn ; Q⊗n

T1T2Y

)
< εn. (A.4)

Fix a blocklength n sufficiently large such that

εn ≤ 1

4
, (A.5)

and note that for the chosen blocklength:

1

n
log |Jn| = 1

n
H(J) (A.6)

≥ 1

n
I(J; Tn

1 , Tn
2 | Yn) (A.7)
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≥ 1

n
H(Tn

1 , Tn
2 | Yn) − 1

n

n∑
k=1

H(T1,k, T2,k | J, Yn) (A.8)

= 1

n

[
H(Tn

1 , Tn
2 , Yn) − H(Yn)

] − 1

n

n∑
k=1

H(T1,k, T2,k | J, Yn) (A.9)

= 1

n

[
H(Tn

1 , Tn
2 , Yn) −

n∑
k=1

H(Yk)
] − 1

n

n∑
k=1

H(T1,k, T2,k | J, Yn) (A.10)

= 1

n

n∑
k=1

[
H(T1,k, T2,k, Yk) − I(T1,k, T2,k, Yk; Tk−1

1 , Tk−1
2 , Yk−1)

− H(Yk) − H(T1,k, T2,k | J, Yn)
]

(A.11)

(a)≥ 1

n

n∑
k=1

[
H(T1,k, T2,k, Yk) − 4εn log

|T1||T2||Y|
εn

− H(Yk) − H(T1,k, T2,k | J, Yn)

]
(A.12)

(b)= H(T1,U , T2,U , YU | U) − H(YU | U)

− H(T1,U , T2,U | J, YU , U, YU−1, Yn
U+1) − 4εn log

|T1||T2,U||Y|
εn

(A.13)

(c)= H(T1,U , T2,U , YU | U) − H(YU)

− H(T1,U , T2,U | Wn, YU) − 4εn log
|T1||T2,U||Y|

εn
(A.14)

= H(T1,U , T2,U , YU) − I(T1,U , T2,U , YU ; U) − H(YU)

− H(T1,U , T2,U | Wn, YU) − 4εn log
|T1||T2,U||Y|

εn
(A.15)

(d)≥ H(T1,U , T2,U , YU) − H(YU)

− H(T1,U , T2,U | Wn, YU) − 8εn log
|T1||T2||Y|

εn
(A.16)

= I(T1,U , T2,U ; Wn | YU) − 8εn log
|T1||T2||Y|

εn
, (A.17)

where (a) follows from Lemma A.1 because {(T1,k, T2,k, Yk)} are nearly IID (A.4), and εn < 1/4; (b)

holds when we draw U equiprobably from [1 : n] and independently of the other chance variables
(J, Tn

1 , Tn
2 , Yn); (c) follows from the independence between U and YU and by defining Wn �

(J, U, YU−1, Yn
U+1); and (d) follows from the second part of Lemma A.1.
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To relate the RHS of (A.17) to C(T1; T2 | Y) (under QT1T2Y ), we note that, with the above definitions
of U and Wn, the independence between the encoding functions implies that

T1,U → (Wn, YU) → T2,U (A.18)

forms a Markov chain. Consequently, if Q̃n denotes the joint PMF of (T1,U , T2,U , YU), then

I(T1,U , T2,U ; Wn | YU) ≥ CQ̃n
(T1; T2 | Y), (A.19)

where the conditional common information on the right is calculated under Q̃n. This and (A.17) imply
that

1

n
log |Jn| ≥ CQ̃n

(T1; T2 | Y) − 8εn log
|T1||T2||Y|

εn
. (A.20)

The converse now follows by letting n tend to infinity because (2.34) and Proposition 1.5 imply that

lim
n→∞dTV

(
Q̃n; QT1T2Y

)
= 0 (A.21)

and hence, by the continuity of the conditional common information,

lim
n→∞ CQ̃n

(T1; T2 | Y) = C(T1; T2 | Y). (A.22)
�

B. The Converse Part of Theorem 2.8

Consider a sequence of encoders and decoders {F(n)
SI }∞n=1 and {G(n)

