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Multiplexing Zero-Error and Rare-Error
Communications Over a Noisy Channel

Tibor Keresztfalvi and Amos Lapidoth , Fellow, IEEE

Abstract— Two independent data streams are to be transmitted
over a noisy discrete memoryless channel with noiseless (ideal)
feedback. Errors are tolerated only in the second stream, pro-
vided that they occur with vanishing probability. The rate of
the error-free stream cannot, of course, exceed the channel’s
zero-error feedback capacity, and nor can the sum of the
streams’ rates exceed the channel’s Shannon capacity. Using a
suitable coding scheme, these necessary conditions are shown
to characterize all the achievable rate pairs. Planning for the
worst channel behavior—as is needed to achieve zero-error
communication—and planning for the typical channel behavior—
as is needed to communicate near the Shannon limit—are thus
not incompatible. It is further shown that feedback may be
beneficial for the multiplexing problem even on channels on
which it does not increase the zero-error capacity.

Index Terms— Broadcast channel, erasures-only, feedback,
multiplexing, Shannon capacity, zero-error capacity.

I. INTRODUCTION

TWO independent data streams of rates R0 and Rε are to
be transmitted over a noisy discrete memoryless chan-

nel (DMC) W(y|x) with noiseless (ideal) feedback subject
to two different performance requirements. The decoder is
required to reconstruct the first stream error-free and the sec-
ond with probability of error smaller than some prespecified
(arbitrarily small, but positive) � > 0. We wish to characterize
the pairs (R0, Rε) that can be supported by the channel.

If we set Rε to zero, then R0 can be as high as the channel’s
zero-error feedback capacity C0,FB, which was computed by
Shannon in his 1956 paper on feedback [1], [2]. When positive,
it is given in Shannon’s form as1

C0,FB = max
Q

�
− log max

y∈Y
�

x :W(y|x)>0

Q(x)

�
(1)

or in Ahlswede’s form [3]

C0,FB = max
Q

min
V�W

I (Q; V), (2)

where in both (1) and (2) Q is a probability mass func-
tion (PMF) on the input alphabet X , and where the mini-
mization in (2) is over channels V having the same input and
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Fig. 1. An illustration of the region CFB(W).

output alphabets X and Y as W, and V � W indicates that V
is absolutely continuous with respect to W in the sense that
�
W(y|x) = 0

�
�⇒

�
V(y|x) = 0

�
, (x, y) ∈ X × Y. (3)

If we set R0 to zero, then Rε can be as high as the Shannon
capacity

CSh = max
Q

I (Q; W), (4)

which Shannon derived in 1948 [4] and which is unaffected by
feedback [1]. In fact, since both streams are a fortiori recov-
ered with arbitrarily small probability of error, a necessary
condition for the pair (R0, Rε) to be achievable is

R0 + Rε ≤ CSh. (5a)

And since restricting the receiver to recover an additional
stream cannot help,

R0 ≤ C0,FB. (5b)

Here we will show that strict inequalities in (5) suffice to
guarantee achievability and that the conditions in (5) thus
characterize the capacity region. A generic capacity region
may thus look like the one depicted in Figure 1. This is
true even when—as for the channel depicted in Figure 2—no
single PMF Q on X achieves both the maximum in (1)
and in (4). This result is formalized in the next section and
is proved in Section III via a coding scheme. The scheme
relies heavily on the feedback link, and for a good reason:
the multiplexing capacity region with feedback need not be
achievable without feedback even for channels whose zero-
error feedback capacity is achievable without feedback. This
is shown in Section IV, which addresses the no-feedback case.
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Fig. 2. When 0 < � � 1, the PMF Q maximizing I (Q; W) is nearly
uniform over {α, β, γ }, whereas the Q achieving the maximum in (1) is
uniform over {α,β}.

II. THE MAIN RESULT

Consider a DMC with finite input and output alphabets
X and Y and of transition law W(y|x). Denote its Shannon
capacity CSh or CSh(W) (= max I (X; Y )) [4] and its zero-
error feedback capacity C0,FB or C0,FB(W) [1]. Given a
blocklength n, let M0 denote a set of 2nR0 messages from
which some message m0 is to be transmitted error free, and let
Mε denote a set of 2nRε messages from which some message
mε is to be transmitted with probability of error smaller than �.
A blocklength-n encoder with feedback for the two messages
is a collection of n mappings

fi : M0 × Mε × Y i−1 → X , i = 1, . . . , n (6)

with the understanding that, to convey the pair (m0, mε),
the encoder produces at Time i the channel input

Xi
�
m0, mε, Y i−1� = fi

�
m0, mε, Y i−1�, (7)

where Y i−1 denotes the tuple (Y1, . . . , Yi−1) and stands for
the i −1 channel outputs that, thanks to the feedback link, are
available to the encoder at Time i . A decoder φ = (φ0, φε) is
a pair of mappings

φ0 : Yn → M0 (8a)

φε : Yn → Mε. (8b)

We require that the message m0 be transmitted error-free, i.e.,

max
m0,mε

�
y∈Yn:

φ0(y) �=m0

n	
k=1

W
�
yk



xk(m0, mε, yk−1)
� = 0. (9)

The maximal probability of error λmax associated with the
rare-error stream is

λmax = max
m0,mε

�
y∈Yn:

φε(y) �=mε

n	
k=1

W
�
yk



xk(m0, mε, yk−1)
�
. (10)

We say that a rate pair (R0, Rε) is achievable if for every
� > 0 there exists some n0(�) such that for all block-
lengths n exceeding n0(�) there exist message sets as above
and encoder/decoder pairs as above with rates n−1 log



M0


 ≥

R0 and n−1 log|Mε| ≥ Rε and with λmax < �. Here and
throughout we use |A| to denote the cardinality of the set A.
The multiplexing capacity region CFB(W) is the closure of the
set of all achievable pairs.

Remark 1: The multiplexing capacity region CFB(W) is a
convex set containing the rate pairs (0, CSh) and (C0,FB, 0).

Proof: The convexity can be established using a time-
sharing argument. The details are omitted.

We are now ready to state our main result.
Theorem 2 (The Multiplexing Capacity): The multiplexing

capacity CFB(W) of a DMC W with feedback is the set of
rate pairs (R0, Rε) satisfying (5), where CSh is the channel’s
Shannon capacity and C0,FB is the channel’s zero-error feed-
back capacity.

To prove this theorem, it suffices to consider the case where
C0,FB is positive. In this case the zero-error capacity is also
positive in the absence of feedback, and there exist two inputs
x 
, x 

 ∈ X such that the product W(y|x 
) W(y|x 

) is zero
for all outputs y ∈ Y [1]. Such inputs can be used to send
a single bit error free in one channel use. Theorem 2 clearly
holds when C0,FB equals CSh, so we shall henceforth focus
on channels for which

0 < C0,FB < CSh. (11)

In Section III we will present a coding scheme that can
achieve the pair (C0,FB − δ, CSh − C0,FB − δ) whenever δ is
positive (and the pair is positive). This will demonstrate that
the pair (C0,FB, CSh − C0,FB) is in CFB(W)

(C0,FB, CSh − C0,FB) ∈ CFB(W) (12)

and hence, by Remark 1, also all the rate pairs satisfying (5).2

III. A CODING SCHEME

In this section we fix some δ > 0 and describe a coding
scheme that achieves the pair (C0,FB − δ, CSh − C0,FB − δ).
We denote the blocklength by n, and the maximal-allowed
probability of error in decoding the rare-error stream by � > 0.

