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Abstract—A single-letter expression is provided for the
exponential growth rate of the least expected number of guesses
required to recover all the sequences produced by correlated
memoryless sources when each guess is of a single source
sequence, with the source at the guesser’s discretion.

I. INTRODUCTION AND PROBLEM STATEMENT

X1 =
(
X1,1, . . . , X1,n

)
...

...
...

Xk =
(
Xk,1, . . . , Xk,n

)∼ IIDPX1...Xk

Guesser

“Is X1 = x1?” 7
“Is X3 = x3?” 3
“Is X6 = x6?” 7

...

Fig. 1: Guessing the tuple (X1, . . . ,Xk) ∈ Xn1 × · · · × Xnk
one component at a time.

Each of k correlated memoryless sources produces an
n-length random sequence, with the j-th source producing
the sequence Xj = (Xj,1, . . . , Xj,n) comprising n random
symbols Xj,1, . . . , Xj,n, each of which takes values in the
finite alphabet Xj . The n k-tuples {(X1,i, . . . , Xk,i)}ni=1 are
IID according to some joint PMF PX1...Xk on X1× · · ·×Xk:(

X1, . . . ,Xk

)
∼ P×nX1...Xk

, (1)

where P×n denotes the n-fold product of P .
All k source sequences X1, . . . ,Xk are to be guessed with

guesses of the form

“Is Xj = (ξ1, . . . , ξn)?” (2)

where the source j pertaining to the guess is at the guesser’s
discretion as is the n-tuple ξ = (ξ1, . . . , ξn), which, without
loss of optimality, can be restricted to be an element of Xnj .
To simplify notation, we shall assume that the alphabets
X1, . . . ,Xk are disjoint and that ξ is in Xn1 ∪ · · · ∪ Xnk .
Under this assumption, ξ specifies not only the guess but also,
implicitly, which source is being guessed.

Given a guessing strategy S, let Gl denote the number
of guesses taken until the l-th affirmative answer, i.e., until

l components of (X1, . . . ,Xk) are revealed. The total number
of guesses required to recover (X1, . . . ,Xk) is therefore Gk.
This can be viewed as the total number of guesses an attacker
would need to recover k correlated passwords by trial and
error. In Section II we characterize, for ρ ≥ 0, the least
achievable exponential growth rate of E[Gρk] over all guessing
strategies:

Theorem 1. When {(X1,i, . . . , Xk,i)}ni=1 ∼ IIDPX1...Xk ,

lim
n→∞

min
S

1

n
logE[Gρk]

= sup
QX1...Xk

(
ρmin

π
max
i

HQ
(
Xπ(i) | Xπ(1), . . . , Xπ(i−1)

)
−D(QX1...Xk‖PX1...Xk)

)
, ρ ≥ 0, (3)

where HQ(·) denotes the Shannon entropy w.r.t. QX1...Xk ; on
the left-hand side (LHS) the minimum is over all guessing
strategies S; and on the right-hand side (RHS) the supremum
is over all PMFs QX1...Xk on X1 × · · · × Xk, and the
minimum over all permutations π : [1 : k]→ [1 : k].

Guesser

(X1, . . . ,Xk)

Helper

M = ϕ(X1, . . . ,Xk)

“Is X5 = x5?” 7
“Is X3 = x3?” 7
“Is X4 = x4?” 3

...

Fig. 2: Guessing (X1, . . . ,Xk) with a helper.

Another setting we study is with a rate-R helper ϕ,

ϕ : Xn1 × · · · × Xnk → {0, 1}nR

(X1, . . . ,Xk) 7→M

(4)

whose nR-bit description M of (X1, . . . ,Xk) is revealed to
the guesser prior to guessing. The guesser’s strategy—now
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depending on M—is denoted S(M) and the number of
guesses until the l-th affirmative answer Gl(M).