SI }∞n=1 for which the sequences {Tn
1 }∞n=1,

{Tn
2 }∞n=1, and {Yn}∞n=1 satisfy (2.45), i.e., for which there exists a positive sequence {εn}∞n=1 decaying to

zero such that

dTV

(
PTn

1 Tn
2 Yn ; Q⊗n

T1T2Y

)
< εn. (B.1)

A close inspection of the converse part of the proof of Theorem 2.7 (Appendix A) reveals that if one
replaces 1

n log |Jn| by the sum 1
n log |Jn| + 1

n log |JK,n| and the index J by the pair (J, K), then all the
steps remain valid except that in (A.6) the equality needs to be replaced by the inequality ≥. We thus
conclude that for the setup under consideration here, for any blocklength n:

1

n
log |Jn| + 1

n
log |JK,n| ≥ I(Wn; T1,U , T2,U | YU) − 8εn log

|T1||T2||Y|
εn

, (B.2)

where U is independent of (J, K, Tn
1 , Tn

2 , Yn) and equiprobable over [1 : n], and Wn � (J, K, U,
YU−1, Yn

U+1). Notice that the Markov chain T1,U → (Wn, YU) → T2,U continues to hold, because
Tn

2 is a random (independent of Tn
1 ) function of (J, K, Yn), so T2,U is a random mapping of (Wn, YU).

We next derive an additional inequality. Since J takes values in Jn, for every blocklength n,

1

n
log |Jn| ≥ 1

n
I(J; Tn

1 | Yn, K) (B.3)

= 1

n
I(J, K; Tn

1 | Yn) (B.4)

= 1

n

n∑
i=1

I(J, K; T1,i | Yn, Ti−1
1 ) (B.5)
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= 1

n

n∑
i=1

I(J, K, Yi−1, Yn
i+1; T1,i | Yi) (B.6)

= I(J, K, YU−1, Yn
U+1; T1,U | U, YU) (B.7)

= I(J, K, YU−1, Yn
U+1, U; T1,U | YU) (B.8)

= I(Wn; T1,U | YU), (B.9)

where (B.4) holds because the common randomness K is independent of (Tn
1 , Yn), so I(K; Tn

1 | Yn) is
zero; (B.5) follows from the chain rule; and (B.6) holds because H(T1,i | Yn, Ti−1

1 ) equals H(T1,i | Yi)

(because {(T1,i, Yi)} are IID).

Let Q̃n denote the joint PMF of (T1,U , T2,U , YU). By (2.45) and Proposition 1.5

lim
n→∞dTV

(
Q̃n; QT1T2Y

)
= 0. (B.10)

It follows from Remark 2.3 and from (B.2) and (B.9) that there exists a chance variable W∗
n taking

values in the finite set W∗ of (2.48) and a joint distribution Q̃T1,UT2,UYUW∗
n

∈ P(T1 × T2 × Y × W∗)
under which

T1,U → (W∗
n , YU) → T2,U (B.11a)

1

n
log |Jn| + 1

n
log |JK,n|

≥ I(W∗
n ; T1,U , T2,U | YU) − 8εn log

|T1||T2||Y|
εn

(B.11b)

1

n
log |Jn| ≥ I(W∗

n ; T1,U | YU). (B.11c)

We next consider a subsequence {nν} along which Q̃T1,UT2,UYUW∗
n

converges in Total Variation. Its
marginal converges to QT1T2Y by (B.10), and continuity implies that the limiting distribution satisfies
the required Markov condition. Taking the limit superior of (B.11b) and (B.11c) along the subsequence
establishes the converse.