The zero-error message set M0 will have the form

M0 = M0,1 × · · · × M0,K (13a)

and a generic zero-error message m0 the form

m0 = �
m0,1, . . . , m0,K

�
, (13b)

where

m0,κ ∈ M0,κ , κ ∈ {1, . . . ,K}. (13c)

We refer to m0,κ as the κ-th zero-error packet and to K as the
number of packets. The zero-error packets are of equal size,
and we denote the number of values each of them can take
by M̃0,

M̃0 = |M0,κ | κ ∈ {1, . . . ,K}. (13d)

The zero-error rate R0 of the scheme is thus

R0 = 1

n
K log M̃0. (13e)

The rare-error message mε is also divided into K packets, so

Mε = Mε,1 × · · · × Mε,K, (14a)

2The example in Section VI shows that—while always in CFB(W)—the pair
(C0,FB, CSh − C0,FB) need not be achievable. Backing off by an arbitrarily
small but positive δ may be necessary.
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with the generic rare-error message mε having the form

mε = �
mε,1, . . . , mε,K

�
, (14b)

where

mε,κ ∈ Mε,κ , κ ∈ {1, . . . ,K} (14c)

is the κ-th rare-error packet. The rare-error packets are of equal
size M̃ε (possibly different from the size of the zero-error
packets),

M̃ε = |Mε,κ | κ ∈ {1, . . . ,K}. (14d)

The scheme’s rare-error rate is thus

Rε = 1

n
K log M̃ε. (14e)

The transmission is split into K+1 phases, each comprising
η + 1 channel uses, except for the last phase whose length ηF

is allowed to exceed η + 1 (by at most η) in order to account
for blocklengths that are not divisible by (K+ 1). Thus, given
a number K of packets and a blocklength n (exceeding K),

η + 1 =
�

n

K + 1

�
(15a)

and

ηF = n − K(η + 1), (15b)

so

η + 1 ≤ ηF < 2η + 2. (15c)

In Phase 1 we use the first η channel uses to transmit the
pair m0,1, mε,1 using a code of maximal probability of error
smaller than �/K. For large η this is possible if

1

η
log

�
M̃0 · M̃ε

�
< CSh − δ

4
. (16)

The (η+1)-th channel use is utilized as a flag to indicate to the
receiver whether or not the tentative decision that the receiver
forms based on the phase’s first η channel outputs is correct.
(Thanks to the feedback link, the transmitter is cognizant of
these channel outputs, and by applying the receiver’s decoding
mappings to these outputs, it can compute the receiver’s
tentative decision. Since we are considering the case where
C0,FB is positive, there exist inputs x, x 
 ∈ X that can be
used to send a single bit error free. The transmitter can use
such inputs to indicate whether or not the tentative decision
is correct.) If not, the receiver discards the tentative decision
and we say that a transmission failure occurred in Phase 1.
Else, the receiver turns the tentative decision into a final one
and we move on to send the pair m0,2, mε,2 in Phase 2 in a
similar fashion.

This continues until either a failure occurs at some
phase κ ≤ K or until Phase K terminates without failure.
In the latter case m0 and mε were transmitted error-free in
the first K phases, and what we send in the last phase is
immaterial. In the former case—which occurs by the union-of-
events bound with probability smaller than �—we enter “panic
mode,” where we give up on sending mε and focus only on m0.

Since no failures occurred prior to Phase κ , the first κ−1 zero-
error packets m0,1, . . . , m0,κ−1 were transmitted error free.
The remaining (K − κ + 1) zero-error packets m0,κ , . . . , m0,K

are then transmitted error-free, using a zero-error feedback
scheme, in the remaining K − κ + 1 phases, namely Phases
(κ + 1) through (K + 1). Here it is critical that the number of
phases (K + 1) exceeds the number of packets (K). The panic
mode is guaranteed to succeed if η is large enough and

1

η
log M̃0 < C0,FB − δ

4
. (17)

We next sketch the choice of the scheme’s parameters,
beginning with K. Its choice will depend only on CSh, C0,FB,
and δ. Once chosen, it will be held fixed as we let the
blocklength tend to infinity. We choose K large enough so
that the rate-loss resulting from the last phase, which does not
always convey information, be negligible. The η/(η + 1) rate
loss resulting from the flags will vanish when n and hence
also η will tend to infinity. We thus choose K so that R0 and
Rε of (13e) and (14e) be only slightly lower than η−1 log M̃0
and η−1 log M̃ε respectively.

More specifically, starting from (13e),

R0 =
� log M̃0

η

��Kη

n

�

=
� log M̃0

η

��n − K − ηF

n

�

>
log M̃0

η

�
1 − K

n
− 2η + 2

n

�

>
log M̃0

η

�
1 − K

n
− 2

K + 1
− 2

n

�

= log M̃0

η

�
1 − K + 2

n
− 2

K + 1

�
, (18a)

where the second line follows from (15b); the third from (15c);
and the fourth from (15a) and the inequality �ξ� > ξ − 1.
Analogously,

Rε >
log M̃ε

η

�
1 − K + 2

n
− 2

K + 1

�
. (18b)

We choose K sufficiently large so that whenever n exceeds
some n0�

C0,FB − δ

2

��
1 − K + 2

n
− 2

K + 1

�
≥ C0,FB − δ (19a)

and�
CSh−C0,FB− δ

2

��
1− K + 2

n
− 2

K + 1

�
≥ CSh − C0,FB − δ.

(19b)

We choose M̃0 and M̃ε based on CSh, C0,FB, δ, and η so
that, for all sufficiently large η,

C0,FB − δ

2
<

log M̃0

η
< C0,FB − δ

4
(20a)

(with the upper bound thus guaranteeing (17)) and

CSh − δ

2
<

log(M̃0 M̃ε)

η
< CSh − δ

4
, (20b)



KERESZTFALVI AND LAPIDOTH: MULTIPLEXING ZERO-ERROR AND RARE-ERROR COMMUNICATIONS OVER A NOISY CHANNEL 2827

(with the upper bound thus guaranteeing (16)) which together
imply that

log M̃ε

η
> CSh − C0,FB − δ

4

> CSh − C0,FB − δ

2
. (20c)

Here (20a) guarantees that—when n is sufficiently large so
as to imply by (15a) that η is sufficiently large—each zero-
error packet be transmittable error-free in η channel uses
using the feedback link. Similarly, (20b) guarantees that, for
sufficiently large blocklengths, each pair of zero-error and
rare-error packets be transmittable in η channel uses with
maximal probability of error smaller that �/K.

As to the scheme’s rates, the inequalities (18), (19), and (20)
imply that the rates of our scheme satisfy (for all sufficiently
large blocklengths)

R0 > C0,FB − δ, (21a)

Rε > CSh − C0,FB − δ. (21b)

This concludes the proof of the achievability part of
Theorem 2.

IV. NO FEEDBACK

Also of interest is the multiplexing capacity in the absence
of feedback, CNo-FB(W), which is defined like CFB(W) but
with the feedback encoder (22) replaced by its no-feedback
counterpart

f : M0 × Mε → X n . (22)

Computing CNo-FB(W) is at least as difficult as computing the
zero-error capacity in the absence of feedback, which is a
longstanding open problem [1], [5], [6]. Here we shall present
two outer bounds. Those will show, inter alia, that CFB(W)
can be strictly larger than CNo-FB(W) even when the zero-error
capacities with and without feedback are identical.

The first bound, the “simple outer bound,” is based on a
connection that we establish next between our problem and
Körner and Marton’s work on the broadcast channel with
degraded message sets [7], [8, Sec. 8.1]. Let W(y|x) and
V(y|x) be DMCs over the finite input and output alphabets X
and Y . If an encoder/decoder pair never errs on the channel W,
and if V � W, then the pair will also not err on the channel V,
because feeding any x to V can only produce outputs that
could have also been produced had x been fed to W. This
observation allows us to obtain outer bounds on CNo-FB(W) in
terms of the capacity region of an auxiliary broadcast channel
that is constructed from W and V as follows: its input X takes
values in the set X ; its two outputs Y , Z take values in the sets
Y and Z , with Z being identical to Y; and—conditional on the
transmitted symbol being x ∈ X—the output Y is distributed
according to W(y|x) and the output Z according to V(z|x).
If the pair (m0, mε) can be multiplexed (without feedback)
on the channel W (with m0 recovered error-free and mε with
probability of error smaller than �), then the pair can also
be transmitted over the broadcast channel (without feedback)
with the observer of Y recovering the pair (with probability of

error smaller than �) and the observer of Z recovering m0. Any
pair (R0, Rε) that can be multiplexed on W without feedback
must hence lie in the degraded message sets capacity region
CBC-DM(W; V) of this broadcast channel [7], [8, Sec. 8.1].

