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Abstract—It is demonstrated that doubling the sampling rate
recovers some of the loss in capacity incurred on the bandlimited
Gaussian channel with a one-bit output quantizer.

I. INTRODUCTION

We study the capacity of the continuous-time, bandlimited,
additive white Gaussian noise (AWGN) channel with one-
bit output quantization. Our focus is on the capacity at low
transmit powers, i.e., on the capacity per unit-cost, which is
defined as the slope of the capacity-vs-input-power curve at
zero. We show that increasing the sampling rate reduces the
loss in capacity per unit-cost caused by the quantization.
The capacity of the continuous-time AWGN channel with-

out output quantization was studied by Shannon [1]. He
showed that if the channel input is bandlimited to W Hz and
satisfies the average-power constraint P, and if the additive
Gaussian noise is of double-sided power spectral density
N0/2, then the capacity (in nats per second) is given by (see
also [2])

C(P) = W log
(

1 +
P

WN0

)
(1)

where log(·) denotes the natural logarithm function. This
capacity can be achieved by transmitting

X(t) =
∞∑

�=−∞
X� sinc(2W t − �), t ∈ R (2)

(where R denotes the set of real numbers), and by sampling
the output Y (·) at Nyquist rate 2W. Here {X�, � ∈ Z} (where
Z denotes the set of integers) is a sequence of independent
and identically distributed (IID) Gaussian random variables of
zero mean and variance P, and t �→ sinc(t) denotes the sinc-
function, i.e., sinc(0) = 1 and sinc(t) = sin(πt)/(πt) for
t �= 0.
The above (capacity-achieving) transmission scheme re-

duces the continuous-time channel to a discrete-time
AWGN channel with inputs {X�, � ∈ Z} and outputs{
Y
(
�/(2W)

)
, � ∈ Z

}
. Yet, it is often required that the channel

inputs and outputs be not only discrete in time, but also take
on a discrete value, i.e., take value in a finite set rather than
in R. This is, for example, the case if the transmitter and
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receiver use digital signal processing techniques. To ensure
that the channel inputs are discrete-valued, we can simply
restrict ourselves to finite input alphabets. This restriction is
not critical for small input powers P. Indeed, it is well-known
that binary inputs achieve the capacity per unit-cost of the
AWGN channel [1]. To ensure that the channel outputs are
discrete-valued, we have to employ a quantizer (analog-to-
digital converter), which approximates the continuous-valued
output by a finite number of bits.
The capacity (in nats per channel use) of the discrete-time

AWGN channel with binary symmetric output quantization—
where the quantizer produces 1 for a nonnegative output and
−1 for a negative output—is given by

log 2 − Hb

(
Q

(√
P/σ

))
(3)

where σ2 denotes the variance of the additive noise, Hb(·)
the binary entropy function, and Q(·) the Q-function; see
[3, (3.4.18)], [4, p. 107], [5, Thm. 2]. To the best of our
knowledge, there exists no closed-form expression for the
capacity of the discrete-time AWGN channel with nonbinary
output quantization. However, numerical results are, for ex-
ample, given in [5]. Furthermore, there exist analytical results
concerning the capacity per-unit cost. For example, it was
demonstrated that if a binary symmetric quantizer is employed,
then the capacity per unit-cost equals 1

π
1

σ2 [3, (3.4.20)]. It
was further demonstrated that for an octal quantizer with
uniform quantization the capacity per unit-cost is not less
than 0.475 1

σ2 [3, (3.4.21)]. Thus, at low transmit power,
employing a binary quantizer causes a loss of a factor of
2/π relative to the capacity per unit-cost 1

2
1

σ2 for unquantized
decoding [1]. In contrast, by quantizing the output with 3 bits,
a capacity per unit-cost can be achieved that is close to the
capacity per unit-cost for unquantized decoding. (Note that
the capacity of discrete-time channels is measured in nats per
channel use, whereas the capacity of continuous-time channels
is measured in nats per second. Since with a continuous-time
signal of bandwidth W Hz we can approximately transmit
2W samples per second, we have that one nat per channel
use corresponds to 2W nats per second. By further noting that
lowpass filtering and sampling Gaussian noise of double-sided
power spectral density N0/2 yields Gaussian noise-samples of
variance WN0, it follows that the capacity per unit-cost of the
continuous-time channel corresponds to 2W times the capacity
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Fig. 1. System model.

