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Semi-Robust Communications over
a Broadcast Channel

Tibor Keresztfalvi and Amos Lapidoth , Fellow, IEEE

Abstract— We establish the deterministic-code capacity region
of a network with one transmitter and two receivers: an ordinary
receiver and a robust receiver. The channel to the ordinary
receiver is a given (known) discrete memoryless channel, whereas
the channel to the robust receiver is an arbitrarily varying
channel. Both receivers are required to decode the common
message (the better-protected message), whereas only the ordi-
nary receiver is required to decode the private message (the
less-protected message). As in the single-user case, under the
appropriate compactness and convexity conditions, the capacity
region is either empty or else the intersection of the capacity
regions of the broadcast channels that the various states induce.

Index Terms— Arbitrarily varying channel, broadcast channel,
degraded message set, robust communications, unequal error
protection.

I. INTRODUCTION

AS IN Figure 1, two independent data streams—a rate-Rc
common data stream and a rate-Rp private data stream—

are to be transmitted over a broadcast channel with two
receivers: an “ordinary receiver” and a “robust receiver.” The
channel to the ordinary receiver, the receiver that is required
to recover both streams reliably, is a given (known) discrete
memoryless channel (DMC) W(y|x). The channel to the
robust receiver, the receiver that is required to recover only the
common stream, is an arbitrarily varying channel (AVC) [1].
The set of rate pairs (Rc, Rp) that can be communicated
reliably under these requirements is the capacity region, which
we derive here.

This setting can be used to model a system employing
unequal error protection: the common message can be viewed
as the “better-protected message,” and the private message as
the “less-protected message.”

The scenario where one receiver must recover both
streams and the other only one, falls under the heading of
degraded message sets. The capacity region of the broad-
cast channel with degraded message sets was established by
Körner and Marton in [2]. But their model differs from ours
because their broadcast channel is fixed and given: there is
nothing “varying” about it.

Our network can be viewed as an arbitrarily varying broad-
cast channel (AVBC) of a special kind: one where the channel
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to one of the receivers is degenerate in the sense of being given
and not depending on the state. General AVBCs where studied
by Jahn [3] who derived an inner bound on their capacity
regions, and our achievability result essentially follows from
his. Our converse shows that in our setting the inner bound
is tight. General AVBCs with degraded message sets were
studied by Hof and Bross [4].

More recent results on the AVBC for settings with causal
and noncausal side information were obtained by Pereg and
Steinberg [5]–[8].

II. THE MAIN RESULT

A discrete memoryless state-dependent broadcast channel
(X ,Y,Z,S, WY,Z |X,S) consists of a finite input alphabet X ,
finite output alphabets Y and Z , a (not necessarily finite)
state set S, and a collection of transition probability matri-
ces WY,Z |X,S . Given an input sequence x ∈ X n and a
state sequence s ∈ Sn , the output sequences are distributed
according to

WY n ,Zn|Xn ,Sn(y, z|x, s)

=
n∏

i=1

WY,Z |X,S(yi , zi |xi , si ), (1)

for all (y, z) ∈ Yn × Zn . A semi-AVBC (SAVBC) is a state-
dependent broadcast channel where the conditional law of the
output Y given the input x and the state s does not depend
on the state. For such a channel, we denote the marginal
conditional distributions of the outputs Y and Z given the
input x and the state s by W(y|x) and Vs(z|x) respectively:

W(y|x) = WY |X,S(y|x, s), (2a)

Vs(z|x) = WZ |X,S(z|x, s). (2b)

We consider the transmission from degraded message sets: the
encoder sends a common message mc to both receivers and a
private message mp to the receiver observing Y . The receiver
observing Z is thus only required to decode the common
message.

A blocklength-n deterministic code C for the SAVBC con-
sists of a common message set Mc with 2nRc messages,
a private message set Mp with 2nRp messages, an encoding
mapping

f : Mc × Mp → X n, (3)

and decoding mappings

φy : Yn → Mc × Mp (4a)

φz : Zn → Mc. (4b)
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Fig. 1. The semi-arbitrarily-varying broadcast channel with common message mc, private message mp, and state sequence s.