This region is convex and equals the union, over all choices
of the auxiliary chance-variable U and over all the joint
distributions pU,X , of the set of pairs (R0, Rε) satisfying

R0 ≤ I (U ; Z) (23a)

Rε ≤ I (X; Y |U) (23b)

R0 + Rε ≤ I (X; Y ), (23c)

where the mutual informations are computed with respect to
the joint distribution

pU,X,Y,Z (u, x, y, z) = pU,X (u, x) W(y|x) V(z|x), (24)

and where the cardinality of the set U in which U takes values
can be restricted to satisfy

|U | ≤ min{|X |, 2 |Y|} + 1. (25)

Alternatively, CBC-DM(W; V) can be expressed as the union
over all choices of pU,X of the set of rate pairs (R0, Rε) that
satisfy

R0 ≤ min{I (U ; Y ), I (U ; Z)} (26a)

Rε ≤ I (X; Y |U), (26b)

where the mutual informations are computed w.r.t. the joint
PMF of (24). This alternative characterization is due to Nair
and El-Gamal [9]. (A proof of equivalence can by found
in [10].)

Any choice of V for which V � W yields the outer bound

CNo-FB(W) ⊆ CBC-DM(W; V), V � W. (27)

Intersecting these outer bounds yields the simple outer bound:
Proposition 3 (Simple Outer Bound: No Feedback): In the

absence of feedback, the multiplexing capacity region
CNo-FB(W) of the DMC W satisfies

CNo-FB(W) ⊆ RSim(W), (28)

where

RSim(W) =


V�W

CBC-DM(W; V). (29)

One could ostensibly improve this bound by considering a
number of auxiliary channels concurrently and by studying
the rates at which one can communicate reliably with all of
them simultaneously. This would preclude the coding scheme
from depending on the auxiliary channel V: we would have to
use the same scheme for all the channels under consideration.
In the limit, we could insist that the scheme allow reliable
communication to all the members of the family of channels
that are absolutely continuous with respect to W. This, how-
ever, does not improve the bound, because the latter family
is convex [11]. To improve on Proposition 3 we shall need a
different approach, which is described in Section V.

The rest of this section is dedicated to proving that feedback
can increase the multiplexing region even when it does not
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increase the zero-error capacity. To this end, we first pro-
vide an alternative characterization of the zero-error feedback
capacity C0,FB. We do so by swapping the max and the min
in Ahlswede’s expression (2) and expressing C0,FB, when
positive, as

C0,FB = min
V�W

max
Q

I (Q; V) (30)

= min
V�W

CSh(V), (31)

where CSh(V) denotes the Shannon capacity of the channel V.
This swap can be justified using the Minimax Theorem [12,
Th. 1.1.5], because I (Q; V) is concave in Q and convex in V,
the set of input distributions is convex and compact, and so is
the set of channels that are absolutely continuous with respect
to W.

Proposition 4: Consider a DMC W whose zero-error feed-
back capacity can also be achieved without feedback, so that
the two can be denoted C0:

C0 = C0,No-FB(W) = C0,FB(W). (32)

Let the channel V� � W achieve the minimum in (31) (not
necessarily uniquely),

C0 = CSh
�
V�

�
. (33)

If the distributions {V�(·|x)}x∈X corresponding to the different
inputs to V� are distinct, then, unlike CFB(W), the region
CNo-FB(W) contains no rate pairs of the form (C0, Rε) with
Rε positive.

Proof: To prove this result we use the simple outer bound
(Proposition 3) to infer that

CNo-FB(W) ⊆ CBC-DM(W; V�) (34)

and study the behavior of CBC-DM(W; V�) near the point
(C0, 0). More specifically, we show that—subject to the
hypothesis that the distributions {V�(·|x)}x∈X are distinct—
the region CBC-DM(W; V�) contains no rate pairs of the
form (C0, Rε) with Rε positive.

If (C0, Rε) is in CNo-FB(W), then substituting V� for V
in (27) establishes that for some PMF pU,X ,

C0 ≤ I (U ; Z) (35a)

Rε ≤ I (X; Y |U) (35b)

C0 + Rε ≤ I (X; Y ), (35c)

where all the mutual informations are computed with respect
to the joint PMF

pU,X,Y,Z(u, x, y, z) = pU,X (u, x) W(y|x) V�(z|x). (36)

Let VZ |U denote the channel from U to Z induced by pX |U
and V�

VZ |U (z|u) =
�
x∈X

pX |U (x |u) V�(z|x). (37)

By (33) and the Data-Processing Inequality [13, Lemma 3.11],
(35a) must hold with equality, pU must achieve CSh

�
VZ |U

�
,

and pX must achieve CSh
�
V�

�
. In Appendix A we show that

this and the proposition’s assumptions imply that H (X |U)

Fig. 3. A channel V� of Shannon capacity 1 bit that is absolutely continuous
with respect to the channel W of Figure 2. Its different inputs induce different
distributions on its output.

must be zero. Consequently, by (35b), Rε must also be
zero.

Corollary 5: Feedback can increase the multiplexing region
even when it does not increase the zero-error capacity.

Proof: Consider the channel in Figure 2 and the auxiliary
channel V� of Figure 3. From (31) we deduce that C0,FB
is upper bounded by CSh(V�) and hence by 1. And, using
the inputs α and β, we can send 1 bit error free without
feedback, so C0,No-FB ≥ 1. Consequently the zero-error
capacity of this channel is not increased by feedback and
C0,No-FB = C0,FB = 1.

When � is sufficiently small, CSh(W) exceeds 1, and
CSh(W)−C0,FB is positive. Since V�’s different inputs induce
different distributions on its output, we can apply Proposition 4
and infer that, for sufficiently small �, the pair

�
1, CSh(W) −

1
�

is not in CNo-FB(W). And yet, by Theorem 2, it is
in CFB(W).

V. IMPROVED OUTER BOUND

Given a finite set U , let PW(Y|U,X ) denote the set of
conditional PMFs V(y|u, x) satisfying V(·|u, ·) � W(·|·) for
every u ∈ U , i.e., for which the implication�

W(y|x) = 0
� �⇒ �

V(y|u, x) = 0
�

(38)

holds for every y ∈ Y , x ∈ X , and u ∈ U . Let RImp(W) be
the closure of the union over all PMFs pU,X of the set of rate
pairs (R0, Rε) that satisfy

R0 ≤ min
V∈PW(Y |U ,X )

I (U ; Z) (39a)

Rε ≤ I (X; Y |U), (39b)

where the mutual informations are computed w.r.t. the joint
PMF

pU,X,Y,Z(u, x, y, z) = pU,X (u, x) W(y|x) V(z|u, x). (40)

Two equivalent characterizations of RImp(W) are presented in
Appendix B. The first of those shows that RImp(W) is convex
(Corollary 13 in Appendix B).

Proposition 6: Any rate pair (R0, Rε) that can be mul-
tiplexed on the channel W without feedback must lie in
RImp(W)

CNo-FB(W) ⊆ RImp(W). (41)

Proof: See Appendix C.
Proposition 6 improves on Proposition 3 in the following

sense.
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Remark 7: For any channel W,

RImp(W) ⊆ RSim(W), (42)

with the inclusion being strict for some channels.
Proof: We first prove the inclusion. Let (R0, Rε) be

in RImp(W). As such, there exists a PMF pU,X for which
the inequalities in (39) hold. Fix this PMF. We will show
that for this PMF and every V
 � W, the pair (R0, Rε)
satisfies (26) (when we substitute V
 for V) and hence lies
in CBC-DM(W; V
). Fix some such V
.

Since the pair (R0, Rε) satisfies the inequalities in (39),
the pair must also satisfy these inequalities when we restrict
the minimization over V ∈ PW(Y|U,X ) to those V’s for
which V(y|u, x) does not depend on u. (This restriction cannot
decrease the right-hand side (RHS) of (39a).) Thus,

R0 ≤ IV(U ; Z), V � W (43a)

Rε ≤ I (X; Y |U), (43b)

where the mutual informations are computed w.r.t. the joint
PMF

pU,X,Y,Z(u, x, y, z) = pU,X (u, x) W(y|x) V(y|x), (43c)

and the subscript in IV indicates the channel w.r.t. which the
mutual information is calculated. We now complete the proof
of the inclusion by proving that (43) implies that (26) holds
when we substitute V
 for V.