per unit-cost of the discrete-time channel with σ2 replaced by
WN0.)
The above results suggest that, in order to reduce the loss

in capacity per unit-cost caused by the quantization, one
needs to increase the quantizer’s resolution. However, while
this clearly holds for the discrete-time channel, this does not
necessarily hold for the underlying continuous-time channel.
Indeed, in contrast to the unquantized channel output, the
quantized output is not bandlimited, and it is therefore prima
facie not clear, whether sampling the quantized output at
Nyquist rate is optimal. One might thus increase the capacity
of the continuous-time channel by oversampling the quantized
output, i.e., by sampling the quantized output at rates higher
than the Nyquist rate.
When there is no additive noise, it was shown by Gilbert

[6] and by Shamai [7] that oversampling indeed increases the
capacity. In this paper, we demonstrate that oversampling also
increases the capacity when the noise power is large relative
to the transmit power. In particular, we show that, for binary
symmetric output quantization, sampling the quantized output
at twice the Nyquist rate yields a capacity per unit-cost that is
not less than 0.75 1

N0
, which is strictly larger than the capacity

per unit-cost 2
π

1
N0

≈ 0.64 1
N0

that can be achieved by sampling
the quantized output at Nyquist rate.
The rest of this paper is organized as follows. Section II de-

scribes the channel model. Section III defines channel capacity
and the capacity per unit-cost and presents the main result.
Section IV outlines the proof of the main result. Section V
concludes the paper with a discussion of our results.

II. CHANNEL MODEL

We consider the communication channel depicted in Fig-
ure 1 whose input x(·) is bandlimited to W Hz and satisfies
the average-power constraint P. The channel output Y (kTs) at
integer multiples of the sampling interval Ts > 0 is

Y (kTs) = sgn
{(

(x + Z) � LPFW

)
(kTs)

}
, k ∈ Z (4)

where sgn{·} denotes the sign function; (a � b)(t) the con-
volution between a(·) and b(·) at time t; and LPFW(·) is
the impulse response of the ideal unit-gain lowpass filter of
cutoff frequency W. The hard-limiter is a binary symmetric
quantizer that produces 1 for a nonnegative input and −1 for
a negative input. We assume that {Z(t), t ∈ R} is zero-mean
white Gaussian noise of double-sided power spectral density
N0/2.

Without loss of optimality, we restrict ourselves to signals
x(·) of the form

x(t) =
1√
2W

∞∑
�=−∞

x�g

(
t − �

2W

)
, t ∈ R (5)

where g(·) is some unit-energy waveform that is bandlimited
to W Hz. Indeed, by the Sampling Theorem [8, Thm. 8.4.5],
any signal x(·) that is bandlimited to W Hz can be written as
(5) with

x� = x

(
�

2W

)
, � ∈ Z

and
g (t) =

√
2W sinc

(
2W t

)
, t ∈ R.

III. CHANNEL CAPACITY AND CAPACITY PER UNIT-COST

We define the capacity (in nats per second) as

CTs(P) � lim
n→∞

sup
2W

n
I
(
Xn

1 ;Yn
1

)
(6)

where the supremum is over all unit-energy waveforms g(·)
that are bandlimited to W Hz and over all joint distributions
on (X1, X2, . . . , Xn) satisfying 1

n

∑n
k=1 E

[
X2

k

] ≤ P. Here
we use An

m to denote the sequence Am, Am+1, . . . , An and

Yk �
(

Y

(⌈
2k − 1
4WTs

⌉
Ts

)
, . . . , Y

(⌊
2k + 1
4WTs

⌋
Ts

))

