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Abstract—To study the fundamental limits on the joint trans-
mission of data of different levels of sensitivity, we establish
the deterministic-code capacity region of a network with one
transmitter and two receivers: an “ordinary receiver” and a
“robust receiver.” The channel to the ordinary receiver is a given
(known) discrete memoryless channel, whereas the channel to the
robust receiver is an arbitrarily varying channel. Both receivers
are required to decode the “common message” (the more sensitive
data), whereas only the ordinary receiver is required to decode
the “private message” (the less sensitive data).

I. INTRODUCTION

Data of two levels of sensitivity are to be jointly trans-
mitted over a noisy channel. Only the sensitive data must be
transmitted robustly with respect to the channel law; the less
sensitive data need only be decodable when the channel has
some nominal law. We model this scenario using the broadcast
channel of Figure 1, where the channel from the transmitter to
one receiver—the “robust receiver”—is an arbitrarily varying
channel (AVC) [1], [2] and to the other receiver—the “ordinary
receiver”—has some nominal law W(y|x). Both receivers
must decode the rate-Rc common message (the sensitive data),
and only the ordinary receiver must recover the rate-Rp private
message (the less sensitive data). The set of rate pairs (Rc, Rp)
that can be communicated reliably under these requirements
is the capacity region, which we derive here.

The scenario where one receiver must recover both streams
and the other only one, falls under the heading of degraded
message sets. The capacity region of the broadcast channel
with degraded message sets was established by Körner and
Marton in [3]. But their model differs from ours because
their broadcast channel is fixed and given: there is nothing
“varying” about it. The general arbitrarily varying broadcast
channel with degraded message sets was studied by Hof and
Bross in [4].

Our network can be viewed as an arbitrarily varying broad-
cast channel (AVBC) of a special kind: one where the channel
to one of the receivers is degenerate in the sense of being given
and not depending on the state. General AVBCs where studied
by Jahn [5] who derived an inner bound on their capacity
regions, and our achievability result essentially follows from
his. Our converse shows that in our setting the inner bound is
tight. More recent results on the AVBC for settings with causal
and noncausal side information were obtained by Pereg and
Steinberg [6]–[8], see [9] for other related work.

II. THE MAIN RESULT

A discrete memoryless state-dependent broadcast channel
(X ,Y,Z,S,WY,Z|X,S) consists of a finite input alphabet X ,
finite output alphabets Y and Z , a (not necessarily finite)
state set S, and a collection of transition probability matri-
ces WY,Z|X,S . A semi-AVBC (SAVBC) is a state-dependent
broadcast channel where the conditional law of the output Y
given the input x and the state s does not depend on the
state. For such a channel, we denote the marginal conditional
distributions of the outputs Y and Z given the input x and the
state s by W(y|x) and Vs(z|x) respectively:

W(y|x) = WY |X,S(y|x, s), (1a)
Vs(z|x) = WZ|X,S(z|x, s). (1b)

Given a blocklength n, an input sequence x ∈ Xn, and a state
sequence s ∈ Sn,

WY n,Zn|Xn,Sn(y, z|x, s) =
n∏

i=1

WY,Z|X,S(yi, zi|xi, si), (2)

where (y, z) ∈ Yn ×Zn.
We consider the transmission from degraded message sets:

the encoder sends a common message mc to both receivers and
a private message mp to the receiver observing Y . The receiver
observing Z is thus only required to decode the common
message.