Its message-averaged probability of error given a state
sequence s ∈ Sn is

P(n)
e|s (C) = 1

|Mc||Mp|
∑

(mc,mp)∈Mc×Mp

∑

(y,z) �∈D(mc,mp)

WY n ,Zn |Xn,Sn(y, z|x, s), (5)

where

D(mc, mp) ={
(y, z) ∈ Yn × Zn : φy(y) = (mc, mp), φz(z) = mc

}
. (6)

We say that the rate pair (Rc, Rp) is achievable with deter-
ministic codes, if there exists a sequence of codes {Cn} with
rates (Rc, Rp) such that

lim
n→∞ sup

s∈Sn
P(n)

e|s (Cn) = 0. (7)

The deterministic code capacity Cdet (under the
average-probability-of-error criterion) of the SAVBC is
the closure of the set of rate pairs that are achievable with
deterministic codes.

We do not consider here the capacity under the maximal-
probability-of-error criterion, which would have resulted had
we replaced the averaging over the messages in (5) with a
maximum. Calculating this capacity is an open problem even
in the single-user case to which our problem reduces when Rp
is zero and the channel W is noiseless.

As in [9, Corollary 12.3], it can be shown that Cdet depends
on the states only via the convex-closure of the channels they
induce. We thus define the set of channels V to be the closure
of the set of all channels V(z|x) having the form

V(z|x) =
∑

s∈S̃
P(s) Vs (z|x) (8)

where S̃ is a finite subset of S, and P(·) is a PMF on this
subset. The set of channels V is compact and convex, and we
henceforth assume that it equals {Vs(z|x)}s∈S .

Following [3, Remark IIB2], [4], or using a time-sharing
argument we note:

Remark 1. The interior of Cdet is nonempty if, and only if,
the capacity of the channel W(y|x) to Y and the capacity
(under the average-probability-of-error criterion) of the AVC
to Z are both positive. The latter is positive if, and only if,
the AVC is nonsymmetrizable [10], [11].

We next define the region C (I ) that will turn out to equal
the capacity region when the latter is not empty. It is defined
as the closure of the union over all PMFs pU,X of the set of
rate pairs (Rc, Rp) that satisfy

Rc ≤ min
V∈V

I (U ; Z) (9a)

Rp ≤ I (X; Y |U) (9b)

Rc + Rp ≤ I (X; Y ), (9c)

where the mutual informations are computed w.r.t. the
joint distribution

pU,X (u, x) W(y|x) V(z|x), (10)

and where U is an auxiliary chance variable taking values in
a finite set U .

If there is only a single state and the set of channels V
is hence a singleton {V}, our network reduces to the broad-
cast channel that was solved by Körner and Marton [2],
[12, Th. 8.1]. In this case the capacity region coincides with
C (I ) (with the minimum being superfluous). We use CV to
denote the resulting capacity, with the subscript V denoting
the channel from X to Z and with the channel W from X to
Y being implicit. The intersection

Ccmp =
⋂

V∈V
CV (11)

is the capacity region corresponding to the setting where the
state sequence is constant and is revealed to the code designer
and receiver designer before transmission begins. (This setting
is more benign than the compound-channel setting where the
state is constant but not revealed to the designers [1].)

In the single-user case, when the family of channels
is convex and compact, the AVC capacity (under the
average-probability-of-error criterion) is either zero or else
equal to the minimum of the capacities of the channels in
the family [9, Th. 12.11]. Our main result can be viewed as
an extension of this result to the SAVBC.

Theorem 2. For any SAVBC,

C (I ) = Ccmp, (12)

and if the deterministic-code capacity Cdet of a SAVBC is not
empty, then it equals C (I ):

(
Cdet �= ∅

)
�⇒

(
Cdet = C (I )

)
. (13)

Proof: See Section III.
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As noted by Jahn [3, Sec. III-D], if we allow random codes,
then the region C (I ) is achievable even when the interior of
Cdet is empty. And since Ccmp is an outer bound on the capacity
region even when random codes are allowed we infer:

Corollary 3. The random-code capacity region of the SAVBC
is equal to C (I ).

III. PROOF OF THE MAIN RESULT

The achievability result—that Cdet �= ∅ implies that every
rate pair (Rc, Rp) in C (I ) is achievable—follows from Jahn’s
work [3, Th. 2]. The converse follows directly from (12)
and the inclusion Cdet ⊆ Ccmp, which holds because the
probabilities of error must be vanishingly small irrespective
of the state sequence and hence, a fortiori, when the state
sequence is constant. We therefore focus on proving (12).