Since the terms I (X; Y |U) appearing on the RHS of (43b)
and (26b) depend only on pU,X and W, they are identical and
the former inequality thus implies the latter. It thus remains
to establish (26a) (when we substitute V
 for V). Substituting
V
 for V in (43) shows that R0 ≤ IV
(U ; Z), and substituting
W for V shows that R0 ≤ IW(U ; Z). Since the latter is just
I (U ; Y ),

R0 ≤ min
�

IV
(U ; Z), I (U ; Y )}, (44)

and (26a) (with the substitution of V
 for V) holds. This
concludes the proof of the inclusion.

To show that the inclusion can be strict, we consider the
channel W in Figure 2 with � > 0. As we have seen in the
proof of Corollary 5, feedback does not increase its zero-error
capacity, which equals 1 both with and without feedback, and
which we denote C0(W). We will show that if � > 0 is small
enough so that the channel’s Shannon capacity is at least 1.5,
then RImp(W) is equal to the time-sharing region between
the rate pairs

�
CSh(W), 0

�
and (0, C0(W)), whereas RSim(W)

contains rate pairs outside this time-sharing region. We will
then be able to infer that, for this channel and such �,

CNo-FB(W) = RImp(W) ⊂ RSim(W), (45)

where the inclusion is strict, and the equality holds because
the time-sharing region is always achievable.3

To show that the simple bound contains pairs outside the
time-sharing region, we fix some joint PMF pU,X (thus also

3In this case the no-feedback multiplexing capacity region is achievable by
simple time-sharing. This does not hold in general.

Fig. 4. The concatenation of a generic channel V � W and the channel V�

of Figure 3. The resulting channel between X and Z̃ is absolutely continuous
w.r.t. V�.

fixing I (U ; Y ) and I (X; Y |U)) and note that, since W is
absolutely continuous w.r.t. itself, (29) and (26) imply that�

min
V�W

I (U ; Z), I (X; Y |U)
�

∈ RSim(W), (46)

where the mutual informations are computed w.r.t. the PMF
in (24).

We next claim that the minimization over V in (46) can
be restricted to the family of channels V that, in addition to
satisfying V � W, also satisfy V(e|γ ) = 0. Since this family
comprises the channels V satisfying V � V�, where V� is the
channel in Figure 3, our claim can be restated as

min
V�W

I (U ; Z) = min
V�V�

I (U ; Z). (47)

To prove it, we need to show that to every V � W there
corresponds some channel Ṽ � V� such that I (U ; Z) under Ṽ
is no larger than under V. To this end we can choose Ṽ as V V�,
i.e. as the concatenation of V with V�. This concatenation is
depicted in Figure 4. It is then readily verified that V V� � V�

and that, by the Data Processing Inequality, I (U ; Z) under
V V� is no larger than under V.

Having established (47), we next study the minimization on
its RHS. We will show that, when pU,X has certain symmetry
properties, the minimum is achieved when V is equal to V�.
To state these properties, we introduce the following notation:
for u ∈ {0, 1} and x ∈ {α, β, γ }, we define ū and x̄ as

ū = 1 − u (48a)

x̄ =

⎧⎪⎨
⎪⎩

β, if x = α

γ, if x = γ

α, if x = β.

(48b)

The properties of pU X that we henceforth assume are that
its marginal pU is uniform over {0, 1}

pU (0) = pU (1) = 1

2
(49a)

and that

pX |U (x |u) = pX |U (x̄ |ū). (49b)

We will show that if these hold, then

min
V�V�

IV(U ; Z) = IV� (U ; Z). (50)
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To establish (50), we will now show that, when pU,X

satisfies (49),

IV� (U ; Z) ≤ IV(U ; Z), V � V�. (51)

To this end, let us introduce the notation

z̄ =

⎧⎪⎨
⎪⎩

1, if z = 0

e, if z = e

0, if z = 1,

(52)

and let V̄ denote the channel that results when the output of
V is flipped, i.e.,

V̄(z|x) = V(z̄|x). (53)

With this notation,

V�(z|x) = 1

2
V(z|x) + 1

2
V̄(z|x), V � V�. (54)

It follows from (49) and (53) that

IV(U ; Z) = IV̄(U ; Z), V � V�. (55)

Inequality (51) now follows from the convexity of mutual
information in the channel law when the input distribution
is fixed: for every V � V�,

IV� (U ; Z) = I 1
2 V+ 1

2 V̄(U ; Z) (56a)

≤ 1

2
IV(U ; Z) + 1

2
IV̄(U ; Z) (56b)

= IV(U ; Z), (56c)

where (56a) follows from (54); Inequality (56b) holds by the
aforementioned convexity; and (56c) follows from (55).

We conclude that, as long as pU X satisfies (49), there is no
need to carry out a numerical optimization in order to calculate
the rate pair in (46). To obtain a rate pair that is in RSim(W)
but not in RImp(W), we now choose pU X as

pU (0) = pU (1) = 0.5 (57a)

and

pX |U (α|0) = 0.85, pX |U (α|1) = 0.02, (57b)

pX |U (γ |0) = 0.13, pX |U (γ |1) = 0.13, (57c)

pX |U (β|0) = 0.02, pX |U (β|1) = 0.85, (57d)

which satisfies the symmetry properties in (49), and for which
we can thus evaluate the rate pair in (46) using (50).

The term IV� (U ; Z) does not depend on � and is given by

IV�(U ; Z) = 1 − Hb

�
pX |U (α|0) + 1

2
pX |U (γ |0)

�
≈ 0.5804435, � > 0, (58a)

where Hb(·) denotes the binary entropy function. As to
I (X; Y |U), it does depend on �. For our purposes it suffices
to study its limit as � ↓ 0, i.e., as W approaches a noise-free
ternary channel. In this limit,

lim
�↓0

I (X; Y |U) = H (X |U) ≈ 0.6948167. (58b)

Since CSh(W) → log2(3) as � ↓ 0, and since C0(W) = 1 for
all � > 0, it follows from (58a) and (58b) that, for the above
choice of pU X ,

lim
�↓0

minV�W I (U ; Z)

C0(W)
+ I (X; Y |U)

CSh(W)
≈ 1.0188. (58c)

Since this limit is larger than 1, we conclude that—for all
sufficiently small (but positive) �—the simple outer bound
RSim(W) contains rate pairs outside the time-sharing region.

To prove that, for sufficiently small � > 0, every rate
pair (R0, Rε) in RImp(W) is also in the time-sharing region,
we will show that any such pair must satisfy

R0

C0(W)
+ Rε

CSh(W)
≤ 1, (R0, Rε) ∈ RImp(W). (59)

We shall do so by exhibiting for every choice of pU,X a
conditional PMF V ∈ PW(Y|U,X ) for which

I (U ; Z)

C0(W)
+ I (X; Y |U)

CSh(W)
≤ 1, (60)

where the mutual informations are computed w.r.t. to the PMF
in (40), namely,

pU,X,Y,Z(u, x, y, z) = pU,X (u, x) W(y|x) V(z|u, x). (61)

The conditional PMF V(z|u, x) will be chosen so that the
probability of the output e be zero

V(e|u, x) = 0, ∀u, x (62)

and so that, conditional on u, the other outputs, namely 0 and
1, be “as uniformly distributed as possible.”

To guarantee that V be in PW(Y|U,X ), we set

V(0|u, α) = 1, V(1|u, β) = 1, ∀u ∈ U . (63)

The probability V(0|u, γ ) = 1 − V(1|u, γ ) corresponding to
the input γ will be chosen depending on pU,X (u, x).