(with 
·� and �·
 denoting the ceiling and the floor function).
A more general definition of channel capacity for continuous-
time channels can be found in [2, Sec. 8.1]. For the above
channel (4), the capacity CTs(P) defined by (6) is a lower
bound on the capacity defined in [2, Sec. 8.1]. The two ca-
pacities coincide, for example, for the continuous-time AWGN
channel (without output quantization).
That oversampling can increase the capacity of the above

channel has been demonstrated in the noiseless case, i.e.,
when N0 = 0. In particular, Gilbert [6] showed that, for a
Gaussian input X(·), sampling the output at twice the Nyquist
rate yields an information rate of 2.14W bits per second,
which is strictly larger than the 2W bits per second that can
be achieved by sampling the output at Nyquist rate. Shamai
[7] further showed, inter alia, that by sampling the output
at η-times the Nyquist rate, rates of 2W log(1 + η) nats per
second are achievable by transmitting a bandlimited process
that possesses a single real zero within each Nyquist interval.
In the absence of noise it is thus possible to trade amplitude
resolution versus time resolution.
In this paper, we focus on the case where the variance of

the additive noise is large relative to the transmit power. In
particular, we study the capacity per unit-cost, defined as

ĊTs(0) � lim
P↓0

CTs(P)
P

. (7)

By the Data Processing Inequality [9, Thm. 2.8.1] it follows
that quantizing the output does not increase the capacity. This
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implies that the capacity per unit-cost is upper bounded by the
capacity per unit-cost of the continuous-time AWGN channel
(without output quantization)

ĊTs(0) ≤ lim
P→∞

W log
(
1 + P

WN0

)
P

=
1

N0
. (8)

For the case where the output is sampled at Nyquist rate
1/Ts = 2W, it was shown that the capacity per unit-cost is
given by [3, (3.4.20)]

Ċ 1
2W

(0) =
2
π

1
N0

≈ 0.637
1

N0
. (9)

Thus, when we sample the output at Nyquist rate, hard-limiting
causes a loss of a factor of 2/π. This loss can be reduced by
sampling the output at twice the Nyquist rate:
Theorem 1 (Main Result): Sampling the output at rate 4W

yields

Ċ 1
4W

(0) ≥ 2
π

1
N0

[(
g1
2 + g0

4 + g1
π ϑ1 − g0

2π ϑ2

)2

1
4 + 1

π arcsin (ρ)

+ 8
(g0

4
− g1

π
ϑ1 +

g0

2π
ϑ2

)2

+

(
g1
2 − g0

4 − g1
π ϑ1 + g0

2π ϑ2

)2

1
4 − 1

π arcsin (ρ)

]

≈ 0.747
1

N0
(10)

where ρ = 2
π , ϑ1 = arcsin

(
ρ√

1−ρ2

)
, ϑ2 = arcsin

(
ρ2

1−ρ2

)
,

and

g0 =
1 + 2

π λ√
1
2λ2 + 4

π λ + 1

∣∣∣∣∣∣
λ=1.4

g1 =
2
π + 1

2λ√
1
2λ2 + 4

π λ + 1

∣∣∣∣∣∣
λ=1.4

.

Proof: The proof is outlined in Section IV. A full proof
can be found in [10, Sec. 4.2].
The main ingredients in the proof of Theorem 1 are expan-

sions of the complementary cumulative distribution function
(CCDF) of bivariate and trivariate Gaussian vectors around
the orthant probability.1 We present these expansions in the
following two propositions.
Proposition 2: Let (x, y) �→ φ0,K(x, y) denote the prob-

ability density function (PDF) of the bivariate, zero-mean,
Gaussian vector of covariance matrix

K =
(

1 �
� 1

)

1The orthant probability is the probability that all components of a random
vector have the same sign.

for |�| < 1. Then, for every A ≥ 0, α ∈ R and β ∈ R,∫ ∞

−αA

∫ ∞

−βA

φ0,K(x, y) dy dx

=
1
4

+
1
2π

arcsin(�) +
α + β

2
A√
2π

+ Δ(A, α, β) (11)

where
|Δ(A, α, β)| ≤ A2η(A, α, β)

and where η(A, α, β) = η(A, |α|, |β|) is monotonically in-
creasing in (A, |α|, |β|) and is bounded for every finite A, α,
and β.