C. The Converse Part of the Proof of Theorem 3.9

Proof of the necessity of (3.71). Consider a sequence of simulators {Φ(n)
Rel,1}∞n=1 and {Φ(n)

Rel,2}∞n=1 for
which the induced MAC outputs {Sn}∞n=1 satisfy (3.70), i.e., for which there exists a positive sequence
{εn}∞n=1 ↓ 0 such that

dTV

(
PSn ; Q⊗n

S

)
< εn. (C.1)

Fix a blocklength n sufficiently large so

εn ≤ 1/4. (C.2)
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Let Tn
1 and Tn

2 be the sequences produced by the encoders Φ
(n)
Rel,1 and Φ

(n)
Rel,2 when fed J. Let U be drawn

equiprobably from [1 : n] and independently of the tuple (J, Tn
1 , Tn

2 , Sn), and define

Wn � (J, U). (C.3)

Then,

1

n
log |Jn| = 1

n
H(J) ≥ 1

n
I(J; Sn) (C.4)

≥ 1

n
H(Sn) − 1

n

n∑
k=1

H(Sk | J) (C.5)

= 1

n

n∑
k=1

[
H(Sk | Sk−1) − H(Sk | J)

]
(C.6)

= 1

n

n∑
k=1

[
I(Sk; J) − I(Sk; Sk−1)

]
(C.7)

(a)≥ 1

n

n∑
k=1

[
I(Sk; J) − 4εn

(
log

|S|
εn

)]
(C.8)

= I(SU; J | U) − 4εn

(
log

|S|
εn

)
(C.9)

(b)≥ I(SU ; J, U) − 8εn

(
log

|S|
εn

)
(C.10)

= I(SU; Wn) − 8εn

(
log

|S|
εn

)
, (C.11)

where (a) follows by invoking the first part of Lemma A.1 and (b) the second.
Since the (possibly random) encoders Φ

(n)
Rel,1 and Φ

(n)
Rel,2 are independent,

T1,i → J → T2,i. (C.12a)

And, since Si is the output of a memoryless MAC of inputs (T1,i, T2,i),

J → (T1,i, T2,i) → Si. (C.12b)

These two Markov conditions together with the definition of Wn (C.3) and the independence between U
and (Tn

1 , Tn
2 , Sn, J) imply

T1,U → Wn → T2,U (C.13a)

and

Wn → (T1,U , T2,U) → SU . (C.13b)

Denoting by Q̃n the joint PMF of (T1,U , T2,U , SU), it now follows from (C.11) and (C13) that

1

n
log |Jn| ≥ CQ̃n

(T1; T2 → S) − 8εn

(
log

|S|
εn

)
, (C.14)

where the relevant common information is calculated under Q̃n.
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To derive the large-n limiting behavior of (C.14), we first note that, by compactness, from every
subsequence of blocklengths, we can pick a subsequnce {nk} under which the (T1, T2)-marginal of Q̃n
converges to some Q∗

T1T2
∈ P(T1 × T2). It then follows from Proposition 1.3 that Q̃nk

converges to the
PMF Q∗

T1T2
(t1, t2) pc(s|t1, t2), which we denote Q∗

T1T2S.
As we next argue, the S-marginal of the latter must be the target PMF QS, and Q∗

T1T2
must

consequently be in DT1T2
and Q∗

T1T2S in DT1T2S of (3.71). To establish this it suffices to show that

the S-marginal of Q̃n converges to the target PMF QS (Proposition 1.2), which is indeed the case by
(C.1) and Proposition 1.5.

Having established that Q∗ has the right form, we conclude that

CQ∗(T1; T2 → S) ≥ min
QT1T2S∈DT1T2S

C(T1; T2 → S). (C.15)

Using this and a continuity argument establishes that we can deduce from (C.14) that

lim
k→∞

1

nk
log |Jnk

| ≥ min
QT1T2S∈DT1T2S

C(T1; T2 → S). (C.16)

Since this holds for every subsequence of blocklengths,

lim
n→∞

1

n
log |Jn| ≥ min

QT1T2S∈DT1T2S

C(T1; T2 → S), (C.17)

and the necessity of (3.71) is established. �

D. The Converse Part of the Proof of Theorem 3.10

The converse part of the proof of Theorem 3.10. Consider sequences {Jn} and {JK,n} of sets satisfying

(3.75) and (3.76) and a sequence of state encoders {F(n)
Rel}∞n=1 and channel encoders {G(n)

rel }∞n=1 such

that—with the channel state being Tn
1 ∼ Q⊗n

T1
, its description being F(n)

Rel

(
Tn

1 , K
)
, K

)
, and the channel

input being Tn
2 = G(n)