But first we provide an alternative description for C (I ).
To this end we define C (Q) to be the closure of the union
over all PMFs pU,X,Q of the set of rate pairs (Rc, Rp) that
satisfy

Rc ≤ min
V∈V

I (U ; Z |Q) (14a)

Rp ≤ I (X; Y |U, Q) (14b)

Rc + Rp ≤ I (X; Y |Q), (14c)

where the mutual informations are computed w.r.t. the joint
distribution

pU,X,Q(u, x, q) W(y|x) V(z|x), (15)

and where U and Q are auxiliary chance variables taking
values in the finite sets U and Q.

Proposition 4. The regions C (I ) and C (Q) are identical

C (I ) = C (Q). (16)

Proof: One inclusion is obvious and simply follows by
setting Q to be deterministic. We therefore focus on the other,
namely, on showing that if there exists some joint PMF pU,X,Q

under which the pair (Rc, Rp) satisfies (14), then there exists
some auxiliary chance variable Ũ and a PMF pŨ ,X under
which the pair satisfies (9) when we substitute Ũ for U . To this
end we choose Ũ = (U, Q) and show that the results of
substituting Ũ for U on the right hand side (RHS) of each
of the inequalities in (9) is at least as high as the RHS of the
corresponding inequality in (14):

min
V∈V

I (Ũ ; Z) = min
V∈V

I (U, Q; Z)

= min
V∈V

{
I (U ; Z |Q) + I (Q; Z)

}

≥ min
V∈V

I (U ; Z |Q);
I (X; Y |Ũ) = I (X; Y |U, Q);

and

I (X; Y ) = I (X, Q; Y ) (17)

= I (Q; Y ) + I (X; Y |Q)

≥ I (X; Y |Q),

where (17) follows from the Markovity Q�−−X�−−Y .
From Proposition 4 we obtain:

Corollary 5. The region C (I ) is a compact convex set
We are now ready to prove (12) and thus conclude the proof

of Theorem 2.
Proof that C (I ) = Ccmp: Since C (I ) equals C (Q) (Propo-

sition 4), it suffices to prove that

C (Q) = Ccmp. (18)

We begin by describing C (Q) more explicitly by restricting the
cardinality of the auxiliary chance variable U to m and then
letting m tend to infinity. Let Um denote the set {1, . . . , m},
and Pm the set of probability distributions on Um × X . Let
Prob0(Pm) denote the set of probability distributions on Pm of
finite support. A generic element μ ∈ Prob0(Pm) has the form

μ =
k∑

q=1

αq δ
ν

(q)
U,X

, αq ≥ 0,

k∑

q=1

αq = 1, (19)

where δ
ν

(q)
U,X

is the PMF on Pm that is concentrated at ν
(q)
U,X , so

δ
ν

(q)
U,X

(νU,X ) =
{

1 if νU,X = ν
(q)
U,X

0 otherwise,
νU,X ∈ Pm, (20)

and

μ(νU,X ) =
k∑

q=1

αq δ
ν

(q)
U,X

(νU,X ). (21)

Define for every V ∈ V and νU,X ∈ Pm

I (c)(V, νU,X ) = I (U ; Z) (22a)

I (p)(νU,X ) = I (X; Y |U) (22b)

I (s)(νU,X ) = I (X; Y ), (22c)

where the mutual informations are computed w.r.t.

νU,X (u, x) W(y|x) V(z|x), (22d)

and “c,” “p,” and “s” are mnemonic for “common,” “private,”
and “sum.” For every V ∈ V and every μ ∈ Prob0(Pm) of the
form (19), define

I (c)(V, μ) =
k∑

q=1

αq I (c)(V, ν
(q)
U,X ) (23a)

I (p)(μ) =
k∑

q=1

αq I (p)(ν
(q)
U,X ) (23b)

I (s)(μ) =
k∑

q=1

αq I (s)(ν
(q)
U,X ). (23c)

These correspond to I (U ; Z |Q), I (X, Y |U, Q), and
I (X; Y |Q) when the channel from X to Z is V; the chance
variable Q takes on the value q with probability αq ; and
PU,X |Q=q is ν

(q)
U,X .