Given a blocklength n, a deterministic code C for the
SAVBC consists of a common message set Mc with 2nRc

messages, a private message set Mp with 2nRp messages, an
encoder mapping

f : Mc ×Mp → Xn, (3)

and decoding mappings

φy : Yn →Mc ×Mp (4a)
φz : Zn →Mc. (4b)

The message-averaged probability of error of a code C given
a state sequence s ∈ Sn is

P
(n)
e|s (C) =

1

|Mc||Mp|
∑

(mc,mp)∈Mc×Mp

∑
(y,z)6∈D(mc,mp)

WY n,Zn|Xn,Sn(y, z|x, s), (5)
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Fig. 1. The semi-arbitrarily-varying broadcast channel (semi-AVBC) with common message mc, private message mp, and state sequence s ∈ Sn.

where

D(mc,mp) ={
(y, z) ∈ Yn ×Zn : φy(y) = (mc,mp), φz(z) = mc

}
. (6)

We say that the rate pair (Rc, Rp) is achievable with deter-
ministic codes, if there exists a sequence of codes {Cn} with
rates (Rc, Rp) such that

lim
n→∞

sup
s∈Sn

P
(n)
e|s (Cn) = 0. (7)

The deterministic-code capacity Cdet (under the average-
probability-of-error criterion) is the closure of the set of rate
pairs that are achievable with deterministic codes.

As in [10, Corollary 12.3], it can be shown that the capacity
region depends on the states only via the convex-closure of
the channels they induce. We shall thus make the following
assumption without any loss of generality:

Assumption: We assume throughout that {Vs(z|x)}s∈S is
compact1 and convex in the sense that for every 0 < λ < 1
and s1, s2 ∈ S, there exists a state s̄ ∈ S such that

Vs̄(z|x) = λVs1(z|x) + (1− λ)Vs2(z|x), (8)

for all (x, z) ∈ X × Z .

Following [5, Remark IIB2] or using a time-sharing argu-
ment we note:

Remark 1. The interior of Cdet is nonempty if, and only if,
the capacity of the channel W(y|x) to Y and the capacity
(under the average-probability-of-error criterion) of the AVC
to Z are both positive. The latter is positive if, and only if,
the AVC is nonsymmetrizable [11], [12].

We next define the region C
(I)
det that will turn out to equal

the capacity region when the latter is nonempty. It is defined
as the closure of the union over all PMFs pU,X of the set of
rate pairs (Rc, Rp) that satisfy

Rc ≤ min
s∈S

I(U ;Z) (9a)

Rp ≤ I(X;Y |U) (9b)
Rc +Rp ≤ I(X;Y ), (9c)

1If the set {Vs(z|x)}s∈S is not compact our result still holds, but with
infima replacing the minima in the characterizations of the capacity region.

where the mutual informations are computed w.r.t. the joint
distribution

pU,X(u, x)W(y|x)Vs(z|x), (10)

and where U is an auxiliary chance variable taking values in
a finite set U . Our main result is the following theorem.

Theorem 2. Under the above assumption, if the interior of
the deterministic-code capacity Cdet of a SAVBC is nonempty,
then it equals C

(I)
det :(

interior
(
Cdet
)
6= ∅
)

=⇒
(
Cdet = C

(I)
det

)
. (11)

III. PROOF OUTLINE OF THE MAIN RESULT

The achievability result—that Cdet 6= ∅ implies that every
rate pair (Rc, Rp) satisfying (9) for some pU,X is achievable—
follows directly from Jahn [5, Theorem 2]. We therefore focus
on the converse, i.e., on showing that the achievability of a rate
pair (Rc, Rp) implies that it lies in C

(I)
det . But before proving

this, we study C
(I)
det . The proofs of the following propositions

are available in [13].

Proposition 3. The region C
(I)
det can also be expressed as the

closure of the union over all PMFs pU,X,Q of the set of rate
pairs (Rc, Rp) that satisfy

Rc ≤ min
s∈S

I(U ;Z|Q) (12a)

Rp ≤ I(X;Y |U,Q) (12b)
Rc +Rp ≤ I(X;Y |Q), (12c)

where the mutual informations are computed w.r.t. the joint
distribution

pU,X,Q(u, x, q)W(y|x)Vs(z|x), (13)

and where U and Q are auxiliary chance variables taking
values in the finite sets U and Q.

