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Gaussian Fading Is the Worst Fading
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Abstract—The capacity of peak-power limited, single-antenna,
noncoherent, flat-fading channels with memory is considered.
The emphasis is on the capacity pre-log, i.e., on the limiting ratio
of channel capacity to the logarithm of the signal-to-noise ratio
(SNR), as the SNR tends to infinity. It is shown that, among
all stationary and ergodic fading processes of a given spectral
distribution function and whose law has no mass point at zero,
the Gaussian process gives rise to the smallest pre-log. The as-
sumption that the law of the fading process has no mass point
at zero is essential in the sense that there exist stationary and
ergodic fading processes whose law has a mass point at zero and
that give rise to a smaller pre-log than the Gaussian process of
equal spectral distribution function. An extension of these results
to multiple-input single-output (MISO) fading channels with
memory is also presented.

Index Terms—Channel capacity, channels with memory, fading
channels, flat fading, high signal-to-noise ratio (SNR), multiplexing
gain, noncoherent, time-selective.

I. INTRODUCTION

W E study the capacity of peak-power limited, single-an-
tenna, discrete-time, flat-fading channels with memory.

A noncoherent channel model is considered where the trans-
mitter and receiver are both aware of the law of the fading
process, but not of its realization. Our focus is on the capacity
at high signal-to-noise ratio (SNR). Specifically, we study
the capacity pre-log, which is defined as the limiting ratio of
channel capacity to the logarithm of the SNR, as the SNR tends
to infinity.

The capacity pre-log of Gaussian fading channels was de-
rived in [1] (see also [2]). It was shown that the pre-log is given
by the Lebesgue measure of the set of harmonics where the
derivative of the spectral distribution function that characterizes
the memory of the fading process is zero. To the best of our
knowledge, the capacity pre-log of non-Gaussian fading chan-
nels is unknown.

In this paper, we demonstrate that the Gaussian assumption
in the analysis of fading channels at high SNR is conservative in
the sense that for a large class of fading processes the Gaussian
process is the worst. More precisely, we show that among all
stationary and ergodic fading processes of a given spectral dis-
tribution function and whose law has no mass point at zero, the
Gaussian process gives rise to the smallest pre-log.
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This paper is organized as follows. Section II describes the
channel model. Section III defines channel capacity and the ca-
pacity pre-log. Section IV presents our main results. Section V
provides the proofs of these results. Section VI discusses the
extension of our results to multiple-input single-output (MISO)
fading channels with memory. Section VII concludes the paper
with a summary and a discussion of our results.

II. CHANNEL MODEL

Let and denote the set of complex numbers and the set of
integers, respectively. We consider a single-antenna flat-fading
channel with memory where the time- channel output
corresponding to the time- channel input is given by

(1)

Here the random processes and
take value in and model the additive and multiplicative noises,
respectively. It is assumed that these processes are statistically
independent and of a joint law that does not depend on the input
sequence .

The additive noise is a sequence of indepen-
dent and identically distributed (i.i.d.) zero-mean, variance- ,
circularly symmetric, complex Gaussian random variables. The
multiplicative noise (“fading”) is a mean- , unit-
variance, stationary, and ergodic stochastic process of spectral
distribution function , i.e., is a
bounded and nondecreasing function on satisfying
[3, p. 474, Th. 3.2]

where , and where denotes the complex conjugate
of . Since is monotonic, it is almost everywhere differ-
entiable, and we denote its derivative by . (At the discon-
tinuity points of the derivative is undefined.) For
example, if the fading process is i.i.d., then

III. CHANNEL CAPACITY AND THE PRE-LOG

Channel capacity is defined as the supremum of all achievable
rates. (We refer to [4, Ch. 8] for a definition of an achievable rate
and for a more detailed discussion of channel capacity.) It was
shown (e.g., [5, Th. 2]) that the capacity of our channel (1) under
a peak-power constraint on the inputs is given by

SNR (2)
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where SNR is defined as

SNR

denotes the sequence ; and where the maxi-
mization is over all joint distributions on satisfying
with probability one

(3)

The capacity pre-log is defined as [1]

SNR
SNR

(4)

For Gaussian fading, i.e., when is a circu-
larly symmetric, complex Gaussian process, the pre-log is
given by the Lebesgue measure of the set of harmonics where
the derivative of the spectral distribution function is zero, i.e.