Proof: See [10, Sec. 4.1.1].
Proposition 3: Let (x, y, z) �→ φ0,K(x, y, z) denote the

PDF of the trivariate, zero-mean, Gaussian vector of covari-
ance matrix

K =

⎛
⎝ 1 �12 �13

�12 1 �23

�13 �23 1

⎞
⎠

for |�12| < 1, |�13| < 1, |�23| < 1 satisfying det(K) > 0
(where det(K) denotes the determinant of the matrix K). Then,
for every A ≥ 0, α ∈ R, β ∈ R, and γ ∈ R,∫ ∞

−αA

∫ ∞

−βA

∫ ∞

−γA

φ0,K(x, y, z) dz dy dx

=
1
8

+
1
4π

(
arcsin(�12) + arcsin(�13) + arcsin(�23)

)
+

A√
2π

[
α + β + γ

4

+
α

2π
arcsin

(
�23 − �12�13√

(1 − �2
12)(1 − �2

13)

)

+
β

2π
arcsin

(
�13 − �12�23√

(1 − �2
12)(1 − �2

23)

)

+
γ

2π
arcsin

(
�12 − �13�23√

(1 − �2
13)(1 − �2

23)

) ]

+ Δ(A, α, β, γ) (12)

where
|Δ(A, α, β, γ)| ≤ A2η(A, α, β, γ)

and where η(A, α, β, γ) = η(A, |α|, |β|, |γ|) is monotonically
increasing in (A, |α|, |β|, |γ|) and is bounded for every finite
A, α, β, and γ.

Proof: See [10, Sec. 4.1.2].
Due to space limitations, we omit the proofs of Propositions 2
and 3, and we provide only an outline of the proof of
Theorem 1. A full proof of Theorem 1 and of Propositions 2
and 3 can be found in [10].

IV. PROOF OUTLINE

To prove Theorem 1, we derive a lower bound on C 1
4W

(P)
and compute its ratio to P in the limit as P tends to zero. To
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this end, we evaluate (2W)/n I
(
Xn

1 ;Yn
1

)
for {Xk, k ∈ Z}

being a sequence of IID, binary random variables with

Xk =

{ √
P , with probability 1

2

−√
P , with probability 1

2 .

We shall restrict ourselves to waveforms g(·) that satisfy∑
� �=0

∣∣∣∣g
(

� − 1/2
2W

)∣∣∣∣ < ∞ (13)

∑
� �=0

∣∣∣∣g
(

�

2W

)∣∣∣∣ < ∞ (14)

∑
� �=0

∣∣∣∣g
(

� + 1/2
2W

)∣∣∣∣ < ∞. (15)

By the chain rule for mutual information [9, Thm. 2.5.2]

2W

n
I
(
Xn

1 ;Yn
1

)
=

2W

n

n∑
k=1

I
(
Xk;Yn

1

∣∣ Xk−1
1

)
≥ 2W I

(
X1; Y 1

2
, Y1, Y 3

2

)
(16)

where we define Yτ � Y
(

τ
2W

)
.

A. The Joint Law of
(
X1, Y 1

2
, Y1, Y 3

2

)
In order to evaluate the right-hand side (RHS) of (16),

we first compute the conditional probability of
(
Y 1

2
, Y1, Y 3

2

)
,

conditioned on X∞−∞. Let Nτ � 1√
WN0

(
Z � LPFW

) (
τ

2W

)
,

and let

α � 1√
P(2W)(WN0)

∞∑
�=−∞

x� g

(
1/2 − �

2W

)

β � 1√
P(2W)(WN0)

∞∑
�=−∞

x� g

(
1 − �

2W

)

and

γ � 1√
P(2W)(WN0)

∞∑
�=−∞

x� g

(
3/2 − �

2W

)
.