For each u ∈ U ,

1) if pX |U (α|u) ≤ 1/2 and pX |U (β|u) ≤ 1/2, then
V(·|u, γ ) is chosen so that, conditional on U , the chance
variable Z be uniformly distributed over {0, 1}. More
specifically,4

V(0|u, γ ) = 1/2 − pX |U (α|u)

pX |U (γ |u)
; (64a)

2) if pX |U (α|u) ≥ 1/2 > pX |U (β|u), then V(·|u, γ ) is
chosen as

V(0|u, γ ) = 1 − V(1|u, γ ) = 0; (64b)

3) and if pX |U (α|u) < 1/2 ≤ pX |U (β|u), then V(·|u, γ ) is
chosen as

V(0|u, γ ) = 1 − V(1|u, γ ) = 1. (64c)

4If pX |U (α|u) = pX |U (β|u) = 1/2, then pX |U (γ |u) = 0 and we choose
V(0|u, γ ) = 1/2 for concreteness.
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We next upper-bound the left-hand side (LHS) of (60) under
the joint PMF (61) corresponding to this choice of V(z|u, x):

I (U ; Z)

C0(W)
+ I (X; Y |U)

CSh(W)

= I (U ; Z) + I (X; Y |U)

CSh(W)
(65a)

= H (Z) − H (Z |U) + I (X; Y |U)

CSh(W)
(65b)

≤ 1 −
�

H (Z |U) − I (X; Y |U)

CSh(W)

�
, (65c)

where (65a) holds because C0(W) is 1, and (65c) holds
because Z takes on only two different values with positive
probability. We next show that if

CSh(W) ≥ 1.5, (66)

then

H (Z |U) − I (X; Y |U)

CSh(W)
≥ 0. (67)

This and (65c) will imply (60).
To see why (67) holds for any pU,X whenever CSh(W)

exceeds 1.5, we express its LHS as
�
u∈U

pU (u)

�
H (Z |U = u) − I (X; Y |U = u)

CSh(W)

�
(68)

and show that each term in the sum is nonnegative, i.e., that,
for every u ∈ U ,

H (Z |U = u) − I (X; Y |U = u)

CSh(W)
≥ 0. (69)

We show this separately for the three cases defining V in (64).
For every u ∈ U :

1) If pX |U (α|u) ≤ 1/2 and pX |U (β|u) ≤ 1/2, then
by (64a), conditional on U , the chance variable Z has a
uniform distribution and thus H (Z |U = u) is 1. As to
I (X; Y |U = u), it is upper-bounded by CSh(W), so (69)
holds.

2) If pX |U (α|u) ≥ 1/2 > pX |U (β|u), we prove (69) by
showing that

H (Z |U = u) − H (X |U = u)

1.5
≥ 0. (70)

(This implies (69) because I (X; Y |U = u) ≤ H (X |U =
u) and CSh(W) ≥ 1.5.) By (64b),

H (Z |U = u) = Hb(p), (71a)

where we define

p � pX |U (α|u) ≥ 1

2
. (71b)

As to H (X |U = u), we upper-bound it in terms of p as
follows:

H (X |U = u)

= H
�
(pX |U (α|u), pX |U (γ |u), pX |U (β|u))

�
≤ H

�
(p, (1 − p)/2, (1 − p)/2)

�
(72a)

= Hb(p) + 1 − p, (72b)

where (72a) holds because the entropy H
�
(p1, p2, p3)

�
of any probability vector (p1, p2, p3) satisfies

H
�
(p1, p2, p3)

� ≤ H

��
p1,

1 − p1

2
,

1 − p1

2

��
. (73)

The LHS of (70) is thus, by (71a) and (72b), lower-
bounded by

Hb(p) − Hb(p) + 1 − p

1.5
, (74)

where p ≥ 1/2. It can now be verified numerically
that (74) is nonnegative whenever p ≥ 1/2.

3) If pX |U (α|u) < 1/2 ≤ pX |U (β|u), a similar argumenta-
tion holds as in the previous case.

VI. A BACK-OFF IN THE RATES MAY BE ESSENTIAL

An example of a channel where the input distributions
achieving (1) and (4) differ is depicted in Figure 2. When
0 < � � 1, the Shannon capacity is nearly log 3, and it
is achieved by an input distribution that is nearly uniform
over the entire input alphabet X = {α, β, γ }. The zero-error
feedback capacity, however, is log 2, and the unique PMF Q
that achieves the maximum in (1) avoids the input γ and is
uniform over {α, β}. Nevertheless, Theorem 2 promises that
the pair

(R0, Rε) = (log 2 − δ, log 3 − log 2 − δ)

is achievable for any δ > 0. Backing off by δ is crucial: as
we next show, if—as opposed to 2n(1−δ)—we insist that M0
be of size 2n , and if the tolerated rare-error probability � is
smaller than 1/2, then Rε must be zero. In fact, Mε cannot
contain more than one message.

Proposition 8: Although always in CFB(W), the rate pair
(C0,FB, CSh − C0,FB) need not be achievable.

Proof: Consider the above example. Let the decoding set
D(m0) ⊆ Yn comprise the output sequences that result in
the zero-error decoder declaring that m0 was sent. We claim
that for each m0 ∈ M0, the set D(m0) contains exactly one
sequence from {0, 1}n . To see why, fix some message m�

ε
from Mε, and let y
(m0, m�

ε) be the output sequence that
results when the pair (m0, m�

ε) is transmitted and the channel
produces the output 0 whenever it is fed the input symbol γ .
(Such a channel behavior occurs with positive probability,
because � > 0.) The sequence y
(m0, m�

ε) is in D(m0) (to
avoid an error in recovering m0) and is also in {0, 1}n (because
we assumed that the channel produces the output 0 whenever
γ is transmitted). Thus, for each m0 ∈ M0, the decoding set
D(m0) contains at least one sequence from {0, 1}n . Since there
are 2n sequences in {0, 1}n; there are |M0| ( = 2n ) decoding
sets; and the decoding sets are disjoint, each decoding set must
contain exactly one sequence from {0, 1}n .

Define y

(m0, m�
ε) analogously to y
(m0, m�

ε), but with the
channel now producing the output 1 whenever it is fed the
input symbol γ . Like y
(m0, m�

ε), it is {0, 1}n-valued and must
be in D(m0). Since D(m0) contains only one such sequence,
the two must be the same, which is only possible if γ is never
transmitted. We conclude that, with probability one, γ is never
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transmitted and the output sequence is thus {0, 1}n-valued.
To guarantee that it be in D(m0), it must equal y
(m0, m�

ε),
so the Time-i channel input must be α whenever the i -th
component of y
(m0, m�

ε) is 0 and β when it is 1. This is also
true if the rare-error message mε we wish to send is not m�

ε!
The sequence transmitted to convey the pair (m0, mε) does
not therefore depend on mε . When the tolerated probability of
error � in the recovery of mε is smaller than 1/2, this implies
that Mε cannot contain more than one rare-error message.
The rate Rε must therefore be zero.

VII. SUMMARY AND DISCUSSION

Theorem 2 establishes the multiplexing capacity region of
zero-error and rare-error data streams over a noisy memoryless
channel with feedback. It essentially says that, in the presence
of feedback, n channel uses suffices to send n CSh data bits
with arbitrarily-small probability of error even if n C0,FB of
them are designated to be transmitted error free. This is
possible even when the input distributions that achieve CSh
and C0,FB differ.

The coding scheme that was used to prove this result
can also be employed in some multi-user settings (such as
the multiple-access channel), leading to analogous results
[10, Ch. 5].

It can also be modified to address scenarios where errors
are not allowed in guessing mε, and in their stead we allow
erasures [14]–[21] (and references therein.) To see how, note
that at the end of the transmission the transmitter (which
knows the state of the receiver via the feedback link) can
send a bit indicating whether the receiver’s guess for mε is
correct or not. In the latter case the receiver can declare an
erasure for mε and in this way avoid any errors. Consequently,
Theorem 2 can be strengthened to address the erasure-only
requirement as follows:

Remark 9: For channels with positive zero-error capacity,
the rate pairs in Theorem 2 can also be achieved if we do not
allow errors in guessing mε and instead allow erasures (with
arbitrarily small but positive probability).