(5)

where denotes the Lebesgue measure on the interval
; see [1], [2]. (Here the subscript “G” stands for

“Gaussian”.) This result indicates that if the fading process is
Gaussian and satisfies

then the corresponding channel capacity grows logarithmically
in the SNR. Note that otherwise the capacity can increase with
the SNR in various ways. For instance, in [6] fading channels are
studied that result in a capacity which increases double-logarith-
mically with the SNR, and in [1] spectral distribution functions
are presented for which capacity grows as a fractional power of
the logarithm of the SNR.

IV. MAIN RESULT

We show that, among all stationary and ergodic fading pro-
cesses of a given spectral distribution function and whose law
has no mass point at zero, the Gaussian process gives rise to the
smallest pre-log. This is made precise in the following theorem.

Theorem 1: Consider a mean- , unit-variance, stationary, and
ergodic fading process whose spectral distribution
function is given by and whose law satisfies

Then the corresponding capacity pre-log is lower bounded by

(6)

Proof: See Section V-A.

Note 1: Theorem 1 continues to hold if is
a sequence of i.i.d., variance- , complex (not necessarily
Gaussian) random variables of finite differential entropy. Thus,
among all pairs of fading processes (satisfying the conditions

of Theorem 1) and i.i.d. additive noise processes of variance
, the pair where both processes are Gaussian gives rise to the

smallest pre-log.
The assumption that the law of the fading process has no mass

point at zero is essential in the following sense.

Note 2: There exists a mean- , unit-variance, stationary, and
ergodic fading process of some spectral distribu-
tion function such that

(7)

By Theorem 1, this process must satisfy

Proof: See Section V-B.

Note 3: The inequality in (6) can be strict. For example, con-
sider the phase-noise channel with memoryless phase noise.
This channel can be viewed as a fading channel where the fading
process is given by

and where is i.i.d. with being uniformly
distributed over . This process gives rise to a pre-log

, whereas the Gaussian fading of equal spectral
distribution function yields .

Proof: For a derivation of the capacity pre-log of the phase-
noise channel see Section V-C.

V. PROOFS

This section provides the proofs of our main results. For a
proof of Theorem 1 see Section V-A, for a proof of Note 2 see
Section V-B, and for a proof of Note 3 see Section V-C.

A. Proof of Theorem 1

To prove Theorem 1, we first derive a lower bound on the
capacity, and proceed then to analyze its asymptotic growth as
the SNR tends to infinity.

1) Capacity Lower Bound: To derive a lower bound on the
capacity we consider inputs that are i.i.d., zero-
mean, and circularly symmetric, and for which is uni-
formly distributed over the interval . Our derivation is
based on the lower bound

(8)

which follows from the chain rule

and the nonnegativity of mutual information.
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We first study the first term on the right-hand side (RHS) of
(8). Making use of the stationarity of the channel and of the fact
that the inputs are i.i.d. we have

(9)

We lower bound the RHS of (9) as follows. For any fixed
we have

SNR

(10)

where denotes the distribution of the fading . Here
the third step follows by conditioning the entropy in the second
integral on ; the fourth step follows by conditioning the
entropy in the first integral on and by the behavior of
differential entropy under scaling [4, Th. 9.6.4]; the fifth step
follows because over the range of integration we
have ; the sixth step follows because
is circularly symmetric [6, Lemma 6.16]; the seventh step
follows by computing the entropy of a random variable that
is uniformly distributed over the interval ; the eighth
step follows by evaluating the entropy of a zero-mean, vari-
ance- , circularly symmetric, complex Gaussian random
variable ; and the last step follows from

.
We next turn to the second term on the RHS of (8). In order

to upper bound it we proceed along the lines of [7], but for
non-Gaussian fading. Let , and be the random vectors

, and (where

denotes the transpose of ), and let be a diagonal matrix with
diagonal entries . It follows from (1) that

The conditional covariance matrix of , conditional on
, is given by

where is the identity matrix, denotes Hermitian
conjugation, and

Using the entropy maximizing property of circularly symmetric
Gaussian vectors [4, Th. 9.6.5], we have

SNR (11)

where is a random diagonal matrix with diagonal entries
, and where denote the eigenvalues

of . Here the third step follows from the identity
; the fourth step follows

from Jensen’s inequality and by noting that is
i.i.d., so ; the fifth step follows because
the determinant of a matrix is given by the product of its
eigenvalues; and the last step follows because, by (3), we have

.
To evaluate the RHS of (11) in the limit as tends to infinity,

we apply Szegö’s Theorem on the asymptotic behavior of the
eigenvalues of Hermitian Toeplitz matrices [8] (see also [9, Th.
2.7.13]). We obtain

SNR

SNR (12)
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Combining (8), (9), (10), and (12) yields the final lower bound

SNR SNR

SNR (13)

which holds for any fixed . Note that this lower bound
applies to all mean- , unit-variance, stationary, and ergodic
fading processes with spectral distribution func-
tion , irrespective of whether is zero or not.