In Section III we characterize, for ρ ≥ 0, the least achievable
exponential growth rate of E[Gk(M)ρ] over all helpers and
guessing strategies:

Theorem 2. When {(X1,i, . . . , Xk,i)}ni=1 ∼ IIDPX1...Xk ,
and M takes values in {0, 1}nR,

lim
n→∞

min
ϕ,S(M)

1

n
logE[Gk(M)ρ]

= sup
QX1...Xk

inf
QU|X1...Xk

: IQ(X1,...,Xk;U)≤R(
ρmin

π
max
i

HQ
(
Xπ(i) | Xπ(1), . . . , Xπ(i−1), U

)
−D(QX1...Xk‖PX1...Xk)

)
, ρ ≥ 0, (5)

where on the LHS the minimum is over all nR-bit helpers ϕ
(as defined in (4)) and over all helper-dependent guessing
strategies S(M); and on the RHS the supremum is over
all PMFs QX1...Xk on X1 × · · · × Xk, the infimum is over
the conditional PMFs QU |X1...Xk on U × X1 × · · · × Xk
satisfying the mutual information constraint (calculated w.r.t.
QX1...Xk ◦ QU |X1...Xk ), where U can be any finite alphabet,
and the minimum is over all permutations π on [1 : k].

When the sources producing X1, . . . ,Xk are independent,
our guessing problem reduces to the multi-user guesswork
problem studied by Christiansen et al. [1]; when k = 1,
our guessing problem reduces to that of Massey [2] and
Arıkan [3]. Other variations on the Massey-Arıkan problem
include guessing with side-information [3]; guessing subject
to source uncertainty [4]; guessing with a distortion criterion
[5], [6]; distributed randomized guessing [7]; and guessing on
the Gray-Wyner and Slepian-Wolf network [8].

II. GUESSING WITHOUT A HELPER

Achievability. We first prove the direct part of Theorem 1
by constructing a sequence of guessing strategies for which
lim supn→∞

1
n logE[Gρk] is upper-bounded by the RHS of (3).

For brevity, we restrict our analysis to ρ = 1.
We begin with some notation. For a positive integer n and

a size-l subset of indices {i1, . . . , il} ⊆ [1 : k], the set of all
denominator-n types (rational PMFs with denominator n) on
Xi1 ×· · ·×Xil is denoted Pn(Xi1 ×· · ·×Xil). The empirical
distribution of a tuple (xi1 , . . . ,xil) ∈ Xni1 × · · · × X

n
il

is
denoted Q̂xi1 ,...,xil

, so

Q̂xi1 ,...,xil
(xi1 , . . . , xil)

,
1

n
N(xi1 , . . . , xil | xi1 , . . . ,xil), (6)

where N(xi1 , . . . , xil | xi1 , . . . ,xil) denotes the number of
occurrences of (xi1 , . . . , xil) in (xi1 , . . . ,xil). The type class
of a type Q ∈ Pn(Xi1 × · · · × Xil) is denoted T n(Q), so

T n(Q) ,
{
(xi1 , . . . ,xil) ∈ Xni1 × · · · × X

n
il
:

Q̂xi1 ,...,xil
= Q

}
. (7)

Given a tuple (xi1 , . . . ,xil) ∈ Xni1 × · · · × X
n
il

and a type
Q̃ ∈ Pn(Xi1 × · · · × Xil × Xil+1

), the conditional type class
of Q̃ given (xi1, . . . ,xil) is denoted T n(Q̃ | xi1 , . . . ,xil), so

T n(Q̃ | xi1 , . . . ,xil)
,
{
xil+1

∈ Xnil+1
: Qxi1 ,...,xil ,xil+1

= Q̃
}
. (8)

Finally, if Q ∈ Pn(Xi1 × · · · × Xil), then EQ[·] denotes
expectation with (Xi1, . . .,Xil) drawn equiprobably from the
type class T n(Q).

To prove the direct part of Theorem 1, we proceed in
three steps: first, we show that w.l.o.g. the guesser can be
assumed cognizant of the empirical distribution Q̂X1,...,Xk

of (X1, . . . ,Xk); second, for every n and every empirical
distribution Q ∈ Pn(X1 × · · · × Xk) that (X1, . . . ,Xk) can
assume, we construct a guessing strategy SQ; and third, we
show that, under SQ̂X1,...,Xk

, the exponential growth rate of
the expected number of guesses is upper-bounded by the RHS
of (3).

The first step follows from an argument analogous to that
in Proposition 6.9 in [9] with

X ← (X1, . . . ,Xk), Y ← Q̂X1,...,Xk
. (9)

It guarantees the existence of a guessing strategy S∗ whose
expected number of guesses E[G∗k] satisfies

E[G∗k] ≤ |Pn(X1 × · · · × Xk)| ·min
ST

E[Gk], (10)

where the minimum on the RHS is over all type-cognizant
guessing strategies ST (i.e., guessing strategies that may
depend on Q̂X1,...,Xk

). Because the number of types
|Pn(X1 × · · · × Xk)| is subexponential in n [9, Thm. 2.11],

1

n
logE[G∗k] ≤ min

ST

1

n
logE[Gk] + δn, (11)

where {δn} is some suitable positive sequence that decays
to zero as n tends to infinity. It thus suffices to construct a
type-cognizant guessing strategy S∗T whose expected number
of guesses grows exponentially at a rate not exceeding the
RHS of (3).