Note that neither I (p)(μ) nor I (s)(μ) depends on V: they
only depend on μ. As to I (c)(V, μ), it inherits the following
properties from I (c)(V, νU,X ): For any fixed μ ∈ Prob0(Pm),
the mapping V �→ I (c)(V, μ) is convex and continuous with
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a compact domain (namely, V). Moreover, for a fixed V ∈ V ,
the mapping μ �→ I (c)(V, μ) is concave.

Minimizing over V, we now define for every μ ∈ Prob0(Pm)
as above

J (c)(μ) = min
V∈V

k∑

q=1

αq I (c)(V, ν
(q)
U,X ) (24a)

J (p)(μ) =
k∑

q=1

αq I (p)(ν
(q)
U,X ) (24b)

J (s)(μ) =
k∑

q=1

αq I (s)(ν
(q)
U,X ), (24c)

J(μ) = (
J (c)(μ), J (p)(μ), J (s)(μ)

)
. (24d)

(Here J (p)(μ) = I (p)(μ) and J (s)(μ) = I (s)(μ), but we
introduced the new notation for consistency with J (c)(μ).)
Here J (c)(μ) corresponds to minV I (U ; Z |Q) for Q as before.

Rather than studying the two-dimensional region in the
(Rc, Rp)-plane that the three constraints induce, we prefer to
study the three-dimensional set of constraints triples. We thus
define

Jm =
⋃

μ∈Prob0(Pm)

{
ρ ∈ R

3+ : 0  ρ  J(μ)
}
, (25)

where R+ denotes the nonnegative reals, 0 = (0, 0, 0), and
for vectors a = (a1, a2, a3) ∈ R

3 and b = (b1, b2, b3) ∈ R
3

we use a  b to indicate that ai ≤ bi for every i ∈ {1, 2, 3}.
Note that Jm is convex (because the minimum of a convex
combination is lower-bounded by the convex combination
of the minima). Also, the sequence {Jm} is monotonically
nondecreasing in the sense that Jm ⊆ Jm+1 for every m ∈ N

(with N denoting the natural numbers). We define

J =
⋃

m∈N

Jm (26)

and denote its closure J̄ .
For every rate pair (Rc, Rp) ∈ R

2+, define the triple

R(Rc, Rp) = (
Rc, Rp, Rc + Rp

)
. (27)

The relationship between C (Q) ⊂ R
2+ and J̄ ⊂ R

3+ can now
be expressed by

(
(Rc, Rp) ∈ C (Q)

)
⇐⇒

(
R(Rc, Rp) ∈ J̄

)
. (28)

The Körner-Marton region CV ∈ R
2+ can also be described in

the constraints space. To this end, we let JV ∈ R
3+ correspond

to J of (26) for the single-state setting, with the subscript
V denoting the channel from X to Z and with the channel
W from X to Y being implicit. In this single-state setting it
suffices to choose m equal to |X | + 1 and there is no need
to take the closure: JV is compact and convex [12, Th. 8.1].
As in (28),

(
(Rc, Rp) ∈ CV

)
⇐⇒

(
R(Rc, Rp) ∈ JV

)
. (29)

Similarly, we define

Jcmp =
⋂

V∈V
JV, (30)

so
(
(Rc, Rp) ∈ Ccmp

)
⇐⇒

(
R(Rc, Rp) ∈ Jcmp

)
. (31)

It follows from (31) and (28) that proving that C (Q) equals
Ccmp is equivalent to proving that

J̄ = Jcmp, (32)

which is what we set out to do now. The inclusion

J̄ ⊆ Jcmp (33)

holds because replacing the minimum in (24) with a fixed
channel V cannot decrease the result, so JV must contain J̄ ,
and this is true for every V ∈ V . The reverse inclusion is
trickier.

The set J̄ is compact and convex (because for every m ∈ N

the set Jm is convex and Jm ⊆ Jm+1). We shall study it by
studying the mapping

λ �→ max
ρ∈J̄

�λ,ρ� (34)

for triples λ = (λ1, λ2, λ3) ∈ R
3. Since Jm ⊆ Jm+1,

max
ρ∈J̄

�λ,ρ� = lim
m→∞ sup

ρ∈Jm

�λ,ρ� . (35)

As we next argue,

sup
ρ∈Jm

�λ,ρ� = sup
ρ∈Jm

〈
λ+,ρ

〉
(36)

= sup
μ∈Prob0(Pm)

〈
λ+, J(μ)