2) Asymptotic Analysis: In the following, we prove
Theorem 1 by computing the limiting ratio of the lower
bound (13) to SNR as SNR tends to infinity.

We first show that

SNR
SNR

(14)

To this end, we divide the integral into three parts, depending
on whether takes part in the set , or , where

For the integrand is zero and, hence

SNR
SNR

(15)

For , i.e., when , we note that, for SNR ,
the function

SNR
SNR
SNR

is monotonically decreasing in SNR. Therefore, applying the
Monotone Convergence Theorem [10, Th. 1.26], we have

SNR
SNR

SNR
SNR

(16)

For , i.e., when , we have for SNR

SNR
SNR

SNR
SNR

where the last step follows because, for SNR , the function

SNR
SNR

SNR

is monotonically decreasing in SNR. Since is inte-
grable over , we can apply the Dominated Convergence The-
orem [10, Th. 1.34] to obtain

SNR
SNR

SNR
SNR

(17)

Adding (15), (16), and (17) yields (14).
To continue with the asymptotic analysis of (13) we note that

by (14)

SNR
SNR

(18)

for any . If the law of the fading process has no mass
point at zero, then

and Theorem 1 follows, thus, from (18) by letting tend to zero
from above.

B. Proof of Note 2

We prove Note 2 by demonstrating that there exists a sta-
tionary and ergodic fading process of some spectral distribution
function for which

By Theorem 1, the law of such a process must have a mass point
at zero, i.e.

We first show that the capacity pre-log is upper bounded by

(19)

Indeed, the capacity SNR does not decrease when the re-
ceiver additionally knows the realization of , and
when the inputs have to satisfy an average-power constraint
rather than a peak-power constraint, i.e.

SNR (20)

where the maximization is over all input distributions on
satisfying the average-power constraint

SNR (21)

(This follows because the availability of additional information
cannot decrease the capacity, and because any distribution on
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the inputs satisfying the peak-power constraint (3) satisfies also
(21).) It is well known that the expression on the RHS of (20) is
equal to

SNR

(see, e.g., [11, eq. (3.3.10)]), which can be further upper
bounded by

SNR

SNR

SNR
SNR

(22)

Here the first step follows by writing the expectation as

SNR

SNR

SNR

and by noting that SNR ; the
second step follows from Jensen’s inequality; and the last step
follows because , which implies that

Dividing the RHS of (22) by SNR and computing the limit
as SNR tends to infinity yields (19).

In view of (19), it suffices to demonstrate that there exists a
fading process of some spectral distribution function that
satisfies

(23)

A first attempt of defining such a process (which, alas, does
not work) is

w.p.
w.p.

(“w.p.” stands for “with probability”), where is a
zero-mean, circularly symmetric, stationary and ergodic, com-
plex Gaussian process of variance and of spectral dis-
tribution function ; and and are chosen so that

This process satisfies (23) because , and
because

which implies that almost everywhere, so

Alas, the above fading process is stationary but not ergodic.
In the following, we exhibit a fading process that is stationary

and ergodic and that satisfies (23). Let

and let be a zero-mean, variance-2, circularly sym-
metric, stationary, ergodic, complex Gaussian process of spec-
tral distribution function . Furthermore, let
and be independent of each other. Finally, let the
fading process be given by

Note that is of mean zero, and its law satisfies

(24)

We first argue that is stationary and ergodic.
Indeed, is stationary and ergodic. And since a
Gaussian process is ergodic if, and only if, it is weakly mixing
(see, e.g., [12, Sec. II]), we have that is stationary
and weakly mixing. (See [13, Sec. 2.6] for a definition of weakly
mixing stochastic processes.) It thus follows from [14, Prop. 1.6]
that the process is jointly stationary and
ergodic, which implies that

is stationary and ergodic.
We next demonstrate that can be chosen so that

satisfies (23). We choose

if

otherwise

for some , which corresponds to the autocovari-
ance function

Here denotes the sinc-function, i.e., and
for . Using that

is even

(where statement is 1 if the statement is true and 0 other-
wise), we have

is even

and the corresponding spectrum is given by

if or
otherwise
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We, thus, have

(25)

and it follows from (24) and (25) that

for

Thus, there exist stationary and ergodic fading processes of
some spectral distribution function that give rise to a capacity
pre-log that is strictly smaller than the pre-log of a Gaussian
fading channel of equal spectral distribution function.