To that end, we now proceed to the second step of the proof
and condition on the event

A(Q) , {Q̂X1,...,Xk
= Q}. (12)

Because {(X1,i, . . . , Xk,i)}ni=1 are IID, (X1, . . . ,Xk) is
distributed equiprobably over T n(Q) given A(Q),

Pr
[
(X1, . . . ,Xk) = (x1, . . . ,xk) | A(Q)

]
=

{
1

|T n(Q)| , if Q̂x1,...,xk = Q

0, else.
(13)

We next fix a permutation π : [1 : k] → [1 : k] and propose
the following guessing strategy for (X1, . . . ,Xk) distributed
according to (13) (below, we interchangeably use Qi1,...,il and
QXi1 ,...,Xil to denote the {Xi1 , . . . , Xil}-marginal of Q):
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Guessing Strategy SπQ
Recover Xπ(1) using an arbitrary guessing order on
T n(Qπ(1)).
for i← 2 to k do

Recover Xπ(i) using an arbitrary guessing order on
T n(Qπ(1),...,π(i) |Xπ(1), . . . ,Xπ(i−1)).

end for

The strategy SπQ corresponds to guessing the sequences
X1, . . . ,Xk one-by-one in the order determined by π
exploiting the fact that

Xπ(i) ∈ T n(Qπ(1),...,π(i) |Xπ(1), . . . ,Xπ(i−1)), (14)

which guarantees that Xπ(i) is revealed after at most
|T n(Qπ(1),...,π(i) |Xπ(1), . . . ,Xπ(i−1))| guesses. Thus,

EQ[Gk]

=

k∑
i=1

EQ[Gi]− EQ[Gi−1] (15)

≤
k∑
i=1

EQ
[∣∣T n(Qπ(1),...,π(i) |Xπ(1), . . . ,Xπ(i−1))

∣∣] (16)

≤
k∑
i=1

2nHQ(Xπ(i)|Xπ(1),...,Xπ(i−1)) (17)

≤ k · 2n(maxi HQ(Xπ(i)|Xπ(1),...,Xπ(i−1))) (18)

where in (15) we have implicitly defined G0 , 0; and (17)
follows from [9, Thm. 2.31]. Optimizing over π leads to
a guessing strategy S∗Q whose expected number of guesses
EQ[G∗k] satisfies

EQ[G∗k] ≤ 2n(minπ maxi HQ(Xπ(i)|Xπ(1),...,Xπ(i−1))+δ
′
n). (19)

Next, we proceed to the third and final part of the proof.
Define the type-cognizant guessing strategy S∗T , S∗Q̂X1,...,Xk

,
namely, the strategy where the guesser observes the empirical
distribution of (X1, . . . ,Xk) (justified in Step 1) and then
applies the corresponding guessing strategy constructed in
Step 2. We show that, when (X1, . . . ,Xk) ∼ P×nX1,...,Xk

, the
expected number of guesses under S∗T , namely E[G∗k], grows
exponentially at a rate not exceeding the RHS of (3). Indeed,
averaging over A(Q), Q ∈ Pn(X1×· · ·×Xk) and using (19),

E[G∗k]

=
∑
Q

EQ[G∗k] Pr[A(Q)] (20)

≤
∑
Q

(
2n(minπ maxi HQ(Xπ(i)|Xπ(1),...,Xπ(i−1))+δ

′
n)

Pr[A(Q)]
)

(21)

≤
∑
Q

(
2n(minπ maxi HQ(Xπ(i)|Xπ(1),...,Xπ(i−1))+δ

′
n)

2−nD(Q‖PX1...Xk
)
)

(22)

≤ max
Q

(
2n(minπ maxi HQ(Xπ(i)|Xπ(1),...,Xπ(i−1))+δ

′
n)

2−nD(Q‖PX1...Xk
)
)
2nδn , (23)

where (22) follows from [9, Thm. 2.21]; and in (23) we have
upper-bounded the sum by the product of the largest addend
and the number of addends (number of types), with the latter’s
contribution to the exponential growth δn vanishing as n ↑ ∞
(cf. (11)). Taking the limit and the logarithm on both sides
of (23), and using the fact that the set of types is dense in the
set of all PMFs, we conclude that for the proposed guessing
strategy S∗T

lim sup
n→∞

1

n
logE[G∗k]