In the absence of feedback the problem of computing the
multiplexing capacity region is at least as difficult as that
of computing the zero-error capacity. Our outer bounds of
Proposition 3 and Proposition 6 showed that feedback can
increase the multiplexing capacity region even on channels
where it does not increase the zero-error capacity.

APPENDIX A
PROOF OF PROPOSITION 4 CONCLUDED

To conclude the proof of Proposition 4, we shall need the
following standard results.

Lemma 10 (Log-Sum Inequality): If the vectors a =
(a1, . . . , am) and b = (b1, . . . , bm) in R

m have nonnegative
components, then

m�
i=1

ai log
ai

bi
≥

� m�
i=1

ai

�
log

�m
i=1 ai�m
i=1 bi

, (75a)

with equality if, and only if,

ai

� m�
j=1

b j

�
= bi

� m�
j=1

a j

�
, ∀i ∈ [1 : m]. (75b)

Here we adopt the convention that 0 log 0
α = 0 for all α ∈ R,

and α log α
0 = ∞ whenever α > 0.

Proof: See [13, Lemma 3.1].
The relative entropy D(P�Q) between two probability mass

functions on a finite set Y is defined as

D(P�Q) =
�
y∈Y

P(y) log
P(y)

Q(y)
(76)

with the above convention. The next lemma addresses its
convexity with emphasis on conditions for equality.

Lemma 11 (Convexity of Relative Entropy): Let R be a
PMF on the finite set Y satisfying

R(y) > 0, ∀y ∈ Y. (77)

Given some positive integer m, let P1, . . . , Pm be PMFs on Y
and α1, . . . , αm positive real numbers summing to one. Then

D

� m�
i=1

αi Pi

����R
�

≤
m�

i=1

αi D(Pi�R), (78)

with equality if, and only if,

P1 = P2 = . . . = Pm . (79)

Proof: Following the proof of [13, Lemma 3.5],

D

� m�
i=1

αi Pi

����R
�

= D

� m�
i=1

αi Pi

����
m�

i=1

αi R
�

(80a)

=
�
y∈Y

�� m�
i=1

αi Pi (y)

�
log

�m
i=1 αi Pi (y)�m
i=1 αi R(y)

�
(80b)

≤
�
y∈Y

m�
i=1

αi Pi (y) log
αiPi (y)

αi R(y)
(80c)

=
m�

i=1

αi

�
y∈Y

Pi (y) log
Pi (y)

R(y)
(80d)

=
m�

i=1

αi D(Pi�R), (80e)

where in (80c) we applied the log-sum inequality once for
each y ∈ Y .

For equality we must have equality in the log-sum inequality
in each of its applications, i.e. for each y ∈ Y and i ∈ [1 : m]
we must have (c.f. (75b))

αi Pi (y)

� m�
j=1

α j R(y)

�
= αi R(y)

� m�
j=1

α j P j (y)

�
. (81a)
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Since the Lemma’s hypotheses guarantee that neither R(y) nor
αi is zero, we can divide by αi R(y) and recall that the α j ’s
sum to 1 to obtain that

Pi (y) =
m�

j=1

α j P j (y) (81b)

must be satisfied for every y ∈ Y and i ∈ [1 : m]. Since the
RHS does not depend on i , this implies that

P1(y) = . . . = Pm(y) =
m�

j=1

α j P j (y) (81c)

must be satisfied for every y ∈ Y . This establishes that (79)
is necessary for equality in (78).

Proof of Proposition 4 Concluded: Recall that using (33),
the Data-Processing inequality, and (35a) we established
that (35a) holds with equality; that pU must achieve
CSh

�
VZ |U

�
; that pX must achieve CSh

�
V�

�
; and that

CSh
�
VZ |U

� = CSh
�
V�

�
. What remains to show is that this

and the proposition’s assumptions imply that H (X |U) is zero.
Let R� be the unique output distribution on Z that achieves

the Shannon capacity CSh
�
V�

�
of the channel V�. Since pX

achieves CSh
�
V�

�
and since the capacity-achieving output

distribution is unique,

pZ = R�. (82)

By possibly redefining the alphabet Z , we may assume without
loss of generality that

R�(z) > 0, ∀z ∈ Z. (83)

The input distribution pU to the channel VZ |U achieves
its capacity CSh

�
VZ |U

�
(which is equal to CSh(V�)) and

induces the output distribution R�. It therefore follows from
the Karush-Kuhn-Tucker (KKT) conditions [22] that

D
�
VZ |U (·|u)

��R�
� ≤ CSh

�
V�

�
, ∀u ∈ U, (84)

with equality whenever pU (u) > 0. For every ũ ∈ U with
pU (ũ) > 0 we thus have

CSh
�
V�

� = D
�
VZ |U (·|ũ)

��R�
�

= D

� �
x∈X

pX |U (x |ũ) V�(·|x)

����R�

�

= D

� �
x∈X

pX |U (x |ũ)>0

pX |U (x |ũ) V�(·|x)

����R�

�

≤
�
x∈X

pX |U (x |ũ)>0

pU |X (x |ũ) D
�
V�(·|x)

��R�
�

(85)

= CSh(V�), (86)

where (85) follows from Lemma 11; and (86) follows by
noting that for x ∈ X�

pX |U (x |ũ) > 0
�

�⇒
�

D
�
V�(·|x)

��R�
� = CSh

�
V�

��
(87)

because if pX |U (x |ũ) is positive, then so is pX (x), and the
implication follows from the KKT conditions on pX for the
channel V�.

Since the LHS and RHS of (86) are identical, (85) must
hold with equality. Consequently, by Lemma 11, all the
conditional PMFs {V(·|x)}pX |U (x |ũ) corresponding to inputs x
for which pX |U (x |ũ) is positive must be identical. But, by the
proposition’s hypotheses, the PMFs {V�(·|x)}x∈X are distinct,
so there can be only one x ∈ X for which pX |U (x |ũ) is
positive. This is true for every u ∈ U for which pU (u) > 0
and consequently H (X |U) = 0.

APPENDIX B
EQUIVALENT CHARACTERIZATIONS OF RImp(W)

This appendix provides two alternative characterizations
of RImp(W) of (39). Let PW(Y|U,X ,Q) denote the set of
conditional PMFs V(y|u, x, q) for which the implication�

W(y|x) = 0
� �⇒ �

V(y|u, x, q) = 0
�

(88)

holds for every x ∈ X , y ∈ Y , u ∈ U , and q ∈ Q.
Proposition 12: The region RImp(W) can also be expressed

as the closure of the union over all PMFs pU,X,Q of the set
of rate pairs (R0, Rε) that satisfy

R0 ≤ min
V∈PW(Y |U ,X ,Q)

I (U ; Z |Q) (89a)

Rε ≤ I (X; Y |U, Q), (89b)

where the mutual informations are computed w.r.t. the joint
PMF

pU,X,Y,Z ,Q(u, x, y, z, q)

= pU,X,Q(u, x, q) W(y|x) V(z|u, x, q). (90)

Proof: One inclusion follows by choosing Q to be deter-
ministic. We therefore focus on the other, namely, on showing
that if there exists some joint PMF pU,X,Q under which
the rate pair (R0, Rε) satisfies (89), then there exists some
auxiliary chance variable Ũ and a PMF pŨ,X under which
the pair satisfies (39) when we substitute Ũ for U . To this
end we choose Ũ � (U, Q) taking values in Ũ � U × Q and
show that the result of substituting Ũ for U on the RHS of
each of the inequalities in (39) is at least as high as the RHS
of the corresponding inequality in (89). Starting with the first,

min
V∈PW(Y |Ũ,X )

I (Ũ ; Z)

= min
V∈PW(Y |U ,X ,Q)

I (U, Q; Z)

= min
V∈PW(Y |U ,X ,Q)

�
I (U ; Z |Q) + I (Q; Z)

�
≥ min

V∈PW(Y |U ,X ,Q)
I (U ; Z |Q),

and continuing with the second,

I (X; Y |Ũ) = I (X; Y |U, Q).