C. Proof of Note 3

To prove Note 3, we first notice that, since the phase noise is
memoryless, the derivative of the spectral distribution function
is

Hence the capacity pre-log of the Gaussian fading channel of
spectral distribution function equals

It remains to show that the pre-log of the phase-noise channel
with memoryless phase noise is equal to

(26)

In [15] it was shown that at high SNR the capacity of the phase-
noise channel under the average-power constraint (21) is given
by

SNR
SNR

(27)

where tends to zero as SNR tends to infinity. (The sub-
script “Avg” indicates that the inputs satisfy an average-power
constraint and not a peak-power constraint.) Since any distri-
bution on the inputs satisfying the peak-power constraint (3)
satisfies also the average-power constraint (21), it follows that

SNR SNR and hence

To prove (26) it thus suffices to show that . To this end,
we first note that, since the phase noise is memoryless, we have

SNR (28)

where the maximization is over all distributions on satis-
fying with probability one

We derive a lower bound on SNR by evaluating the RHS
of (28) for being a zero-mean, circularly symmetric, com-
plex random variable with uniformly distributed over the
interval . We have

(29)

where the first step follows from the data processing inequality
[4, Th. 2.8.1]; and the last step follows by the circular symmetry
of [15, p. 3, after (20)].

Computing the differential entropy of a uniformly distributed
random variable, the first term on the RHS of (29) becomes

(30)

As to the second term, we note that, for a given , the
random variable has a noncentral chi-square distri-
bution with noncentrality parameter and two degrees
of freedom. Its differential entropy can be upper bounded by [15,
(8)]

(31)

where the last step follows because with probability
one. Combining (30) and (31) with (29) yields thus

SNR (32)

where

We finally obtain the lower bound

upon dividing the RHS of (32) by SNR and letting SNR tend
to infinity.

VI. EXTENSION TO MISO FADING CHANNELS

Theorem 1 can be extended to multiple-input single-output
(MISO) fading channels with memory, when the fading pro-
cesses corresponding to the different transmit antennas are inde-
pendent. For such channels, the channel output at time

corresponding to the channel input (where
stands for the number of antennas at the transmitter) is given by

(33)
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where , and where the processes

are jointly stationary ergodic and independent. We assume that
for each the process is of mean

, of unit variance, and of spectral distribution function .
We further assume that for

The additive noise is defined as in Section II.
The capacity of this channel is given by (2), but with

replaced by , and with the peak-power constraint (3) altered
accordingly

where denotes the Euclidean norm of the vector , i.e.

The pre-log of MISO fading channels is defined as in the
single-antenna case (4). For Gaussian fading, i.e., when

are circularly sym-
metric, complex Gaussian processes, the pre-log is given by
[16, Cor. 13]

(34)

(See [17, Sec. 4.6] for a proof of this results.)
Proving that the capacity pre-log of MISO fading chan-

nels is lower bounded by the pre-log of the MISO Gaussian
fading channel of equal spectral distribution functions—namely

—is straightforward. Let
denote the capacity pre-log of a single-antenna fading channel
with fading process , and let

By signaling only from antenna while keeping the other an-
tennas silent, we achieve the pre-log , so

(35)

Theorem 1 yields then

which together with (35) proves the claim

(36)

VII. SUMMARY AND DISCUSSION

We showed that, among all stationary and ergodic fading pro-
cesses of a given spectral distribution function and whose law
has no mass point at zero, the Gaussian process gives rise to the
smallest capacity pre-log. We further showed that if the fading
law is allowed to have a mass point at zero, then the above state-
ment is not necessarily true anymore. Roughly speaking, we
can say that for a large class of fading processes the Gaussian
process is the worst. This demonstrates the robustness of the
Gaussian assumption in the analysis of fading channels at high
SNR.

To give an intuition why Gaussian processes give rise to the
smallest pre-log, we recall that for Gaussian fading [1, (33) and
(47)]

SNR
SNR

SNR

where

SNR
SNR

and where denotes the mean-square error in predicting
the present fading from a variance- noisy observation of its
past (with being a
sequence of i.i.d., zero-mean, variance- , circularly symmetric,
complex Gaussian random variables). Thus, for Gaussian fading
the capacity pre-log is determined by SNR , and it is
plausible that also the pre-log of non-Gaussian fading channels
is connected with the ability of predicting the present fading
from a noisy observation of its past. Since, among all stationary
and ergodic processes of a given spectral distribution function,
the Gaussian process is hardest to predict, it is, therefore, plau-
sible that the Gaussian process gives rise to the smallest pre-log.