≤ sup
QX1...Xk

(
min
π

max
i

HQ
(
Xπ(i) | Xπ(1), . . . , Xπ(i−1)

)
−D(QX1...Xk‖PX1...Xk)

)
, (24)

which concludes the proof of the direct part of Theorem 1.
Converse. We next prove the converse part of Theorem 1,

namely, that for any sequence of guessing strategies,
lim infn→∞

1
n logE[Gk] is lower-bounded by the RHS of (3)

(with ρ = 1). Our proof proceeds in two steps: first, we show
that when (X1, . . . ,Xk) is equiprobable over a type class
T n(Q), every guessing strategy requires on average at least

2n(minπ maxi HQ(Xπ(i)|Xπ(1),...,Xπ(i−1))−δn) (25)

guesses to recover (X1, . . . ,Xk); second, by applying (25)
in conjunction with the law of total expectation, we show that
when (X1, . . . ,Xk) ∼ P×nX1...Xk

, the RHS of (3) lower-bounds
the exponential growth rate of the expected number of guesses
of any guessing strategy. The first step is based on the
following lemma, which we state without proof.

Lemma 1. Let {i1, . . . , il} be a size-l subset of [1 : k]
and {il+1, . . . , ik} its complement w.r.t. [1 : k]. Suppose
(X1, . . . ,Xk) is drawn equiprobably from a type class T n(Q)
and the l-tuple (Xi1 , . . . ,Xil) revealed to a guesser. Then,
the expected number of guesses EQ[Gl+1 −Gl] until some
component in the remaining (k− l)-tuple (Xil+1

, . . . ,Xik) is
revealed satisfies

min
S

1

n
logEQ[Gl+1 −Gl]

≥ min
j∈[l+1:k]

HQ(Xij | Xi1 , . . . , Xil)− δn, (26)

where {δn} is a positive sequence depending on |X1×· · ·×Xk|
and k only that decays to zero as n tends to infinity.

To apply Lemma 1, fix a permutation π∗ on [1 : k] such
that HQ(Xπ∗(1)) = mini∈[1:k] H(Qi) and such that for every
i ∈ [2 : k],
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HQ(Xπ∗(i) | Xπ∗(1), . . . , Xπ∗(i−1))

= min
j∈{1,...,k}\
{π∗(1),...,π∗(i−1)}

HQ(Xj | Xπ∗(1), . . . , Xπ∗(i−1)). (27)

That is, π∗(1) equals i if Xi is the component of least entropy
under Q; π∗(2) equals i if Xi is the component of least
conditional entropy given Xπ∗(1); and so forth. By Lemma 1,
the expected number of guesses until the first affirmative
answer EQ[G1] satisfies

EQ[G1] ≥ 2n(HQ(Xπ∗(1))−δn), (28)

so the expected total number of guesses EQ[Gk] satifies

EQ[Gk] ≥ EQ[G1] ≥ 2n(HQ(Xπ∗(1))−δn). (29)

We now argue that—starting from any strategy—(29) implies
that without increasing its exponent, the guesser may employ a
modified guessing scheme that first guesses Xπ∗(1) followed
by the original strategy with Xπ∗(1) now assumed known.
Indeed, the expected number of guesses of the modified
scheme is larger than that of the original strategy by at most
|T n(Qπ∗(1))| and can therefore be upper-bounded by

EQ[Gk] + 2nHQ(Xπ∗(1)). (30)

Because the exponential growth rate of a sum is dominated
by that of the larger addend, (29) implies that

lim inf
n→∞

1

n
log
(
EQ[Gk] + 2nHQ(Xπ∗(1))

)
= lim inf

n→∞

1

n
logEQ[Gk], (31)

and we can thus assume without loss of optimality that the
guesser first recovers Xπ∗(1). With Xπ∗(1) known, another
application of Lemma 1 yields

EQ[Gk −G1] ≥ EQ[G2 −G1] (32)

≥ 2n(HQ(Xπ∗(2)|Xπ∗(1))−δn), (33)

and as above, we conclude that without loss of optimality, the
guesser recoversXπ∗(2) afterXπ∗(1). Proceeding this way, we
find that when (X1, . . . ,Xk) is equiprobable over T n(Q), it is
optimal (w.r.t. to minimizing the exponential growth rate of the
expected total number of guesses) to guess its components in
the order determined by π∗. Thus, for every guessing strategy,