It follows from (4) and Proposition 3 that

Pr
(
Y 1

2
= 1, Y1 = 1, Y 3

2
= 1

∣∣ X∞
−∞ = x∞

−∞
)

= Pr
(
N 1

2
≥ −α

√
P, N1 ≥ −β

√
P, N 3

2
≥ −γ

√
P
)

=
∫ ∞

−α
√

P

∫ ∞

−β
√

P

∫ ∞

−γ
√

P

φ0,K(x, y, z) dz dy dx

=
1
8

+
1
2π

arcsin(ρ)

+

√
P

2π

[
α + β + γ

4
+

α + γ

2π
ϑ1 − β

2π
ϑ2

]

+ Δ
(√

P, α, β, γ
)

(17)

where ρ, ϑ1, and ϑ2 are as in Theorem 1, and where

K =

⎛
⎝ 1 ρ 0

ρ 1 ρ
0 ρ 1

⎞
⎠ .

Averaging the RHS of (17) over X∞
−∞ and over(

X0
−∞, X∞

2

)
yields the probability of the event(

Y 1
2
, Y1, Y 3

2

)
= (1, 1, 1) and the conditional probability

of
(
Y 1

2
, Y1, Y 3

2

)
= (1, 1, 1), conditioned on X1. It thus

follows from Bayes’ law that

Pr
(
X1 =

√
P
∣∣ Y 1

2
= 1, Y1 = 1, Y 3

2
= 1

)
=

1
2

+

√
P

2π

α0+β0+γ0
4 + α0+γ0

2π ϑ1 − β0
2π ϑ2

1
4 + 1

π arcsin(ρ)
+ o

(√
P
)
(18)

where o(x) satisfies limx↓0 o(x)/x = 0, and where

α0 � E
[
α

∣∣∣X1 =
√

P
]

=
1√

(2W)(WN0)
g

(
− 1

4W

)
(19)

β0 � E
[
β

∣∣∣X1 =
√

P
]

=
1√

(2W)(WN0)
g (0) (20)

γ0 � E
[
γ
∣∣∣X1 =

√
P
]

=
1√

(2W)(WN0)
g

(
1

4W

)
. (21)

The remaining conditional probabilities of X1 =
√

P can be
computed in a similar way.

B. Evaluating I
(
X1; Y 1

2
, Y1, Y 3

2

)
Let

℘
(
y 1

2
, y1, y 3

2

)
� Pr

(
X1 =

√
P
∣∣ Y 1

2
= y 1

2
, Y1 = y1, Y 3

2
= y 3

2

)
.

By noting that

Hb

(
1
2

+ ξ

)
= log 2 − 2ξ2 + o

(
ξ2
)
, |ξ| ≤ 1

2
(22)

where Hb(p) � −p log p− (1−p) log(1−p), 0 ≤ p ≤ 1 (with
0 log 0 � 0) denotes the binary entropy function, we obtain

I
(
X1; Y 1

2
, Y1, Y 3

2

)
= log 2 − E

[
Hb

(
℘
(
Y 1

2
, Y1, Y 3

2

))]

= 2E

[(
℘
(
Y 1

2
, Y1, Y 3

2

)− 1
2

)2
]

+ o(P). (23)

Applying the expressions for the conditional probabilities
℘
(
y 1

2
, y1, y 3

2

)
to (23) yields

I
(
X1; Y 1

2
, Y1, Y 3

2

)

=
P

π

⎡
⎢⎣
(

α0+β0+γ0
4 + α0+γ0

2π ϑ1 − β0
2π ϑ2

)2

1
4 + 1

π arcsin(ρ)

+ 4

(
α0 + β0 − γ0

4
− α0 + γ0

2π
ϑ1 +

β0

2π
ϑ2

)2

+

(
α0−β0+γ0

4 − α0+γ0
2π ϑ1 + β0

2π ϑ2

)2

1
4 − 1

π arcsin(ρ)
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+ 4

(
−α0 + β0 + γ0

4
− α0 + γ0

2π
ϑ1 +

β0

2π
ϑ2

)2
⎤
⎥⎦ + o(P)