ACKNOWLEDGMENT

The authors wish to thank E. Telatar for his valuable
comments.

REFERENCES

[1] A. Lapidoth, “On the asymptotic capacity of stationary Gaussian fading
channels,” IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 437–446, Feb.
2005.

[2] A. Lapidoth, “On the high SNR capacity of stationary Gaussian fading
channels,” in Proc. 41st Allerton Conf. Commun., Contr. Comput.,
Monticello, IL, Oct. 1–3, 2003.

[3] J. Doob, Stochastic Processes. New York: Wiley, 1990.
[4] T. M. Cover and J. A. Thomas, Elements of Information Theory, 1st

ed. New York: Wiley , 1991.
[5] Y.-H. Kim, “A coding theorem for a class of stationary channels with

feedback,” IEEE Trans. Inf. Theory, vol. 54, no. 4, pp. 1488–1499, Apr.
2008.

[6] A. Lapidoth and S. M. Moser, “Capacity bounds via duality with ap-
plications to multiple-antenna systems on flat fading channels,” IEEE
Trans. Inf. Theory, vol. 49, no. 10, pp. 2426–2467, Oct. 2003.

[7] X. Deng and A. M. Haimovich, “Information rates of time varying
Rayleigh fading channels,” in Proc. ICC, Paris, France, Jun. 20–24,
2004.

[8] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications.
Los Angeles: Univ. California Press, 1958.



KOCH AND LAPIDOTH: GAUSSIAN FADING IS THE WORST FADING 1165

[9] B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1: Classical
Theory. New York: Amer. Math. Soc., 2005.

[10] W. Rudin, Real and Complex Analysis, 3rd ed. New York: McGraw-
Hill, 1987.

[11] E. Biglieri, J. Proakis, and S. Shamai (Shitz), “Fading channels:
Information-theoretic and communications aspects,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2619–2692, Oct. 1998.

[12] V. Sethuraman and B. Hajek, “Capacity per unit energy of fading chan-
nels with a peak constraint,” IEEE Trans. Inf. Theory, vol. 51, no. 9, pp.
3102–3120, Sep. 2005.

[13] K. Petersen, Ergodic Theory, ser. Cambridge Studies in Advanced
Mathematics 2. Cambridge, U.K.: Cambridge Univ. Press, 1983.

[14] J. R. Brown, Ergodic Theory and Topological Dynamics. New York:
Academic, 1976.

[15] A. Lapidoth, “On phase noise channels at high SNR,” in Proc. Inf.
Theory Workshop (ITW), Bangalore, India, Oct. 20–25, 2002.

[16] T. Koch and A. Lapidoth, “The fading number and degrees of freedom
in non-coherent MIMO fading channels: A peace pipe,” in Proc. IEEE
Int. Symp. Inf. Theory, Adelaide, Australia, Sep. 4–9, 2005.

[17] T. Koch, “On heating up and fading in communication channels,” Ph.D.
dissertation, Signal and Inf. Proc. Lab., ETH Zurich, Zurich, Switzer-
land, Jul. 2009.

Tobias Koch (S’02–M’09) received the M.Sc. degree in electrical engineering
(with distinction) and the Ph.D. degree in electrical engineering from ETH
Zurich, Switzerland, in 2004 and 2009, respectively.

His research interests include digital communication theory and information
theory with particular focus on wireless communication and communication in
electronic circuits.

Amos Lapidoth (S’89–M’95–SM’00–F’04) received the B.A. degree in math-
ematics (summa cum laude) in 1986, the B.Sc. degree in electrical engineering
(summa cum laude) in 1986, and the M.Sc. degree in electrical engineering, in
1990, all from the Technion—Israel Institute of Technology. He received the
Ph.D. degree in electrical engineering from Stanford University, Stanford, CA,
in 1995.

During 1995–1999, he was an Assistant and Associate Professor with the De-
partment of Electrical Engineering and Computer Science, Massachusetts Insti-
tute of Technology, Cambridge, and was the KDD Career Development Asso-
ciate Professor in Communications and Technology. He is now a Professor of
Information Theory at ETH Zurich, Switzerland. He is the author of the book
A Foundation in Digital Communication (Cambridge, U.K.: Cambridge Uni-
versity Press, 2009). His research interests are in digital communications and
information theory.

Dr. Lapidoth served during 2003–2004 and 2009 as an Associate Editor for
Shannon Theory for the IEEE TRANSACTIONS ON INFORMATION THEORY.