EQ[Gk] ≥ 2n(maxi HQ(Xπ∗(i)|Xπ∗(1),...,Xπ∗(i−1))−δn). (34)

Recall from (19) that, when guessing the components of
(X1, . . . ,Xk) one-by-one in the order determined by a
permutation π on [1 : k], the expected total number of guesses
EQ[Gk] satisfies

EQ[Gk] ≤ 2n(maxi HQ(Xπ(i)|Xπ(1),...,Xπ(i−1))+δn). (35)

In both (34) and (35) δn ↓ 0, so the two together imply:

Remark 1. The permutation π∗ minimizes

max
i

HQ(Xπ(i) | Xπ(1), . . . , Xπ(i−1)) (36)

over all permutations π : [1 : k]→ [1 : k].

Inequality (34) establishes the first step of the converse
proof of Theorem 1. Returning to the actual setting with
(X1, . . . ,Xk) ∼ P×nX1,...,Xk

, we conclude the proof by taking
the average over the events A(Q) of (12) and invoking (34):

E[Gk]

=
∑
Q

EQ[Gk] Pr[A(Q)] (37)

≥
∑
Q

(
2n(maxi HQ(Xπ∗(i)|Xπ∗(1),...,Xπ∗(i−1))−δn)

Pr[A(Q)]
)

(38)

=
∑
Q

(
2n(minπ maxi HQ(Xπ(i)|Xπ(1),...,Xπ(i−1))−δn)

Pr[A(Q)]
)

(39)

≥
∑
Q

(
2n(minπ maxi HQ(Xπ(i)|Xπ(1),...,Xπ(i−1))−δn)

2−n(D(Q‖PX1...Xk
)+δ′n)

)
(40)

≥ max
Q

(
2n(minπ maxi HQ(Xπ(i)|Xπ(1),...,Xπ(i−1))−δn)

2−n(D(Q‖PX1...Xk
)+δ′n)

)
, (41)

where (39) is due to Remark 1; (40) is due to [9, Thm. 2.21];
and in (41) we have dropped all terms in the sum but the
largest. Taking the limit and the logarithm on both sides of
(41), and using the fact that the set of types is dense in set of
all PMFs,

lim inf
n→∞

1

n
logE[Gk]

≥ sup
QX1...Xk

(
min
π

max
i

HQ
(
Xπ(i) | Xπ(1), . . . , Xπ(i−1)

)
−D(QX1...Xk‖PX1...Xk)

)
, (42)

concluding the proof of the converse part of Theorem 1. �

III. GUESSING WITH A HELPER

In this section we prove Theorem 2. For lack of space and
the similarity of the arguments to those in Section II, we only
present an outline and restrict ourselves again to ρ = 1.

Achievability. To prove the direct part of Theorem 2, we
will construct, for every sufficiently large n and every type
Q ∈ Pn(X1 × · · · × Xk), a rate-R helper ϕQ,

ϕQ : T n(Q)→ {0, 1}nR

(X1, . . . ,Xk) 7→MQ

(43)

and a helper-dependent guessing strategy SQ(MQ) satisfying
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lim sup
n→∞

1

n
logEQ[Gk(MQ)]

≤ inf
QU|X1...Xk

: IQ̃(X1,...,Xk;U)≤R

min
π

max
i

HQ̃
(
Xπ(i) | Xπ(1), . . . , Xπ(i−1), U

)
, (44)

where the entropy and mutual information on the RHS of (44)
are computed w.r.t. Q̃ = Q ◦ QU |X1...Xk , and where the
argument MQ = ϕQ(X1, . . . ,Xk) in SQ(MQ) and Gk(MQ)
emphasizes the dependence of the guessing strategy on the
helper.

The pair
(
ϕQ, SQ(MQ)

)
is applied as follows: When

(X1, . . . ,Xk) ∼ P×nX1,...,Xk
, the guesser is first revealed the

empirical distribution Q̂X1,...,Xk
of (X1, . . . ,Xk) and the

helper’s description M , ϕQ̂X1,...,Xk
(X1, . . . ,Xk), i.e., the

result of applying the mapping (43) to (X1, . . . ,Xk) with
Q ← Q̂X1,...,Xk

. Given Q̂X1,...,Xk
and M , the guesser

follows the strategy SQ̂X1,...,Xk
(M) to recover (X1, . . . ,Xk).