Corollary 13: The rate region RImp(W) is a convex set
containing the rate pairs

�
0, CSh(W)

�
and

�
C0,FB(W), 0

�
.

Proof: Convexity follows by choosing Q to be a time-
sharing auxiliary chance variable. To see that

�
0, CSh(W)

�
is

in RImp(W), consider choosing U and Q to be deterministic.
To see that

�
C0,FB(W), 0

�
is in RImp(W), consider choosing

Q deterministic and U to equal X .



2834 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 5, MAY 2019

The second alternative characterization of RImp(W) follows
by replacing the rare-error rate constraint with a sum-rate
constraint:

Proposition 14: The region RImp(W) can also be expressed
as the closure of the union over all PMFs pU,X,Q of the set
of rate pairs (R0, Rε) that satisfy

R0 ≤ min
V∈PW(Y |U ,X ,Q)

I (U ; Z |Q), (91a)

Rε + R0 ≤ I (X; Y |U, Q)

+ min
V∈PW(Y |U ,X ,Q)

I (U ; Z |Q), (91b)

where the mutual informations are computed w.r.t. the joint
PMF

pU,X,Y,Z ,Q(u, x, y, z, q)

= pU,X,Q(u, x, q) W(y|x) V(z|u, x, q). (92)

Proof: We prove this result using the characterization of
RImp(W) of Proposition 12. The region of Proposition 12 is
contained in that of Proposition 14 because, for any fixed PMF
pU,X,Q , every rate pair that satisfies (89) must also satisfy (91)
(because (91b) is the result of adding (89a) and (89b)).

We next establish the reverse inclusion. We fix some pU,X,Q

and show that the trapezoid defined by (91) of vertices

(0, 0),�
0, I (X; Y |U, Q) + min

V∈PW(Y |U ,X ,Q)
I (U ; Z |Q)

�
,

�
min

V∈PW(Y |U ,X ,Q)
I (U ; Z |Q) , I (X; Y |U, Q)

�
,

�
min

V∈PW(Y |U ,X ,Q)
I (U ; Z |Q), 0

�
(93)

is included in the region defined by Proposition 12. This
trapezoid is contained in the trapezoid of vertices

(0, 0), (0, CSh(W)),�
min

V∈PW(Y |U ,X ,Q)
I (U ; Z |Q) , I (X; Y |U, Q)

�
,

�
min

V∈PW(Y |U ,X ,Q)
I (U ; Z |Q), 0

�
(94)

because, as we next argue,

I (X; Y |U, Q) + min
V∈PW(Y |U ,X ,Q)

I (U ; Z |Q) ≤ CSh(W). (95)

Indeed, the channel W is an element of PW(Y|U,X ,Q) (with
no dependence on u and q), so

I (X; Y |U, Q) + min
V∈PW(Y |U ,X ,Q)

I (U ; Z |Q)

≤ I (X; Y |U, Q) + IW(U ; Y |Q) (96)

= IW(U, X; Y |Q) (97)

= IW(X; Y |Q) (98)

≤ CSh(W). (99)

We next argue that the trapezoid of the vertices in (94) is
contained in the region defined by Proposition 12. The latter is
a convex set containing the vertex (0, CSh(W)) (Corollary 13
and Proposition 12), and it contains the vertex/pair�

min
V∈PW(Y |U ,X ,Q)

I (U ; Z |Q) , I (X; Y |U, Q)
�

because this pair satisfies (89). Since these latter two vertices
dominate the other vertices in (94), the entire trapezoid is
contained in the region defined by Proposition 12.

APPENDIX C
PROOF OF THE IMPROVED BOUND

This appendix proves that no rate pair outside RImp(W) can
be multiplexed over the channel W without feedback. It uses
the characterization of RImp(W) that is given in Proposition 14
in terms of (91).

Proof: Fix some finite message sets M0, Mε, a block-
length n, a blocklength-n no-feedback encoder f : M0 ×
Mε → X n , and |M0||Mε| disjoint decoding sets {Dm0,mε ⊆
Yn}(m0,mε)∈M0×Mε . Let

Q � {1, . . . , n}. (100)

Draw the message pair (M0, Mε) uniformly over M0 × Mε,
and denote its distribution pM0,Mε . Let P denote the joint PMF
of (M0, Mε, Xn, Y n) induced by pM0,Mε , the encoder f , and
the channel W. Thus, for every (m0, mε, x, y) ∈ M0 ×Mε ×
X n × Yn ,

P[(M0, Mε, Xn , Y n)

= (m0, mε, x, y)]
= pM0,Mε (m0, mε) pXn|M0,Mε (x|m0, mε) Wn(y|x), (101a)

where

pXn|M0,Mε (x|m0, mε) =
�

1 if x = f (m0, mε)

0 otherwise,
(101b)

and

Wn(y|x) =
n	

i=1

W(yi |xi ). (101c)

Since M0 is decoded error-free,

P
�

Y n ∈
�

mε∈Mε

DM0,mε

�
= 1. (102)

For each i ∈ Q, let Zi be a Y-valued chance variable whose
conditional PMF given

�
m0, yn

i+1, zi−1
1 , xi

�

Ṽi (·|m0, yn
i+1, zi−1

1 , xi ), (103)

(to be specified later) satisfies

Ṽi (·|m0, yn
i+1, zi−1

1 , xi ) � W(·|xi ),

∀(m0, yn
i+1, zi−1

1 , xi ) ∈ M0 × Yn−i × Y i−1 × X . (104)

The n conditional PMFs {Ṽi }n
i=1 can also be viewed as single

conditional PMF Ṽ(·|m0, yn
i+1, zi−1

1 , xi , i) with the under-
standing that, for every i ∈ Q,

Ṽ
� · |m0, yn

i+1, zi−1
1 , xi , i

� = Ṽi (·|m0, yn
i+1, zi−1

1 , xi ). (105)

We shall therefore use {Ṽi }n
i=1 and Ṽ interchangeably.
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Draw Q independently of (M0, M� , Xn , Y n, Zn) uniformly
over Q, and denote the joint PMF of (Q, M0, Mε, Xn , Y n, Zn)
also P, so

P[(Q, M0, Mε, Xn , Y n, Zn)

= (q, m0, mε, x, y, z)]
= pM0,Mε (m0, mε) pXn|M0,Mε (x|m0, mε) Wn(y|x)

×1

n

n	
i=1

Ṽi (zi |m0, yn
i+1, zi−1

1 , xi ). (106)

It follows from (104) and (106) that, for every ξn ∈ Yn ,�
P
�
Y n = ξn� = 0

�
�⇒

�
P
�
Zn = ξn� = 0

�
(107)

and hence, by (102),

P
�

Zn ∈
�

mε∈Mε

DM0,mε

�
= 1, (108)

so M0 is a deterministic function of Zn . This and Fano’s
inequality imply

log|M0| = I (M0; Zn), (109a)

log
�|M0||Mε|

� ≤ I (M0; Zn) + I (M� ; Y n)

+ n�n, (109b)

where �n tends to zero as n goes to infinity.
For each i ∈ Q define

Ui = (M0, Y n
i+1, Zi−1

1 ), (110)

and define the chance variables

U = (UQ, Q), X = X Q , Y = YQ , Z = Z Q . (111)

Let PU,X,Q,Y,Z denote the joint distribution of (U, X, Q, Y, Z)
induced by P, and let PU,X,Q denote its (U, X, Q)-marginal,
with similar notation for its other marginals. Under P, the con-
ditional distribution of Z given (U, X, Q) is Ṽ, so

PU,X,Q,Z(u, x, q, z) = PU,X,Q(u, x, q) Ṽ(z|u, x, q) (112)

and

Ṽ
� · |(m0, yn

i+1, zi−1
1 , i), xi , i

� = Ṽi (·|m0, yn
i+1, zi−1

1 , xi )

(113)

for every i ∈ Q and (m0, yn
i+1, zi−1

1 , xi ) ∈ M0 × Yn−i ×
Y i−1 × X .