Rel

(
F(n)

Rel

(
Tn

1 , K
)
, K

)
—the channel output sequence {Sn}∞n=1 satisfies (3.74). There

then exists a positive sequence {εn}∞n=1 ↓ 0 such that, for each blocklength n,

dTV

(
PSn ; Q⊗n

S

)
< εn. (D.1)

We proceed as in Appendix C, but with the index J there replaced by the pair (J, K) here. Thus—rather
than as in (C.3)—we now define

Wn � (J, K, U), (D.2)

with U drawn equiprobably from [1 : n] and independently of (J, K, Tn
1 , Tn

2 , Sn). We repeat the steps
leading from (C.4) to (C.11), but with the LHS of (C.4) replaced by 1

n log |Jn| + 1
n log |JK,n|, with the

index J replaced by the pair (J, K) and with the equality sign in (C.4) replaced by a ≥ sign. In this way
we conclude that, in our current setup, for any blocklength n,

1

n
log |Jn| + 1

n
log |JK,n| ≥ I(Wn; SU) − 8εn log

|S|
εn

. (D.3)

In analogy to (C13), but with Wn defined in (D.2),

T1,U → Wn → T2,U (D.4a)
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Wn → (T1,U , T2,U) → SU . (D.4b)

We need an additional rate inequality, which we derive using the independence between J and K,
the independence between K and Tn

1 , the chain rule for mutual information, and the fact that {T1,i} are
IID:

1

n
log |Jn| = 1

n
H(J | K) (D.5)

≥ 1

n
I(J; Tn

1 | K) (D.6)

= 1

n
I(J, K; Tn

1 ) (D.7)

= 1

n

n∑
i=1

I(J, K; T1,i | Ti−1
1 ) (D.8)

≥ 1

n

n∑
i=1

I(J, K; T1,i) (D.9)

= I(J, K; T1,U | U) (D.10)

= I(J, K, U; T1,U) (D.11)

= I(Wn; T1,U). (D.12)

By the rate inequalities (D.3) and (D.12), the Markov conditions (D4), and the cardinality remark
(Remark 3.2), we can extend the joint PMF of (T1,U , T2,U , SU) to a joint distribution Q̃T1,UT2,USUW∗

n
∈

P(T1 × T2 × S × W∗′
) of (T1,U , T2,U , SU , W∗

n ), where W∗
n takes values in the blocklength-independent

finite set W∗′
of (3.82), and where

T1,U →W∗
n → T2,U (D.13a)

W∗
n →(T1,U , T2,U) → SU (D.13b)

1

n
log |Jn| + 1

n
log |JK,n| ≥ I(W∗

n ; SU) − 8εn log
|T1||T2|

εn
(D.13c)

and

1

n
log |Jn| ≥ I(W∗

n ; T1,U). (D.13d)

Consider a subsequence {nk} along which the sequences {n−1 log |Jn|} and {n−1 log |JK,n|} both

converge (to limits that by (3.75) and (3.76) lower-bound R and RK) and along which Q̃T1,UT2,USUW∗
n

converges in total variation to some Q∗
T1T2SW∗ . Taking limits in (D.13) along this subsequence and using
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(3.75), (3.76), and a continuity argument, we establish the validity of (3.80) and the necessity of (3.81)
when those are calculated w.r.t. Q∗

T1T2SW∗ .
It thus remains to show that the T1T2S-marginal of Q∗

T1T2SW∗ is in D(pc(s|t1, t2), QT1
, QS).