The direct part of Theorem 2 will follow from (44) by
averaging over the events A(Q) (as in (20)–(23) of Section II.)
It thus suffices to construct a helper ϕQ and a guessing strategy
SQ(MQ) satisfying (44). To that end we shall need the Type
Covering Lemma [9, Lemma 2.34]. It guarantees that for
R > ε > 0, a finite auxiliary alphabet U , a sufficiently large
n, and any type Q̃ ∈ Pn(X1, . . . ,Xk,U) satisfying

IQ̃(X1, . . . , Xk;U) ≤ R− ε, (45)

the type class T n(Q̃X1,...,Xk) can be covered by 2nR

sequences from T n(Q̃U ) in the sense that every (x1, . . . ,xk)
in T n(Q̃X1,...,Xk) is assigned some u ∈ T n(Q̃U ) such that
the empirical distribution of (x1, . . . ,xk,u) equals Q̃. We
denote such a cover by C(Q̃) ⊆ T n(Q̃U ). We now construct a
helper using the Type Covering Lemma as follows: We fix an
auxiliary alphabet U and a small ε > 0, choose a conditional
type Q∗U |X1,...,Xk

that minimizes

min
π

max
i

HQ̃
(
Xπ(i)|Xπ(1), . . . , Xπ(i−1), U

)
(46)

over all Q̃ = Q ◦QU |X1,...,Xk satisfying (45), and define

Q̃∗ , Q ◦Q∗U |X1...,Xk
. (47)

The helper ϕQ describes to the guesser some U ∈ C(Q̃∗) such
that Q̂X1,...,Xk,U = Q̃∗. Note that the Type Covering Lemma
guarantees both the existence of U and the fact that nR bits
suffice to describe it.

Based on the helper’s description U , we next construct
the guessing strategy SQ(MQ) (where MQ = U ). The
construction is analogous to that of S∗(Q) in Section II: We
choose a permutation π∗ determined by Q̃∗ that minimizes

max
i

HQ̃∗
(
Xπ(i) | Xπ(1), . . . , Xπ(i−1), U

)
, (48)

and the guesser recovers Xπ∗(1), . . . ,Xπ∗(k) one-by-one.
Since (X1, . . . ,Xk,U) ∈ T n(Q̃∗),

EQ[Gi(M)−Gi−1(M)]

≤ 2nHQ̃∗ (Xπ∗(i)|Xπ(1),...,Xπ∗(i−1),U), (49)

and (44) follows from a chain of inequalities analogous to that
in (15) to (18). Letting ε ↓ 0 concludes the proof of the direct
part of Theorem 2. To prove the converse part of Theorem 2,
we rely on the following lemma that we state without proof:

Lemma 2. Let (X1, . . . ,Xk) be equiprobable over a type
class T n(Q). Given a guessing strategy, a rate-R helper ϕ,
and a positive constant ε, define

Ei ,
1

n
logEQ[Gi(M)−Gi−1(M)] + ε, i ∈ [1 : k]. (50)

There exists a positive decaying sequence {δn} (depending on
|X1 × · · · × Xk| and k only), a permutation π on [1 : k], and
k encoders,

φi : Xn1 × · · · × Xnk → {0, 1}nEi , i ∈ [1 : k], (51)

with corresponding decoders,

ψi :
(
{0, 1}nEi ×Xnπ(i−1) × · · · × X

n
π(1)

× {0, 1}nR
)
→ Xnπ(i), i ∈ [1 : k], (52)

such that for all i ∈ [1 : k], with probability 1− δn

ψi

(
φi(X1, . . . ,Xk),Xπ(i−1), . . . ,Xπ(1),

ϕ(X1, . . . ,Xk)
)
=Xπ(i). (53)

Using Lemma 2, one can show that
1

n
logEQ[Gk(M)]

≥ max
i

1

n
logEQ[Gi(M)−Gi−1(M)] (54)

≥ inf
QU|X1...Xk

: IQ̃(X1,...,Xk;U)≤R

min
π

max
i

HQ̃
(
Xπ(i) | Xπ(1), . . . , Xπ(i−1), U

)
− δ′n, (55)

where Q̃ = Q ◦QU |X1,...,Xk . The converse part of Theorem 2
follows from (55) by averaging over the events A(Q) as in
(37) to (41). �
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