From Proposition 3 we obtain:

Proposition 4. The region C
(I)
det is a compact convex set

containing the rate pairs(
min

{
CSh(W),min

s∈S
CSh(Vs)

}
, 0
)

(14a)
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and (
0, CSh(W)

)
, (14b)

where CSh(W) denotes the Shannon capacity of the chan-
nel W. Moreover, C

(I)
det is included in the triangle with vertices

(0, 0), (CSh(W), 0), (0, CSh(W)). (15)

We next provide one last characterization of C
(I)
det . To that

end, let C
(O)
det denote the set of rate pairs (Rc, Rp) that satisfy

Rc ≤ min
s∈S

I(U ;Z|Q) (16a)

Rp +Rc ≤ I(X;Y |U,Q) + min
s∈S

I(U ;Z|Q) (16b)

Rp +Rc ≤ I(X;Y |Q), (16c)

for some PMF pU,X,Q, where the mutual informations are
computed w.r.t. the joint PMF of (13). The inequalities in
the definition of C

(O)
det thus differ from those in (12) in that

we have replaced (12b) with (16b). As it turns out, this
replacement does not change the region, and C

(O)
det = C

(I)
det .

Proposition 5. The region C
(O)
det , which is defined in (16), is

equal to C
(I)
det :

C
(O)
det = C

(I)
det . (17)

The converse is then established by proving that no rate pair
outside C

(O)
det is achievable [13].

IV. EXAMPLE

Consider the binary symmetric semi-arbitrarily-varying
broadcast channel (BS-SAVBC), where the channel to Y
is a BSC(p), i.e., a binary symmetric channel (BSC) with
crossover probability p, and the channel to Z is a BSC with a
state-dependent crossover probability between pmin and pmax.
The state alphabet S is the closed interval [pmin, pmax], and
we identify a state s ∈ S with its corresponding crossover
probability ps. Thus, when the state is s, the channel from X
to Z is a BSC(ps). We focus on the case2

0 ≤ p < 1/2 (18)
0 ≤ pmin ≤ pmax < 1/2. (19)

In this case the capacity of the DMC to Y and of the
AVC to Z are both positive (c.f. [11], [12]), and therefore
(by Remark 1 and Theorem 2) the capacity region of the
BS-SAVBC is C

(I)
det . Evaluating (9) for the joint PMF pU,X

under which

U ∼ Bernoulli(1/2) (20a)
V ∼ Bernoulli(α) (20b)
X = U + V mod 2, (20c)

2When p equals 1/2 the capacity from X to Y is zero, and if we exclude
this case, then—by possibily inverting Y —we can guarantee that p be in
[0, 1/2). Likewise, if the interval [pmin, pmax] includes 1/2, then the capacity
of the AVC from X to Z is zero. And if this is excluded, then—again by
possibly inverting Z—we can restrict ourselves to the case where this interval
is a subset of [0, 1/2).

1−Hb(p)
Rc

1−Hb(p)

Rp

Fig. 2. The boundary of the capacity region of the binary symmetric
semi-arbitrarily varying broadcast channel for various values of pmax > p.
The capacity region shrinks (and eventually has an empty interior) as pmax
increases to 1/2. If pmax ≤ p, the capacity region is the triangle defined by
the sum-rate constraint Rc +Rp ≤ 1−Hb(p).

proves that C
(I)
det contains all the rate pairs (Rc, Rp) satisfying

Rc ≤ min
s∈S

(
1−Hb(α ∗ ps)

)
(21a)

Rp ≤ Hb(α ∗ p)−Hb(p) (21b)
Rc +Rp ≤ 1−Hb(p) (21c)

for some α ∈ [0, 1/2]. Here Hb(·) denotes the binary entropy
function, and α ∗ δ , α(1− δ) + (1− α)δ.