Since {Q̃T1,UT2,USUW∗
nk

}∞k=1 converges to {Q̃T1,UT2,USUW∗
nk

}∞k=1, the same is true for the corresponding

marginals (Corollary 1.1). The T1-marginal of Q∗
T1T2SW∗ must thus be QT1

, because the sequence of

T1,U-marginals of {Q̃T1,UT2,USUW∗
nk

}∞k=1 is constant and equal to QT1
. Likewise the S-marginal of Q∗

T1T2SW∗

must be QS, because, by (3.74) and Proposition 1.5, the SU-marginals of {Q̃T1,UT2,USUW∗
nk

}∞k=1 converge

to QS.
Finally, Q∗

T1T2S(t1, t2, s) factorizes as Q∗
T1T2

(t1, t2) pc(s|t1, t2) by Corollary 1.2, because the PMF of
T1,UT2,USU factorizes in this way. �

E. Proof of Lemma 4.1

To prove Lemma 4.1, we begin by observing that the no-excess-rate condition (3.25) and the rate
inequalities (3.18) imply that

I(S; T1, T2) = R0 + R1 + R2 (E.1)

≥ lim
n→∞

1

n
log |J0,n| + lim

n→∞
1

n
log |J1,n| + lim

n→∞
1

n
log |J2,n|. (E.2)

Consequently, there exists a positive sequence {ε(1)
n } converging to zero such that for all blocklengths n,

I(S; T1, T2) ≥ 1

n
|J0,n| + 1

n
log |J1,n| + 1

n
log |J2,n| − ε(1)

n . (E.3)

Draw U equiprobably from [1 : n] and independently of {(Si, T1,i, T2,i)}. By (4.5), I(SU; T1,U , T2,U)

approaches I(S; T1, T2), so there exists a positive sequence {ε(2)
n } converging to zero such that for all

blocklengths n,

I(SU; T1,U , T2,U) ≥ I(S; T1, T2) − ε(2)
n . (E.4)

We now define

εn = ε(1)
n + ε(2)

n (E.5)

and begin with (E.3):

I(S; T1, T2)

≥ 1

n
|J0,n| + 1

n
log |J1,n| + 1

n
log |J2,n| − ε(1)

n (E.6)

≥ 1

n

(
H(J0) + H(J1 | J0) + H(J2 | J0)

) − ε(1)
n (E.7)

≥ 1

n

(
H(J0) + H(Tn

1 | J0) + H(Tn
2 | J0)

) − ε(1)
n (E.8)

≥ 1

n

(
H(J0) + H(Tn

1 , Tn
2 | J0)

) − ε(1)
n (E.9)
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= 1

n
H(Tn

1 , Tn
2 , J0) − ε(1)

n (E.10)

≥ 1

n
H(Tn

1 , Tn
2 ) − ε(1)

n (E.11)

≥ 1

n
I(Sn; Tn

1 , Tn
2 ) − ε(1)

n (E.12)

= 1

n

n∑
i=1

I(Si; Tn
1 , Tn

2 | Si−1) − ε(1)
n (E.13)

= 1

n

n∑
i=1

I(Si; Tn
1 , Tn

2 , Si−1) − ε(1)
n (E.14)

≥ 1

n

n∑
i=1

I(Si; T1,i, T2,i) − ε(1)
n (E.15)

= I(SU ; T1,U , T2,U | U) − ε(1)
n (E.16)

= I(SU; T1,U , T2,U , U) − ε(1)
n (E.17)

≥ I(SU; T1,U , T2,U) − ε(1)
n (E.18)

≥ I(S; T1, T2) − ε(1)
n − ε(2)

n (E.19)

= I(S; T1, T2) − εn, (E.20)

where the last inequality follows from (E.4) and the last equality from (E.5).
Since the RHS of (E.20) is within εn of its LHS, the RHS of (E.9) must be within εn of the RHS of

(E.8). Consequently,

I(Tn
1 ; Tn

2 | J0) ≤ nεn, (E.21)

and, by Dueck’s Wringing Lemma [8], there exists an index set ÑW ⊆ [1 : n] satisfying
∣∣ÑW

∣∣ ≤ n ε2/5
n (E.22)

and

I(T1,i; T2,i | J0, W) ≤ ε3/5
n , ∀i ∈ [1 : n], (E.23)

where W is defined as

W = {(T1,i, T2,i)}i∈ÑW
(E.24)

and therefore takes values in a set W whose cardinality is upper-bounded as in (4.6).
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The chosen chance variable W thus fulfills Requirement (1) in the lemma. We now show that it also
fulfills Requirement (2). To this end, observe that by (E.6):