〉
, (37)

where λ+ = (λ+
1 , λ+

2 , λ+
3 ), and we are using the notation

ξ+ = max{ξ, 0}, ξ ∈ R. (38)

Here (36) holds because the components of all the tuples in Jm

are nonnegative, and because we have included in Jm all the
vectors with 0  ρ  J(μ) so that if some λi is negative we
can restrict ourselves without loss of optimality to tuples ρ

whose i -th component is zero; and (37) holds because λ+ has
nonnegative components so

〈
λ+, J(μ)

〉
is at least as large as〈

λ+,ρ
〉

whenever 0  ρ  J(μ).
We next study the supremum on the RHS of (37). We shall

need the Minisup Theorem of Nakaido [13, Sec. 7.1.8], which
we quote from [11]: Let f (x, y) be defined for x ∈ X and
y ∈ Y , where X and Y are convex subsets of topological
vector spaces, and X is compact. Let f (x, y) be convex and
lower semicontinuous in x for every y ∈ Y and concave in y
for every x ∈ X . Then there exists an x̄ ∈ X such that

sup
y∈Y

min
x∈X

f (x, y) = sup
y∈Y

f (x̄, y) = min
x∈X

sup
y∈Y

f (x, y). (39)

We shall use this theorem with the supremum being
over Prob0(Pm) and with the minimum being over V .



KERESZTFALVI AND LAPIDOTH: SEMI-ROBUST COMMUNICATIONS OVER A BROADCAST CHANNEL 5047

Starting from (37),

sup
ρ∈Jm

�λ,ρ�

= sup
μ∈Prob0(Pm)

{
λ+

1 J (c)(μ) + λ+
2 J (p)(μ)

+ λ+
3 J (s)(μ)

}
(40)

= sup
μ∈Prob0(Pm)

{
λ+

1

(
min
V∈V

I (c)(V, μ)
)

+ λ+
2 I (p)(μ)

+ λ+
3 I (s)(μ)

}
(41)

= sup
μ∈Prob0(Pm)

min
V∈V

{
λ+

1 I (c)(V, μ) + λ+
2 I (p)(μ)

+ λ+
3 I (s)(μ)

}
(42)

= min
V∈V

sup
μ∈Prob0(Pm)

{
λ+

1 I (c)(V, μ) + λ+
2 I (p)(μ)

+ λ+
3 I (s)(μ)

}
(43)

= min
V∈V

max
ρ∈JV

〈
λ+,ρ

〉
, m ≥ |X | + 1, (44)

with the following justification. The second equality (41) holds
by the definitions in (24), and the third equality (42) because
λ+

1 is nonnegative and because I (p)(μ) and I (s)(μ) do not
depend on V. The fourth equality (43) holds by the Minisup
Theorem. To justify (44) we note that the supremum on the
RHS of (43) corresponds to a situation where the channel V is
fixed and we maximize over μ. It is thus similar to the situation
we encounter in studying the broadcast channel with degraded
message sets [2] [12, Th. 8.1], and the cardinality bounds in
the latter show that when m ≥ |X | + 1 this supremum is
achieved by some deterministic μ, i.e., by a μ whose support
is a singleton. It now follows from (44) and (35) that

max
ρ∈J̄

�λ,ρ� = min
V∈V

max
ρ∈JV

〈
λ+,ρ

〉
. (45)

We are now ready to conclude the proof that J̄ = Jcmp and
that therefore C (I ) = Ccmp. Being the intersection of compact
convex sets, Jcmp is compact and convex. And since so is J̄ ,
it suffices to prove that for all triples λ = (λ1, λ2, λ3) ∈ R

3

[14, Th. 11.5]

max
ρ∈J̄

�λ,ρ� = max
ρ∈Jcmp

�λ,ρ� . (46)

Since J̄ ⊆ Jcmp (33),

max
ρ∈Jcmp

�λ,ρ� ≥ max
ρ∈J̄

�λ,ρ� , λ ∈ R
3, (47)

and it remains to prove the reverse inequality. Since the
maximum over an intersection of sets is upper-bounded by the
minimum of the maxima over the sets, it follows from (30) that

max
ρ∈Jcmp

�λ,ρ� ≤ min
V∈V

max
ρ∈JV

�λ,ρ� (48)

= min
V∈V

max
ρ∈JV

〈
λ+,ρ

〉
(49)

= max
ρ∈J̄

�λ,ρ� , λ ∈ R
3, (50)

where the second line follows from arguments similar to those
leading to (36); and the final equality follows from (45).
The combination of (50) and (47) establishes (46) and thus
concludes the proof of (32), which implies (18) and hence by
Proposition 4 that C (I ) = Ccmp.