For a fixed α ∈ [0, 1/2] the mapping δ 7→ α ∗ δ is nonde-
creasing on (0 < δ < 1/2), and so is Hb(·). Consequently,
the minimum on the RHS of (21a) is achieved when ps equals
pmax, and (21) simplifies to

Rc ≤ 1−Hb(α ∗ pmax) (22a)
Rp ≤ Hb(α ∗ p)−Hb(p) (22b)

Rc +Rp ≤ 1−Hb(p). (22c)

We next show that C
(I)
det contains no other rate pairs, and that

it thus equals the union over all α ∈ [0, 1/2] of the polytopes
defined by (22). This region is depicted in Figure 2. We do
so by fixing the state to be pmax throughout the block and by
then showing that every achievable rate pair (Rc, Rp) must
satisfy (22) for some α ∈ [0, 1/2]. To this end, we distinguish
between two cases, depending on whether or not p exceeds
pmax.

But first we note that if α ∈ [0, 1/2] then, by the above
monotonicity argument, the relation between p and pmax trans-
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lates to the relation between Hb(α ∗ p) and Hb(α ∗ pmax) as
follows:(

p ≤ pmax

)
⇐⇒

(
Hb(α ∗ p) ≤ Hb(α ∗ pmax)

)
(23a)(

p > pmax

)
⇐⇒

(
Hb(α ∗ p) > Hb(α ∗ pmax)

)
. (23b)

Case I: p ≤ pmax.
In this case fixing the state at pmax results in a stochasti-
cally degraded binary-symmetric broadcast channel (BS-BC),
where Z is a stochastically degraded version of Y . Since
Receiver Y recovers (Mc,Mp), and Receiver Z recovers Mc,
any achievable rate pair (Rc, Rp) must be in the private-
message capacity region of the above BS-BC. The latter is
given by the set of rate pairs (Rc, Rp) that satisfy

Rp ≤ I(X;Y |U) (24a)
Rc ≤ I(U ;Z) (24b)

for some PMF pU,X [14, Theorem 5.2]. For the stochastically
degraded BS-BC with the stronger receiver Y observing the
BSC(p) and the degraded receiver Z observing the BSC(ps),
the capacity region (24) simplifies to the set of rate pairs
(Rc, Rp) that satisfy

Rp ≤ Hb(α ∗ p)−Hb(p) (25a)
Rc ≤ 1−Hb(α ∗ pmax) (25b)

for some α ∈ [0, 1/2] [14, Section 5.4.2]. Since these
inequalities coincide with (22a) and (22b), it follows that
to every rate pair (Rc, Rp) ∈ C

(I)
det there corresponds some

α ∈ [0, 1/2] for which (22a) and (22b) are satisfied. The sum-
rate constraint (22c) is satisfied automatically because, in the
case at hand, (22a) and (22b) imply (22c). Indeed, adding (22a)
and (22b) yields

Rc +Rp ≤ 1−Hb(α ∗ pmax) +Hb(α ∗ p)−Hb(p) (26)
≤ 1−Hb(p), (27)

where the second inequality follows from (23a).
Case II: p > pmax.
In this case fixing the state at pmax again results in a stochas-
tically degraded BS-BC, but in reverse order: now Y is a
degraded version of Z. To show that any achievable rate pair
(Rc, Rp) must satisfy (22), we first note that—since it is now
the weaker receiver, namely Receiver Y , that must recover
both Mc and Mp—the sum-rate Rc +Rp must not exceed the
Shannon capacity of the BSC(p) from X to Y

Rc +Rp ≤ 1−Hb(p). (28)

Every rate pair in C
(I)
det must thus satisfy (28).

We next show that, to every rate pair (Rc, Rp) satisfy-
ing (28), there corresponds some α ∈ [0, 1/2] for which (22)
hold. To see why, note that, for the case at hand, for every
α ∈ [0, 1/2] the pair

Rc = 1−Hb(α ∗ p) (29a)
Rp = Hb(α ∗ p)−Hb(p) (29b)

satisfies (22) (because, by (23b), 1−Hb(α ∗ p) cannot exceed
1−Hb(α ∗ pmax) and (22a) must therefore hold). As we vary
α from 0 to 1/2, the rate pair (29) traces the line Rc +Rp =
1−Hb(p).
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