I(S; T1, T2)

≥ 1

n
log |J0,n| + 1

n
log |J1,n| + 1

n
log |J2,n| − ε(1)

n (E.25)

≥ 1

n
H(J0, J1, J2) − ε(1)

n (E.26)

≥ 1

n
H(Tn

1 , Tn
2 , J0) + 1

n
H(W) − 1

n
H(W) − ε(1)

n (E.27)

≥ 1

n
H(Tn

1 , Tn
2 , J0, W) − 1

n
H(W) − ε(1)

n (E.28)

≥ 1

n
I(Sn; Tn

1 , Tn
2 , J0, W) − 1

n
H(W) − ε(1)

n (E.29)

= 1

n

n∑
i=1

I(Si; Tn
1 , Tn

2 , J0, W | Si−1) − 1

n
H(W) − ε(1)

n (E.30)

= 1

n

n∑
i=1

I(Si; Tn
1 , Tn

2 , J0, W, Si−1) − 1

n
H(W) − ε(1)

n (E.31)

≥ 1

n

n∑
i=1

I(Si; T1,i, T2,i, J0, W) − 1

n
H(W) − ε(1)

n (E.32)

≥ 1

n

n∑
i=1

(
I(Si; T1,i, T2,i) + I(Si; J0 | T1,i, T2,i, W)

)

− 1

n
H(W) − ε(1)

n (E.33)

≥ I(S; T1, T2) + 1

n

n∑
i=1

I(Si; J0 | T1,i, T2,i, W)

− 1

n
H(W) − εn (E.34)

≥ 1

n

n∑
i=1

I(Si; J0 | T1,i, T2,i, W) + I(S; T1, T2) − αε2/5
n , (E.35)

where (E.34) can be argued by following the steps leading from (E.15) to (E.19), and where the last

inequality holds because W takes on at most (|T1||T2|)nε
2/5
n distinct values and by the definition of α in

(4.8). Inequality (E.35) establishes that Requirement (2) is also satisfied:

1

n

n∑
i=1

I(Si; J0 | T1,i, T2,i, W) ≤ αε2/5
n . (E.36)
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We next turn to the existence of the set N and to the fulfillment of Requirement (3). These follow
by applying Ahlswede’s Wringing Lemma [1, Lemma 2) with the substitution of St for Xt there; of W
for Y there, and with the choice of γ there as

γ = (2 log 2)−1α−1ε−1/5
n − 1. (E.37)

Requirement (3) then follows from [1, Eq. (3.8c)) upon upper-bounding the entropy of W by that of a
uniform (over the same support) and then noting that α−1 log(|T1| · |T2|) < 1 by (4.8). The cardinality
bound (4.7) follows from [1, Eq. (3.8a)). We conclude Appendix E with a remark on our application
of Dueck’s Wringing Lemma: Key is the choice of the exponent 3/5 on the RHS of Requirement (1)
(E.23); the exponent 2/5 on the RHS of Requirement (2) ((E.36), implied by (E.22)); and the exponent
1/10 on the RHS of Requirement (3) (also implied by (E.22)). To justify these exponents, observe that
the main step in the proof of the converse part of is showing that

lim
n→∞ Pr[(U, W) ∈ A] = 1; (E.38a)

lim
n→∞ Pr[(U, W) ∈ B] = 1; (E.38b)

lim
n→∞ Pr[(U, W) ∈ C] = 1, (E.38c)

where the chance variables U and W, and the events A, B and C are defined in (4.10)–(4.13). Due to our
judiciously chosen exponents, (E.38a) and (E.38b) follow from Requirements (1) and (2) via Markov’s
inequality (see (4.16) and (4.17)); and (E.38c) follows directly from (E.22) and Requirement 3) (see
(4.21)–(4.23)).