(24)

where α0, β0, and γ0 are defined in (19)–(21).
Combining (24) with (16) and (6), and computing the ratio

to P in the limit as P tends to zero, yields the lower bound on
the capacity per unit-cost

Ċ 1
4W

(0)

≥ 2W

π

⎡
⎢⎣
(

α0+β0+γ0
4 + α0+γ0

2π ϑ1 − β0
2πϑ2

)2

1
4 + 1

π arcsin(ρ)

+ 4

(
α0 + β0 − γ0

4
− α0 + γ0

2π
ϑ1 +

β0

2π
ϑ2

)2

+

(
α0−β0+γ0

4 − α0+γ0
2π ϑ1 + β0

2π ϑ2

)2

1
4 − 1

π arcsin(ρ)

+ 4

(
−α0 + β0 + γ0

4
− α0 + γ0

2π
ϑ1 +

β0

2π
ϑ2

)2
⎤
⎥⎦ . (25)

Note that this lower bound holds for all unit-energy waveforms
g(·) that are bandlimited to W Hz and that satisfy (13)–(15).

C. Choosing a Waveform

Any choice of g(·) satisfying the above conditions yields a
lower bound on Ċ 1

4W
(0). We shall choose g(·) to be of Fourier

Transform

ĝ(f) =
1√
2W

1 + λ cos
(
π f

2W

)
√

1
2λ2 + 4

πλ + 1
I {|f | ≤ W} , f ∈ R

where I {·} denotes the indicator function, i.e., I {statement}
is 1 if the statement is true and 0 otherwise. This yields

α0 = γ0 =
1√

WN0

2
π + 1

2λ√
1
2λ2 + 4

π λ + 1
, λ ∈ R (26)

and

β0 =
1√

WN0

1 + 2
π λ√

1
2λ2 + 4

π λ + 1
, λ ∈ R. (27)

Note that, for the above choice, g(·) does not satisfy (13)–(15).
However, there exist waveforms that satisfy (13)–(15) and that
yield (α0, β0, γ0) that are arbitrarily close to (26) and (27); see
[10, App. B].
Applying (26) and (27) to (25) with λ = 1.4 yields the

lower bound (10) and proves thus Theorem 1.
It was demonstrated in [10, Sec. 4.2.3] that among all tuples

(α0, β0, γ0) satisfying α0 = γ0, the above choice (26) and (27)
with λ = 1.4 maximizes the RHS of (25) and yields thus the
largest lower bound on Ċ 1

4W
(0).

V. SUMMARY AND CONCLUSION

We demonstrated that doubling the sampling rate recovers
some of the loss in capacity per unit-cost incurred on the
bandlimited Gaussian channel with a one-bit output quantizer.
Indeed, when the channel output is sampled at Nyquist rate
2W, it is well-known that the capacity per unit-cost is given
by 2

π
1

N0
≈ 0.64 1

N0
[3], which is a factor of 2

π smaller than
the capacity per unit-cost of the same channel but without
output quantizer. We showed that, by sampling the output at
twice the Nyquist rate, a capacity per unit-cost not less than
0.75 1

N0
can be achieved. This can be viewed as a very-noisy

counterpart of the work by Gilbert [6] and by Shamai [7],
which demonstrated that oversampling increases the capacity
of the above channel when there is no additive noise.
The conclusions that can be drawn from this result are

twofold. Firstly, we demonstrated that in order to reduce the
loss in capacity per unit-cost caused by the quantization, one
can either increase the quantization resolution or the sampling
rate. Thus, it is possible to trade amplitude resolution (quan-
tization) versus time resolution (sampling rate). Secondly, we
observe that while sampling the output at Nyquist rate is
optimal for the AWGN channel (without output quantization),
this does not hold when the output is quantized. Thus, a
communication scheme that is optimal in the sense that it
achieves the capacity need not be optimal anymore if the
channel output is processed by a noninvertible operation (such
as quantization).
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