IV. COMPUTATIONAL CONSIDERATIONS

Calculating C (I ) numerically is a bit tricky without a
bound on the size of the alphabet U in which the auxiliary
U takes values. Here we propose a workaround. Recalling
Proposition 4, it suffices to compute C (Q), which is in one-to-
one correspondence with the compact and convex set J̄ ⊂ R

3+.
The latter can be characterized using the mapping (34), which
is given explicitly in (45). This has some computational advan-
tages, because on the RHS of (45) the inner maximization is
for a fixed channel V, so we may limit the cardinality of the
auxiliary alphabet U to [12, Th. 8.1]

|U | ≤ min
{|X |, |Y| + |Z|} + 1. (51)

Moreover, the RHS of (45) could perhaps be computed using
numerical techniques for finding equilibrium points.

V. EXAMPLE

Consider the binary symmetric semi-arbitrarily-varying
broadcast channel (BS-SAVBC), where the channel to Y
is a BSC(p), i.e., a binary symmetric channel (BSC) with
crossover probability p, and the channel to Z is a BSC with a
state-dependent crossover probability between pmin and pmax.
The state alphabet S is the closed interval [pmin, pmax], and
we identify a state s ∈ S with its corresponding crossover
probability ps . Thus, when the state is s, the channel from X
to Z is a BSC(ps). We focus on the case1

0 ≤ p < 1/2 (52)

0 ≤ pmin ≤ pmax < 1/2. (53)

In this case the capacity of the DMC to Y and of the
AVC to Z are both positive (c.f. [10], [11]), and therefore
(by Remark 1 and Theorem 2) the capacity region of the BS-
SAVBC is C (I ), which is also equal to Ccmp. The BSC(pmax)
is a degraded version of all the channels in V , so Ccmp is
the Körner-Marton region corresponding to V = BSC(pmax),
i.e., CV.

An inner bound on CV can be found by evaluating (9) (with
the minimization replaced by choosing the state corresponding
to pmax) for the joint PMF pU,X under which

U ∼ Bernoulli(1/2) (54a)

V ∼ Bernoulli(α) (54b)

X = U + V mod 2. (54c)

1When p equals 1/2 the capacity from X to Y is zero, and if we exclude this
case, then—by possibly inverting Y —we can guarantee that p be in [0, 1/2).
Likewise, if the interval [pmin, pmax] includes 1/2, then the capacity of the
AVC from X to Z is zero. And if this is excluded, then—again by possibly
inverting Z—we can restrict ourselves to the case where this interval is a
subset of [0, 1/2).
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Fig. 2. The boundary of the capacity region of the binary symmetric semi-
arbitrarily varying broadcast channel for various values of p, pmax ∈ [0, 1/2].
The dashed line corresponds to the boundary when pmax ≤ p. As pmax
increases from p towards 1/2 the region shrinks and eventually, when pmax
increases to 1/2, loses its interior.

This proves that CV contains all the rate
pairs (Rc, Rp) satisfying

Rc ≤ 1 − Hb(α ∗ pmax) (55a)

Rp ≤ Hb(α ∗ p) − Hb(p) (55b)

Rc + Rp ≤ 1 − Hb(p). (55c)

Here Hb(·) denotes the binary entropy function, and we
introduce the notation α ∗ δ � α(1 − δ) + (1 − α)δ.

We next show that CV contains no other rate pairs, and that
it thus equals the union over all α ∈ [0, 1/2] of the polytopes
defined by (55). This region is depicted in Figure 2. We do so
by showing that every rate pair (Rc, Rp) in CV must satisfy (55)
for some α ∈ [0, 1/2]. To this end, we distinguish between
two cases, depending on whether or not p exceeds pmax.