Continuing from (109), we upper-bound R0 = 1
n log |M0|

and R0 + Rε = 1
n log

�|M0||M�|
�

by carrying out the
following steps under P of (106):

1

n
log|M0| = 1

n
I (M0; Zn

1 )

= 1

n

n�
i=1

I (M0; Zi |Zi−1
1 ) (114a)

≤ 1

n

n�
i=1

I (M0, Y n
i+1, Zi−1

1 ; Zi) (114b)

= I (U ; Z |Q), (114c)

where (114a) and (114b) follow from the chain rule and the
nonnegativity of mutual information, and where (114c) follows
from the definitions in (111).

Similarly, for the sum of the rates,

1

n
log

�|M0||Mε|
� − �n

≤ 1

n
I (M0; Zn

1 ) + 1

n
I (Mε; Y n

1 |M0) (115a)

= 1

n

n�
i=1

�
I (M0; Zi |Zi−1

1 )

+ I (Mε; Yi |M0, Y n
i+1)

�
(115b)

= 1

n

n�
i=1

�
I (M0; Zi |Zi−1

1 )

+ I (Xi , Mε; Yi |M0, Y n
i+1)

�
(115c)

= 1

n

n�
i=1

�
I (M0; Zi |Zi−1

1 )

+ I (Xi ; Yi |M0, Y n
i+1)

�
(115d)

≤ 1

n

n�
i=1

�
I (M0, Zi−1

1 ; Zi )

+ I (Xi , Zi−1
1 ; Yi |M0, Y n

i+1)
�

(115e)

= 1

n

n�
i=1

�
I (M0, Y n

i+1, Zi−1
1 ; Zi )

− I (Y n
i+1; Zi |M0, Zi−1

1 )

+ I (Zi−1
1 ; Yi |M0, Y n

i+1)

+ I (Xi ; Yi |M0, Y n
i+1, Zi−1

1 )
�

(115f)

= 1

n

n�
i=1

�
I (M0, Y n

i+1, Zi−1
1 ; Zi )

+ I (Xi ; Yi |M0, Y n
i+1, Zi−1

1 )
�

(115g)

= I (U ; Z |Q) + I (X; Y |U, Q), (115h)

where (115a) follows from (109b), because M0 is independent
of Mε; (115b) follows from the chain rule; (115c) holds
because, in the absence of feedback, Xi is computable from
(Mε, M0); (115d) holds because

Mε�−−(Xi , M0, Y n
i+1)�−−Yi (116)

forms a Markov chain; (115e) and (115f) follow from the
chain rule and the nonnegativity of mutual information; (115g)
follows from Csiszár’s Sum Identity [8, Sec. 2.4]; and (115h)
follows from the definitions in (111). Inequalities (114) and
(115) hold for any choice of the conditional PMFs {Ṽi }n

i=1
in (103) subject to (104). Different choices will merely induce
different P’s.

Our choice offers no control over the (U, X, Q)-marginal
of P, and this is fine because the characterization of RImp(W)
provided by Proposition 14 involves a union over all the
possible marginals. Let p̃U,X,Q be the (U, X, Q)-marginal of
the joint PMF P that our choice induces. Likewise, let p̃Ui ,Xi
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denote the (Ui , Xi )-marginal of the joint PMF P that our
choice induces. With this notation,

p̃U,X |Q=i = p̃Ui ,Xi , i ∈ Q. (117)

We will choose {Ṽi }n
i=1 (or, equivalently, Ṽ) so that the RHS

of (114c), namely I (U ; Z |Q), equal the RHS of (91a), i.e., so
that

I (U ; Z |Q) = min
V∈PW(Y |U ,X ,Q)

I (U ; Z |Q), (118)

where the mutual information on the LHS is com-
puted w.r.t. the joint PMF p̃U,X,Q(u, x, q) Ṽ(z|u, x, q),
and the mutual information on the RHS w.r.t. the joint
PMF p̃U,X,Q(u, x, q) V(z|u, x, q). The combination of (118)
with (114c) and (115h) will establish (91) (by letting n tend
to infinity).

To describe our choice, we first note that, for each i ∈
Q, the (Ui , Xi )-marginal p̃Ui ,Xi of P is unaffected by the
choice of Ṽi , Ṽi+1, . . . , Ṽn . Indeed, Ṽi influences Zn

i and not
Zi−1

1 (106). Consequently, since Ui only involves Zi−1
1 (110),

it is not influenced by the choice of Ṽi , . . . , Ṽn . We can now
describe our choice of {Ṽi }n

i=1 by expressing I (U ; Z |Q) as a
sum

I (U ; Z |Q) = 1

n

n�
i=1

I (U ; Z |Q = i)

= 1

n

n�
i=1

I (Ui ; Zi ) (119)

and by considering each of the terms in increasing order,
starting with i = 1. The joint distribution p̃U1,X1 is determined
by the messages’ distribution pM0,Mε , the encoder f , and the
channel W. We choose Ṽ1 so that

I (U1; Z1) = min
V∈PW(Y |U ,X )

I (U1; Z), (120a)

where the mutual information on the LHS is computed w.r.t.
to the joint PMF p̃U1,X1(u1, x1) Ṽ1(z1|u1, x1) and on the RHS
w.r.t the joint PMF p̃U1,X1(u1, x1) V(z|u1, x1). In general, for
Term-i ∈ [2 : n], the joint distribution p̃Ui ,Xi is determined
by the messages’ distribution pM0,Mε , the encoder f , the
channel W, and our previous choices of the conditional PMFs
{Ṽl}i−1

l=1. We then choose Ṽi so that

I (Ui ; Zi) = min
V∈PW(Y |U ,X )

I (Ui ; Z), (120b)

where the mutual information on the LHS is computed w.r.t.
the joint PMF p̃Ui ,Xi (ui , xi ) Ṽi (zi |ui , xi ) and on the RHS w.r.t
the joint PMF p̃Ui ,Xi (ui , xi ) Vi (z|ui , xi ). After choosing all
the conditional PMFs, the joint distributions { p̃Ui ,Xi }n

i=1 are
fully determined and hence also p̃U,X,Q via (117).

We next show that, under p̃U,X,Q(u, x, q) Ṽ(z|u, x, q)

(which is the P corresponding to our choice of {Ṽi }n
i=1), the

rates (R0, Rε − �n) must satisfy (91). Indeed, under this joint

distribution, I (U ; Z |Q) can be written as

I (U ; Z |Q)

= 1

n

n�
i=1

I (U ; Z |Q = i)

= 1

n

n�
i=1

I (Ui ; Zi) (121a)

= 1

n

n�
i=1

min
V∈PW(Y |U ,X )

I (Ui ; Z) (121b)

= min
V∈PW(Y |U ,X ,Q)

1

n

n�
i=1

I (U ; Z |Q = i) (121c)

= min
V∈PW(Y |U ,X ,Q)

I (U ; Z |Q), (121d)

where I (Ui ; Zi) in (121a) is calculated w.r.t.
p̃Ui ,Xi (ui , xi ) Ṽi (zi |ui , xi ); where I (Ui ; Z) in (121b) is
calculated w.r.t. p̃Ui ,Xi (ui , xi ) V(z|ui , xi ), and the equality
follows from (120); and where (121c) holds because the
minimization can be carried out independently for each
realization of Q ∈ Q and can therefore be viewed as a
minimization over V ∈ PW(Y|U,X ,Q).

The upper bounds (114) and (115) together with (121) yield
that, under p̃U,X,Q of (117), the rates of the coding scheme
are upper-bounded by

R0 ≤ min
V∈PW(Y |U ,X ,Q)

I (U ; Z |Q) (122a)

Rε + R0 ≤ I (X; Y |U, Q)

+ min
V∈PW(Y |U ,X ,Q)

I (U ; Z |Q) + �n, (122b)

where the mutual informations are computed w.r.t. the joint
PMF

pU,X,Y,Z ,Q(u, x, y, z, q)

= p̃U,X,Q(u, x, q) W(y|x) V(z|u, x, q). (123)

Having established that (R0, Rε − �n) must satisfy (91),
we now recall that �n tends to zero and that RImp(W) is closed
and conclude that (R0, Rε) must be in RImp(W).
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