F. Proof of Lemma 4.2

Proof of Lemma 4.2: Fix a triple (s′, t′1, t′2) ∈ S×T1×T2. A first application of Carathéodory’s theorem
establishes the existence of a subset E ⊆ D of size not exceeding |S||T1||T2| + 4 and a PMF α ∈ P(E)

such that ∑
(i,w)∈E

α(i, w) · Iλ(Si; J0 | W = w)

=
∑

(i,w)∈D
λUW(i, w) · Iλ(Si; J0 | W = w) (F.1)

∑
(i,w)∈E

α(i, w) · Iλ(Si; J0, T1,i | W = w)

=
∑

(i,w)∈D
λUW(i, w) · Iλ(Si; J0, T1,i | W = w) (F.2)

∑
(i,w)∈E

α(i, w) · Iλ(Si; J0, T2,i | W = w)

=
∑

(i,w)∈D
λUW(i, w) · Iλ(Si; J0, T2,i | W = w) (F.3)
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∑
(i,w)∈E

α(i, w) · Iλ(Si; T1,i, T2,i | W = w)

=
∑

(i,w)∈D
λUW(i, w) · Iλ(Si; T1,i, T2,i | W = w) (F.4)

and such that for every (s, x, y) ∈ S × T1 × T2 other than (s′, t′1, t′2)∑
(i,w)∈E

α(i, w) · λSiT1,iT2,i|W(s, t1, t2 | w)

=
∑

(i,w)∈D
λUW(i, w) · λSiT1,iT2,i|W(s, t1, t2 | w). (F.5)

Because probabilities sum to 1, these latter |S||T1||T2| − 1 equalities ensure that (F.5) holds also for the
triple (s′, x′, y′).

We now apply Carathéodory’s theorem a second time for J0. Consider an arbitrary pair (i, w) ∈ E .
By Carathéodory’s theorem, there exists a subset Ji,w ⊂ J0,n of size not exceeding |S||T1||T2| + 5 and
a PMF βi,w ∈ P(Ji,w) satisfying the conditions that

∑
j∈Ji,w

βi,w(j) · Hλ(Si | J0 = j, W = w)

=
∑

j∈J0,n

λJ0|UW(j | u, w) · Hλ(Si | J0 = j, W = w) (F.6)

∑
j∈Ji,w

βi,w(j) · Hλ(Si | T1,i, J0 = j, W = w)

=
∑

j∈J0,n

λJ0|UW(j | u, w) · Hλ(Si | T1,i, J0 = j, W = w) (F.7)

∑
j∈Ji,w

βi,w(j) · Hλ(Si | T2,i, J0 = j, W = w)

=
∑

j∈J0,n

λJ0|UW(j | u, w) · H(λSi | T2,i, J0 = j, W = w) (F.8)

∑
j∈Ji,w

βi,w(j) · Hλ(Si | T1,i, T2,i, J0 = j, W = w)

=
∑

j∈J0,n

λJ0|UW(j | u, w) · Hλ(Si | T1,i, T2,i, J0 = j, W = w) (F.9)

∑
j∈Ji,w

βi,w(j) · Iλ(T1,i; T2,i | J0 = j, W = w)

=
∑

j∈J0,n

λJ0|UW(j | u, w) · Iλ(T1,i; T2,i | J0 = j, W = w) (F.10)
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and that for every triple (s, t1, t2) in S × T1 × T2 other than (s′, t′1, t′2)∑
j∈Ji,w

βi,w(j) · λSiT1,iT2,i|J0,W(s, t1, t2 | j, w)

=
∑

j∈Ji,w

λJ0|UW(j | i, w) · λSiT1,iT2,i|J0W(s, t1, t2 | j, w). (F.11)

(Again, because probabilities sum to 1, Equality (F.11) must also hold when (s, t1, t2) equals (s′, t′1, t′2).)
These conditions guarantee that the conditional entropies H(Si | W = w), H(Si | T1,i, T2,i, W = w), and
the conditional joint PMF on (T1,i, T2,i, S) given W = w are the same under the PMF

βSi,T1,iT2,iJ0|W(s, t1, t2, j | w) = βi,w(j) · λSiT1,iT2,i|J0,W(s, t1, t2 | j, w) (F.12)

and

λSiT1,iT2,iJ0|W(s, x, y, j | w). (F.13)

These guarantee that the terms in (4.57) do not change when we replace λ with the above β. �
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