We first note that for a fixed α ∈ [0, 1/2), the mapping
δ �→ α ∗ δ is monotonically increasing on (0 < δ < 1/2), and
so is Hb(·). Consequently, for such α’s, the relation between
p and pmax translates to the relation between Hb(α ∗ p) and
Hb(α ∗ pmax) as follows:

(
p ≤ pmax

)
⇐⇒

(
Hb(α ∗ p) ≤ Hb(α ∗ pmax)

)
(56a)

(
p > pmax

)
⇐⇒

(
Hb(α ∗ p) > Hb(α ∗ pmax)

)
. (56b)

Case I: p ≤ pmax.
In this case the broadcast channel corresponding to V =
BSC(pmax) is a stochastically degraded binary-symmetric
broadcast channel (BS-BC), where Z is a stochastically
degraded version of Y . Since Receiver Y recovers (Mc, Mp)
and Receiver Z recovers Mc, any rate pair (Rc, Rp) in CV
must satisfy

Rp ≤ I (X; Y |U) (57a)

Rc ≤ I (U ; Z) (57b)

for some PMF pU,X [12, Th. 5.2]. For the stochastically
degraded BS-BC with the stronger receiver Y observing the
BSC( p) and the degraded receiver Z observing the BSC(ps ),
the capacity region (57) simplifies to the set of rate pairs
(Rc, Rp) that satisfy

Rp ≤ Hb(α ∗ p) − Hb(p) (58a)

Rc ≤ 1 − Hb(α ∗ pmax) (58b)

for some α ∈ [0, 1/2] [12, Sec. 5.4.2]. Since these inequalities
coincide with (55a) and (55b), it follows that to every rate
pair (Rc, Rp) ∈ CV there corresponds some α ∈ [0, 1/2]
for which (55a) and (55b) are satisfied. The sum-rate con-
straint (55c) is satisfied automatically because, in the case
at hand, (55a) and (55b) imply (55c). Indeed, adding (55a)
and (55b) yields

Rc + Rp ≤ 1 − Hb(α ∗ pmax) + Hb(α ∗ p) − Hb(p) (59)

≤ 1 − Hb(p), (60)

where the second inequality follows from (56a) for α ∈
[0, 1/2) and by inspection for α = 1/2.
Case II: p > pmax.
In this case too the broadcast channel corresponding to V =
BSC(pmax) is a stochastically degraded BS-BC, but the order
is reversed: now Y is a degraded version of Z . To show
that any achievable rate pair (Rc, Rp) must satisfy (55),
we first note that—since it is now the weaker receiver, namely
Receiver Y , that must recover both Mc and Mp—the sum-rate
Rc + Rp must not exceed the Shannon capacity of the BSC(p)
from X to Y

Rc + Rp ≤ 1 − Hb(p). (61)

Every rate pair in C (I ) must thus satisfy (61).
We next show that, to every rate pair (Rc, Rp) satisfy-

ing (61), there corresponds some α ∈ [0, 1/2] for which (55)
hold. To see why, note that, for the case at hand, for every
α ∈ [0, 1/2] the pair

Rc = 1 − Hb(α ∗ p) (62a)

Rp = Hb(α ∗ p) − Hb(p) (62b)

satisfies (55) (because, by (56b), 1 − Hb(α ∗ p) cannot exceed
1 − Hb(α ∗ pmax) and (55a) must therefore hold). As we vary
α from 0 to 1/2, the rate pair (62) traces the line Rc + Rp =
1 − Hb(p).

VI. SUMMARY AND DISCUSSION

Motivated by communication scenarios involving unequal
error protection, we have studied a special class of arbitrarily
varying broadcast channels with degraded message sets, where
the channel to the receiver that is required to decode both
messages is fixed, and the channel to the receiver that is
only required to decode the common message is arbitrarily
varying. The private message can be viewed as the “less-
well protected message,” and the common message as the
“better-protected message.” Although the capacity region of
the general arbitrarily varying broadcast channel is unknown,
for our special class we were able to provide a single-letter
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characterization of the capacity. Moreover, our results show
that our network bears similarity to the single-user AVC where,
for convex and compact classes of channels, the AVC capacity
is either zero or else equals the minimum of the capacities of
the channels in the family.

This raises hopes that other results about the single-user
AVC might have counterparts for our class. Of particular
interest might be results on cost constraints and noncausal
state information at the transmitter. Also of interest might be
to solve for the capacity region when the set of channels
V is finite and the state remains constant throughout the
transmission. This seems to be an open problem even when V
has only two elements [12, Ch. 8, Open problems].
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